

Systems & Control Letters 27 (1996) 129-134

Simultaneous stabilizability of P and KP

A.N. Gündeş*

Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA Received 6 April 1995; revised 8 October 1995

Abstract

It is shown that there exists a common controller which simultaneously stabilizes any given nominal plant P and perturbed plant KP for any given positive real constant K in the standard linear, time-invariant, multi-input multi-output unity-feedback system. The class of plants such that P and KP can be simultaneously stabilized for negative K is also determined.

Keywords: Simultaneous stabilization; Stabilizing controller; Parity-interlacing-property; Multiplicative perturbation

1. Introduction

It is well-known that any given proper plant P can be stabilized by a proper controller C in the standard linear, time-invariant (LTI), multi-input multi-output (MIMO) unity-feedback system configuration. The set of all stabilizing controllers can be obtained using coprime factorizations of the plant's transfer-function P. Now consider the problem of stabilizing the given P simultaneously with KP, where K is a known real constant. If P is stable, it follows from the small-gain theorem (see for example [5]) that there exist common stabilizing controllers for P and KP for any $K \neq 0$; however, if P is not stable, it is not possible to conclude existence of simultaneously stabilizing controllers using this result unless K is assumed to be "sufficiently small".

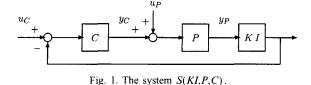
In this paper, it is shown that P and KP can be simultaneously stabilized for any given P and any given positive real constant K. Equivalently, there exists a stabilizing controller C for any given plant P, such that the controller KC also stabilizes P for any positive real constant K. Simultaneous stabilizability of P and 2P was proven in [5]; however, the proof given there

cannot be extended to $K \neq 2$. The proof given here for the case of general K uses the Smith–McMillan form to show that the pseudo-plant associated with P and KP satisfies the parity-interlacing-property. The main result of this note, Theorem 3.1, states *existence* of simultaneously stabilizing controllers for P and KP for any positive K and characterizes the class of plants such that P and KP can be simultaneously stabilized for negative K. The simultaneously stabilizing controllers can be constructed as stable stabilizing controllers of an associated pseudo-plant.

Notation: Let \mathscr{U} contain the extended closed right-half-plane (for continuous-time systems) or the complement of the open unit-disk (for discrete-time systems). The set of real numbers, the ring of proper rational functions which do not have any poles in the region of instability \mathscr{U} , the sets of proper and strictly proper rational functions with real coefficients are denoted by \mathbb{R} , \mathscr{R} , \mathbb{R}_p , \mathbb{R}_{sp} , respectively. The set of matrices whose entries are in \mathscr{R} is denoted by $\mathscr{M}(\mathscr{R})$; M is called \mathscr{R} -stable iff $M \in \mathscr{M}(\mathscr{R})$; an \mathscr{R} -stable M is called \mathscr{R} -unimodular iff $M^{-1} \in \mathscr{M}(\mathscr{R})$. For $M \in \mathscr{M}(\mathscr{R})$, the norm $\|\cdot\|$ is defined as $\|M\| = \sup_{s \in \partial \mathscr{U}} \overline{\sigma}(M(s))$, where $\overline{\sigma}$ and $\partial \mathscr{U}$ denote the maximum singular value and the boundary of \mathscr{U} . A right-coprime-factorization (RCF) and a left-coprime-factorization (LCF) of

^{*} e-mail: gundes@ece.ucdavis.edu. Research supported by the National Science Foundation Grant ECS-9257932.

^{0167-6911/96/\$12.00 © 1996} Elsevier Science B.V. All rights reserved SSDI 0167-6911(95)00054-2



 $P \in \mathbb{R}_p^{n_0 \times n_i}$ are denoted by (N, D) and (\tilde{D}, \tilde{N}) , where $N, D, \tilde{N}, \tilde{D} \in \mathcal{M}(\mathcal{R})$, D and \tilde{D} are biproper and $P = ND^{-1} = \tilde{D}^{-1}\tilde{N}$. Let rank P = r. A $z_0 \in \mathcal{U}$ is called a (transmission) \mathcal{U} -zero of P iff rank $P(z_0) < r$, equivalently, rank $N(z_0) = \operatorname{rank} \tilde{N}(z_0) < r$; $z_0 \in \mathcal{U}$ is called a blocking \mathcal{U} -zero of P iff $P(z_0) = 0$, equivalently, $N(z_0) = 0 = \tilde{N}(z_0)$; $s_0 \in \mathcal{U}$ is called a \mathcal{U} -pole of P iff it is a pole of some entry of P, equivalently, det $D(s_0) = 0 = \det \tilde{D}(s_0)$. The identity map is denoted by I. a := b means a is defined as b.

