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Abstract  

It is shown that there exists a common controller which simultaneously stabilizes any given nominal plant P and perturbed 
plant KP for any given positive real constant K in the standard linear, time-invariant, multi-input multi-output unity-feedback 
system. The class of plants such that P and KP can be simultaneously stabilized for negative K is also determined. 
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1. I n t r o d u c t i o n  

It is well-known that any given proper plant P can 
be stabilized by a proper controller C in the standard 
linear, time-invarianl (LTI),  multi-input multi-output 
(MIMO) unity-feedback system configuration. The 
set of  all stabilizing controllers can be obtained using 
coprime factorizations of  the plant 's transfer-function 
P .  Now consider the problem of  stabilizing the given 
P simultaneously with KP, where K is a known real 
constant. I f P  is stabie, it follows from the small-gain 
theorem (see for example [5]) that there exist common 
stabilizing controllers for P and KP for any K :fi 0; 
however, if P is nat stable, it is not possible to 
conclude existence of  simultaneously stabilizing con- 
trollers using this result unless K is assumed to be 
"sufficiently small". 

In this paper, it is shown that P and KP can be si- 
multaneously stabilized for any given P and any given 
positive real constant K. Equivalently, there exists a 
stabilizing controller C for any given plant P, such 
that the controller KC also stabilizes P for any positive 
real constant K. Sim~altaneous stabilizability of  P and 
2P was proven in [51l; however, the proof  given there 
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cannot be extended to K ~ 2. The proof  given here for 
the case of  general K uses the Smith-McMillan form 
to show that the pseudo-plant associated with P and 
KP satisfies the parity-interlacing-property. The main 
result o f  this note, Theorem 3.1, states existence of  si- 
multaneously stabilizing controllers for P and KP for 
any positive K and characterizes the class of  plants 
such that P and KP can be simultaneously stabilized 
for negative K. The simultaneously stabilizing con- 
trollers can be constructed as stable stabilizing con- 
trollers of  an associated pseudo-plant. 

Notation: Let °k' contain the extended closed 
right-half-plane (for continuous-time systems) or the 
complement of  the open unit-disk (for discrete-time 
systems). The set of  real numbers, the ring of  proper 
rational functions which do not have any poles in the 
region of  instability ~ ,  the sets o f  proper and strictly 
proper rational functions with real coefficients are de- 
noted by ~, ~ ,  Rp, Rsp , respectively. The set of  matri- 
ces whose entries are in ~ is denoted by o//g(~); M is 
called ~-s table  i f fM E ~ ' ( ~ ) ;  an ~-s table  M is called 
~-unimodular  iff M - l  ~ j~(~.~). For M E J g ( ~ ) ,  the 
norm I1' II is defined as II M II = s u P ,  E~. ~ 6 ( M ( s ) ) ,  
where cY and t ~  denote the maximum singular value 
and the boundary of  ~ .  A right-coprime-factorization 
(RCF) and a left-coprime-factorization (LCF) of  
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Fig. I. The system S(KLP, C). 

P E R~ °×"~ are denoted by (N,D) and (/),N-), where 

N , D , N , / ) E  J / / (~ ) ,  D a n d / )  are biproper and P = 

ND -1 = / 3 - i N  . Let rank P = r. A zo E°g is called a 
(transmission) ~k'-zero of  P iff rankP(zo) < r, equiv- 
alently, rankN(zo) ---- rankN" (zo) < r; zo E ~k' is called 
a blocking °k'-zero of  P iff P(zo) = 0, equivalently, 
N(zo) = 0 = N(z0); so E ~//. is called a °g-pole of  
P iff it is a pole of  some entry of  P, equivalently, 
det D(so) = 0 = det/)(so ). The identity map is denoted 
by I. a := b means a is defined as b. 