2. Preliminaries

Consider the LTI, MIMO system S(KI,P,C)(Fig. 1), where $P \in \mathbb{R}_p^{n_o \times n_i}$ and $C \in \mathbb{R}_p^{n_i \times n_o}$ represent the plant and the controller. The real constant $K \in \mathbb{R}$ represents a known multiplicative perturbation. The nominal plant *P* is not necessarily \mathscr{R} -stable. If K = 1, then S(KI,P,C) becomes the nominal unity-feedback system $\mathscr{S}(P,C)$. It is assumed that *P* and *C* do not have any hidden modes associated with eigenvalues in \mathscr{R} and that the system S(KI,P,C) is well-posed.

Definitions 2.1 (\mathscr{R} -stability, \mathscr{R} -stabilizing controller). The system S(KI,P,C) is said to be \mathscr{R} -stable iff the closed-loop transfer-function from $u := [u_P^T, u_C^T]^T$ to $y := [y_P^T, y_C^T]^T$ is \mathscr{R} -stable. The controller C is called an \mathscr{R} -stabilizing controller for $P \in \mathbb{R}_p^{n_0 \times n_1}$ iff $C \in \mathbb{R}_p^{n_1 \times n_0}$ and $\mathscr{S}(P,C)$ is \mathscr{R} -stable. The controller C is called a simultaneously \mathscr{R} -stabilizing controller for $P \in \mathbb{R}_p^{n_0 \times n_1}$ and S(KI,P,C) is \mathscr{R} -stabilizing controller for $P \in \mathbb{R}_p^{n_0 \times n_1}$ and S(KI,P,C) is \mathscr{R} -stabilizing controller for $P \in \mathbb{R}_p^{n_0 \times n_1}$ and S(KI,P,C) is \mathscr{R} -stabilizing controller for $P \in \mathbb{R}_p^{n_0 \times n_1}$ and S(KI,P,C) is \mathscr{R} -stabilizable iff there exists a simultaneously \mathscr{R} -stabilizing controller C for P and KP.

Facts 2.2 (\Re -stability of S(KI,P,C), all \Re -stabilizing controllers [5,3,4]). Let (N,D) be any RCF and (\tilde{D},\tilde{N}) be any LCF of $P \in \mathbb{R}_p^{n_0 \times n_i}$; let $(\tilde{D}_C,\tilde{N}_C)$ be any LCF of C.

(i) The system S(KI,P,C) is \mathcal{R} -stable if and only if $(\tilde{D}_C D + \tilde{N}_C KN)$ is \mathcal{R} -unimodular.

(ii) The controller $C \in \mathcal{M}(\mathbb{R}_p)$ is an \mathcal{R} -stabilizing controller for P if and only if C is given by

$$C = (V - Q\tilde{N})^{-1}(U + Q\tilde{D})$$

= $(\tilde{U} + DQ)(\tilde{V} - NQ)^{-1}$ (1)

for some \mathcal{R} -stable $Q \in \mathcal{R}^{n_1 \times n_0}$ such that $(V - Q\tilde{N})$ is biproper (which holds for all $Q \in \mathcal{M}(\mathcal{R})$ when P is strictly proper), where $U, V, \tilde{U}, \tilde{V}$ are \mathcal{R} -stable matrices such that

$$\begin{bmatrix} V & U \\ -\tilde{N} & \tilde{D} \end{bmatrix} \begin{bmatrix} D & -\tilde{U} \\ N & \tilde{V} \end{bmatrix} = I.$$
 (2)

(iii) Let $U, V \in \mathcal{M}(\mathcal{R})$ be as in (2). The controller *C* is a simultaneously \mathcal{R} -stabilizing controller for *P* and *KP* if and only if *C* is given by (1), where $Q \in \mathcal{M}(\mathcal{R})$ is such that $(V - Q\tilde{N})$ is biproper and

$$(V - Q\tilde{N})D + (U + Q\tilde{D})KN$$

= $I_{n_1} + (K - 1)(U + Q\tilde{D})N$
is *R*-unimodular. (3)

Equivalently, P and KP are simultaneously \mathcal{R} -stabilizable if and only if there exists \mathcal{R} -stable Q such that (3) holds.