(ii) The controller C E o//(Rp) is an :$-stabilizing 
controller Jor P if and only i f  C is given by 

c = ( v  - Q : f ) - ~ ( u  + QD) 

= ((7 + DQ)(~" - N Q ) - '  (1) 

for some ,~-stable Q E ~"' ×"<' such that (V - QN) 
is biproper (which holds for all Q E ~/( .~) when 
P is strictly proper), where U, V, U, P are .~-stable 
matrices such that 

_ ~  /~ = I .  (2) 

(iii) Let U, V E J/ / (~)  be as in (2). The controller 
C is a simultaneously .#-stabilizing controller for P 
and KP if and only if  C is given by (1), where Q 
,.//(.~) is such that (V - QJV) is biproper and 

2. Preliminaries 

Consider the LTI, MIMO system S(KI,P,C) 
(Fig. 1), where P E R~ °x"' and C E R~ ~x"° represent 
the plant and the controller. The real constant K E 
represents a known multiplicative perturbation. The 
nominal plant P is not necessarily ~-stable.  I f  K = 1, 
then S(KI,P,C) becomes the nominal unity-feedback 
system 5~(P, C). It is assumed that P and C do not 
have any hidden modes associated with eigenvalues 
in ~ '  and that the system S(KI,P,C) is well-posed. 

Definitions 2.1 (,~-stability, .~-stabilizing con- 
troller). The system S(KI,P,C) is said to be ~ -  
stable iff the closed-loop transfer-function from u := 
[uTp, u~] T to y := [ye v, y~]T is 2A-stable. The controller 
C is called an .~-stabilizing controller for P E 1~ °×"' 

"' ×"° and ,9~(P, C) is ~-stable.  The controller i f fCERn  
C is called a simultaneously :~.-stabilizing controller 
for P and KP iff C is an ~-stabil izing controller for 
P E R~ °×"' and S(KI,P,C) is ~-stable;  P and KP 
are said to be simultaneously ~-stabil izable iff there 
exists a simultaneously ~-stabil izing controller C for 
P and KP.  

Facts 2.2 (~-stabil i ty of  S(KI,P,C),  all ~-stabil iz- 
ing controllers [5, 3, 4]). Let (N,D) be any RCF and 
(/),N-) be any LCF of P E p~o×n~; let (Dc,]?c) be 
any LCF of C. 

(i) The s.ystem S(KI,P,C) is .~-stable i f  and only 
i f  (DcD + N c K N )  is ~-unimodular. 

( V - QN)D + (U + QD)KN 

=ln, + ( K -  I)(U +QD)N 

is ?A-unimodular. (3) 

Equivalently, P and KP are simultaneously .JA- 
stabilizable i f  and only iv/" there exists .~-stable Q 
such that (3) holds. 

Remarks  2.3 (i) I f  the constant K E N is equal to 
zero, then the system S(KI,P,C) becomes an open- 
loop system. For internal ~-stabili ty,  each of  the 
subsystems P and C must then be .~-stable. It is 
therefore obvious that for K = 0, P and KP are simul- 
taneously .~-stabilizable if  and only if P is .~-stable. 
This also follows from Fact 2.2(i) because when 
K = O, (DcD + N c K N )  = L)cD is ~-unimodular  if  
and only i f / ) c  and D are ~ unimodular, equivalently, 
C and P are both .~-stable. Note that all .~-stable 
controllers that ~-stabil ize P E o,//(~) are given by 
C = (1 - Qp) - IQ,  where Q E ,.///(.~) is such that 
( I  - QP ) is :JA-unimodular. 

(ii) If P is ~-stable,  then P and KP are simulta- 
neously .~-stabilizable for any K E ~. One choice 
for a simultaneously .~-stabilizing controller is obvi- 
ously C = 0; nonzero controllers can be found using 
the small-gain condition (see for example [5]) as fol- 
lows. I f  P E o ~ ( ~ ) ,  then ( N ,D) =  (P,I,,) is an RCF 
of  P and a solution for (2) is given by U---0, V=In~. 
I f  an .H-stable Q c ~n, Xno is chosen so that [[QiI< 
[[ ( K -  1)P [[-l, then (3) holds since (I,~ + ( K  - 1 )QP) 
is ~-unimodular  and, hence, P and KP are simultane- 
ously ?A-stabilizable. 
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If P is not ~-stable, there may not exist ~-stable 
Q such that ]I(K - 1)(U + Q/))N[] < 1, and, hence, 
the existence of Q .5_ J { ( ~ )  satisfying (3) cannot be 
concluded using this (sufficient) small-gain condition 
without restricting K. 

(iii) Using a well-known result (see for example 
[5, 6, 1,2]), by Fact 2.2 (iii), P and KP are simultane- 
ously ~-stabilizable if and only if the "pseudo-plant" 
Ps := (In, + (K - 1 ) U N  ) -  1 (K - 1 )£)N can be strongly 
.M-stabilized. The simultaneously ,M-stabilizing con- 
troller for P and KP is given by ( 1 ), where Q E ~/(.M) 
is any strongly .M-stabilizing controller for the pseudo- 
plant Ps. 

Fact2.4 (Smith-lV[cMillan form [5]). Let  P E 
R~o ×n~. Let rank P ::: r, where r <~ min{no, hi}. There 
exist ~-unimodular  matrices L E ~M n° ×no, R E ~n~ ×n~ 
such that 

0 O(n~_r,×(ni_r) 0 l(ni-r) 
= L  I ~ff--I 0 0 

o L 

A := diag[21 . . .  2r], tp := diag[~l " ' "  @ r ] ,  

where, ./'or j = 1 . . . . .  r ,  the (numerator and deno- 
minator) invariam-factors 2j and ipj satisfy the 
following: 2j E ~,  ~bj E :~, ~bj is biproper; for  j = 
1 . . . . .  r - 1, 2j divides 2j+1, and ~pj+, divides tpj;for 

j =  1 . . . . .  r ,  the pair ( )~j, ~pj ) is coprime, equivalently, 
there exist uj E ~ ,  vj E .M such that 

vj~,; + uj2j = 1 (5) 

3. Main results 

We now show that P and KP are simultaneously 
.M-stabilizable for any real positive constant K; we also 
show that only certain classes of plants can be simul- 
taneously ~-stabilized with KP when K is negative. 

Theorem 3.1 (Sim,altaneous :~-stabilizability of P 
and KP).  Let  P E R~ °×n~ be any given plant and let 
K E ~ be a given constant. 

(a) Let  K > 0; then P and KP are simultaneously 
.M-stab ilizab le. 

(b) Let  K < 0 Consider the Smi th -McMi l lan  
f o rm  (4) o f  P. Let  ":i E ~ N ~ ,  i E { 1 . . . . .  m}, be such 
that 

~/~(si) = 0 Jor some (i E {1 . . . . .  r}, and 

~j(si) ¢ 0 f o r  all j E {1 . . . . .  r} such that j >1 
((i + 1), and 

)~j(si) = 0 f o r  a l l j  E {1 . . . . .  r} such that j >~ 
( # i +  1). 
Let  {{1 . . . . .  fro} denote the set o f  indices correspond- 
ing to the set {sl . . . . .  Sm}. 

(i) Suppose that P has no real blocking Y,t-zeros 
(including infinity); then P and KP are simultane- 
ously ~-stabilizable i f  and only i f  the indices in the 
set { f l . . . . .  fro} are either all even or all odd. 

(ii) Suppose that P has at least one real blocking 
~-zero  (including infinity); then P and KP are si- 
multaneously ,M-stabilizable i f  and only i f  all o f  the 
indices in the set {{I . . . . .  fro} are even. 

(c) Let  K = 0; then P and KP are simultaneously 
~-stabilizable i f  and only i f  P E .J//(.M). 

Corollary 3.2 (Conditions for simultaneous ,M- 
stabilizability of scalar P and KP).  Let  P E Rp be 
any given (scalar) plant and let K E R, K < 0 be a 
given negative constant. Then P and KP are simul- 
taneously ~-stabilizable i f  and only i f  P either has 
no real ~-zeros  (including infinity) or has no real 
~l/-poles. 

Proof of Theorem 3.1 . The case for K = 0 is obvious 
as explained in Remark 2.3(i). We prove cases (a) and 
(b) in detail. 

Let ( N , D )  be any RCF and (/),N-) be any LCF 
of P; let U, V,U, 17 E J~/(,M) satisfy (2). By Fact 
2.2(iii), there exist simultaneously ,M-stabilizing 
controllers for P and KP if and only if there exists 
Q E J/(.M) such that (3) holds. By (2), K ~ 0 
implies 

( I n , - K - I ( K  - 1)UN)(I , ,  + ( K -  1)UN) 

+ ( K - I ( K  - 1 ) U V ) ( ( K  - I) / )N) = In,, (6) 

and, hence, the pair ((In, + (K - 1 )UN) ,  (K - 1 )£)N) 
is right-coprime. Therefore, there exists Q E J / / (~)  
such that (3) holds if and only if the pair (In~ + 
(K - 1)UN,  (K - 1)/)N) satisfies the parity-inter- 
lacing-property, equivalently, det(/,, + ( K -  1)UN) 
has the same sign at all real blocking 4g-zeros of 

/ )N.  If K = 1, as expected since this corresponds to 
the nominal system 5P(P, C), the parity-interlacing- 
property is satisfied because det(l + ( K -  1 ) U N )  = 1. 
We now investigate the parity-interlacing-property 
when K ¢ 1: Consider the Smith-McMillan form 
(4) of P .  Any RCF ( N , D )  and any LCF ( D , N )  of 
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P is given in terms of  this Smith-McMillan form 
as 

0 O(no_r)x(ni_r) 

" , , -r)  M , (7) 

0 I(no-r) ' 

o (8) 
O(no--r)x(ni--r) 

for some ~-unimodular  M E ~/h'(N) and for some ~ -  
unimodular M E J / / ( ~ ) .  Let Up :=  diag [ul --. ur], 
VD :=  diag[vl . - .  vr]; t henby  (5), (VDtP + UDA) = 
Ir. A solution for U, V, U, V satisfying (2) is 

U : = M - I  [ UD 0 J L-I 
0 0(hi r)×(no--r) ' 

V : : M  ' IVD 0 ] R, 
0 I(,,-r) 

(J := R - '  [ UD 0 ] M - 1  
0 O(ni_r)x(no_r) ' 

p : = L [ V D  0 ] ~  1 
0 I(n,,-r) " 

By (9), 

(9) 

deft/., + (K - l )UN)  

0 O(ni_r)×(ni_r) 

L 
= [ l ( 1  + ( K - 1 ) u j 2 j ) .  (10) 

j =  1 

By (7) and (8), since M, / I )E  ~//g(~) are ~-uni-  
modular, 

(/)N)(so ) 

= 0  

A 0 ] M ) ( s o )  
0 0(,o_r)x(, ~ r) 

if and only if (~PA)(so) = 0, equivalently, (Oj2j)(so) 
= 0 for j = 1 . . . . .  r. Since ()~j,0j) is coprime, (0j 
2j)(s0) = 0 means that either Oj(so) = 0 or 2j(s0) 

= 0. For any so E N A '~?,' such that (DN)(so) = O, 
there are only two possibilities (so is either a block- 
ing zero of  P, or so is a pole o f  P which appears 
as a zero of  the smallest invariant factor Or or which 
coincides with a zero): 

Case 1: Suppose that 0z(s0) ¢ 0 for all j E 
{ 1 . . . . .  r}, equivalently, det D(so) ¢ 0; then (/)N)(s0) 
= 0  implies that N(so)=0 ,  i.e., so is a blocking w/l- 
zero of  P. Therefore det(In, + (K - 1)UN)(so) = 1. 

Case 2: Suppose that O/(so) = 0 for some { E 
{1 . . . . .  r}, but Oj(so) ¢ 0 f o r j  > #; then Oj(so) = 0 
for all j ~< { because 0j+ l divides 0j- Since ( ).j, Oj ) 
is coprime, 2/(s0) ¢ 0. But (DN)(so) = 0 implies 
(Oj2j)(so) = 0 f o r j  = 1 . . . . .  r; therefore 2j(so) = 0 
for a l l j > ~ ( / +  1). By (5), (uj2j)(so) = 1 for al l j~<{ 
and (uj)oj)(so) = 0 for all j>~(d + 1). By (10), 

det(l,, + (K - 1 ) UN )(s0) 

= f l ( 1  + ( K - l ) ( u j ) ~ j ) ( s o ) ) = K / .  (11) 
j--I 

Note that if ~r" = r, then the smallest invariant factor 
0r(s0) = 0 and, hence, 2j(so) ¢ 0 f o r j  = 1 . . . . .  r. In 
this case, det(In~ + (K - 1 )UN)(so) = K r. 

(a) Let K > 0. By (11), for all real blocking '~#- 
zeros of  (DN)(so)= 0 as in Case 2 above, det(In, + 
(K - 1)UN)(so) = K / > 0; since this sign agrees 
with the positive sign at all other blocking ~k'-zeros 
described in Case 1, the pair ((In~ + (K - 1)UN), 
(K - 1 ) /)N) satisfies the parity-interlacing-property 
and, hence, there exist simultaneously ~-stabilizing 
controllers for P and KP for any given K > 0. 

(b) Let K < 0. Suppose that DN has m real block- 
ing ~k'-zeros sl . . . . .  Sm as described in Case 2 above and 
the corresponding indices are dl ..... ¢m; i.e., O/i(&) 
= 0 for i E { 1 . . . . .  m}. By ( 11 ), the parity-interlacing- 
property is satisfied for these zeros if and only if the 
sign of  det(I~, + (K - 1 )UN)(s i )  = K/~ remains the 
same for all si; but when K < 0, the sign of  K/ '  is the 
same for all i E {1 . . . . .  m} if and only if the indices 
¢I . . . . .  Em are either all odd or all even numbers. Now 
i f / ) N  has any real blocking ~#-zero so as described 
in Case 1, then N(so) = 0, i.e., so is a real blocking 
d//-zero of  P. Since det(I,~ + (K - 1)UN)(so) = 1 is 
positive at these zeros, K F~ has to be positive so that 
the sign does not change; but when K < 0, K/~ is 
positive if and only if all o f  the indices ¢1 . . . . .  {m are 
even numbers. 

This proves cases (a) and (b). It remains to show 
that the simultaneously ~-stabilizing controllers, 
whenever they exist, can be chosen proper. If  the 
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plant is strictly proper, then N E J//(Rsp ), and, hence, 
( V -  Q~ ' )  is biproper for all Q E -~( .~) ;  therefore the 
controllers are proper for any choice of  Q. For proper 
plants which are not strictly proper, the choice of  
Q E ~¢//(,~) satisfying (3) should be modified to en- 
sure that the simultaneously ~-stabil izing controllers 
are proper by choosing Q E .//{(~) to satisfy the 
additional condition that (V - QN)  is biproper. One 
way to do this is e~:plained here for K > 0; the case 
of  negative K is similar whenever the conditions on 
the indices are satisfied and is omitted since ensuring 
the properness of  the controllers is a technicality: For 
any P E .~(Rp), there exists a solution of  (2) with 
U E ,//g'(Rsp); let X,  Y, X, 17 E ~¢/(~) be any solu- 
tion satisfying (2). Let W E ~"'×"° be any ~-s table  

matrix such that W(cx~) = - X ( c ~ ) / )  -1 (~x~). Define 
U := ( X +  W/)),  / / : =  (Y - WN-), U := ( X + D W ) ,  
P := (17 - NW);  then by construction, U ( ~ )  = 0. 
Let a E ~, - a  E C\'?/; define Q =: (1/(s + a))Q,  
where 0 E R~ ×"° is such that (3) holds, i.e., 

[I~, + (K - 1)UN + Q(K - 1)(1/(s+a))ff)N] is 
.~-unimodular. (This last claim follows by showing 
that, when K > 0, det(I,, + (K - 1)UN)(so) > 0 for 
any so E E A ~ suzh that ((1/(s + a))DN)(so) = 0; 
from (6), det(/~, 4 (K - 1 )UN)  > 0 at any real 
blocking o~-zero of  ( / )N);  now the only additional 
blocking W-zero of  ( (1 / (s+a))P)N)  is at infin- 
ity, where det(I,, + ( K -  1 ) U N ) ( ~ )  = 1 since 
U ( ~ )  = 0). Since U and Q are strictly proper, 
( v - QN)  is biproper because ( V -  QN) (c~)D(~)  = 
I - (U + (1/(s + a ) ) 0 / ) ) ( c ~ ) N ( ~ )  = I ;  the corre- 
sponding controller C = ( V - ( 1 / ( s  + a) )Ofl)-~( U + 

^ ~ 

(1/(s + a))QD) is in fact strictly proper. [] 

Proof  of Corollary 3.2. As in the proof  of  Theorem 
3.1 , let (N, D)  be any coprime factorization of  P; let 
U, V E , J#(~)  satisfy VD + UN = 1. There exist 
simultaneously '~-stabilizing controllers for P and KP 
if  and only if the pair (1 + (K - 1 )UN, (K - 1 )D N)  
satisfies the parity-interlacing-property, equivalently, 
(1 + ( K  - 1 )UN) has the same sign at all real °//-zeros 
of DN. But when K < 0, this sign cannot be the same 
if P has both real ?/-zeros and real ~//-poles: At the 
real ~2/-zeros of  N, (1 + (K - 1 )UN)  = 1 > 0 and at 
the real ~-zeros  of 'D,  (1 + (K - 1 )UN)  = K < 0. 
Therefore, the parity-interlacing-property is satisfied 
if and only if P either has no real ~//-zeros or it has 
no real °ll-poles. 

An alternate proof  follows from Theorem 3.1 (b): 
I f  P has any real ~i-poles, then the only denominator 

invariant factor index is ( = 1 because P is scalar; 
since the index is an odd number, the parity- 
interlacing-property is satisfied if and only if P does 
not have real V-zeros when it has real ql-poles. [] 

Comments  3.3 (Special cases for simultaneous ~ -  
stabilizability of  P and KP). Theorem 3.1 shows 
that P and KP are simultaneously ~-stabil izable 
for any given plant P E .////(Rp) and any given 
positive real constant K. I f  K is negative, then 
P and KP are simultaneously ~'-stabilizable only 
for certain classes of  plants. In the single-input 
single-output case, the characterization of  this 
class of  plants is simple; as stated in Corol- 
lary 3.2, plants in this class are allowed to have 
either real W-poles or real W-zeros, but not both. 
Note that ~ E og so when K < 0, if  P is 
strictly proper, then it can be simultaneously :~- 
stabilized with KP if and only if it has no real ~#- 
poles. 

For MIMO plants, when K < 0, the characteriza- 
tion of  the class of  P which can be simultaneously ~ -  
stabilized with KP is not as simple since it requires a 
careful account of  all possible real blocking ~//-zeros 
of  the product (/3N). The blocking ~#-zeros o f /5  and 
of  N are obviously among the blocking ~'-zeros of  
( / )N).  However, there may also be additional block- 
ing ~/-zeros: I f  P is strictly proper or it has at least 
one real blocking W-zero, then N(z)  = 0 for some 
z E [~ N .~k', which is clearly a blocking W-zero of  
( / )N).  Considering the Smith-McMillan form in (4), 
all other real blocking W-zeros of  ( / )N)  are either 
'Jk'-zeros of  the smallest invariant factor ~br of  the de- 
nominator or they are ~/-zeros of  some denominator 
invariant factor ~l,  which also appear immediately as 
a zero of  the next numerator invariant factor )~V+l)- 
It is clear that the conditions in Theorem 3.1 (b) are 
satisfied for the following special cases: 

(i) I f P  has no real 'J#-poles, then there are no si as 
described in Theorem 3.1 (b); therefore P and KP are 
simultaneously .~-stabilizable for any K < 0. 

(ii) I f  P has no real W-zeros (including infinity), 
then none of  the numerator invariant factors )~i have 
real °//-zeros and, hence, the only blocking °k'-zeros of  
(/3N) are due to the smallest denominator invariant 
factor ~9r, i.e., the only index {i = r ; therefore P and 
KP are simultaneously ~-stabil izable for any K < 0. 

(iii) I f  P has no real W-poles coinciding with ~ -  
zeros, then the only si are due to ~r(si) = 0,  i.e., 
the only index fi = r. In this case, if P has real 
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blocking 'J//-zeros (including infinity), then P and KP 
are simultaneously ~-stabilizable for any K < 0 if 
and only if the rank r is even. If P is full (row 
or column) rank, i.e., if r = min{no, ni}, then obvi- 
ously these comments on r apply to the smaller of  the 
number of  inputs (ni) and outputs (no). 

4. Conclusions 

It is shown that P and KP are simultaneously .~- 
stabilizable for any given P and any given positive real 
constant K > 0. This result is equivalent to existence 
of  an ~-stabilizing controller C such that KC is also 
an ~-stabilizing controller for P. It is also shown that 
P and KP are not always simultaneously stabilizable 
for K < 0 and a complete characterization of  the class 
of  plants that can be simultaneously ~-stabilized with 
KP is given in Theorem 3.1 . 
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