Remarks 2.3 (i) If the constant $K \in \mathbb{R}$ is equal to zero, then the system S(KI,P,C) becomes an openloop system. For internal \mathscr{R} -stability, each of the subsystems P and C must then be \mathscr{R} -stable. It is therefore obvious that for K = 0, P and KP are simultaneously \mathscr{R} -stabilizable if and only if P is \mathscr{R} -stable. This also follows from Fact 2.2(i) because when K = 0, $(\tilde{D}_C D + \tilde{N}_C KN) = \tilde{D}_C D$ is \mathscr{R} -unimodular if and only if \tilde{D}_C and D are \mathscr{R} unimodular, equivalently, C and P are both \mathscr{R} -stable. Note that all \mathscr{R} -stable controllers that \mathscr{R} -stabilize $P \in \mathscr{M}(\mathscr{R})$ are given by $C = (I - QP)^{-1}Q$, where $Q \in \mathscr{M}(\mathscr{R})$ is such that (I - QP) is \mathscr{R} -unimodular.

(ii) If *P* is \mathscr{R} -stable, then *P* and *KP* are simultaneously \mathscr{R} -stabilizable for any $K \in \mathbb{R}$. One choice for a simultaneously \mathscr{R} -stabilizing controller is obviously C = 0; nonzero controllers can be found using the *small-gain* condition (see for example [5]) as follows. If $P \in \mathscr{M}(\mathscr{R})$, then $(N, D) = (P, I_{n_i})$ is an RCF of *P* and a solution for (2) is given by U = 0, $V = I_{n_i}$. If an \mathscr{R} -stable $Q \in \mathscr{R}^{n_i \times n_o}$ is chosen so that $||Q|| < ||(K-1)P||^{-1}$, then (3) holds since $(I_{n_i} + (K-1)QP)$ is \mathscr{R} -unimodular and, hence, *P* and *KP* are simultaneously \mathscr{R} -stabilizable.

If P is not \mathscr{R} -stable, there may not exist \mathscr{R} -stable Q such that $||(K-1)(U+Q\tilde{D})N|| < 1$, and, hence, the existence of $Q \in \mathscr{M}(\mathscr{R})$ satisfying (3) cannot be concluded using this (sufficient) small-gain condition without restricting K.

(iii) Using a well-known result (see for example [5, 6, 1, 2]), by Fact 2.2 (iii), *P* and *KP* are simultaneously \mathscr{R} -stabilizable if and only if the "pseudo-plant" $P_S := (I_{n_i} + (K-1)UN)^{-1}(K-1)\tilde{D}N$ can be strongly \mathscr{R} -stabilized. The simultaneously \mathscr{R} -stabilizing controller for *P* and *KP* is given by (1), where $Q \in \mathscr{M}(\mathscr{R})$ is any strongly \mathscr{R} -stabilizing controller for the pseudo-plant P_S .

Fact 2.4 (Smith–McMillan form [5]). Let $P \in \mathbb{R}_{p}^{n_{o} \times n_{i}}$. Let rank P =: r, where $r \leq \min\{n_{o}, n_{i}\}$. There exist \mathcal{R} -unimodular matrices $L \in \mathcal{R}^{n_{o} \times n_{o}}$, $R \in \mathcal{R}^{n_{i} \times n_{i}}$ such that

$$P = L \begin{bmatrix} \Lambda & 0 \\ 0 & 0_{(n_0-r) \times (n_i-r)} \end{bmatrix} \begin{bmatrix} \Psi^{-1} & 0 \\ 0 & I_{(n_i-r)} \end{bmatrix} R$$
$$= L \begin{bmatrix} \Psi^{-1} & 0 \\ 0 & I_{(n_0-r)} \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & 0_{(n_0-r) \times (n_i-r)} \end{bmatrix} R, (4)$$

 $\Lambda := \operatorname{diag} \left[\lambda_1 \quad \cdots \quad \lambda_r \right], \quad \Psi := \operatorname{diag} \left[\psi_1 \quad \cdots \quad \psi_r \right],$

where, for j = 1, ..., r, the (numerator and denominator) invariant-factors λ_j and ψ_j satisfy the following: $\lambda_j \in \mathcal{R}, \psi_j \in \mathcal{R}, \psi_j$ is biproper; for $j = 1, ..., r - 1, \lambda_j$ divides λ_{j+1} , and ψ_{j+1} divides ψ_j ; for j = 1, ..., r, the pair (λ_j, ψ_j) is coprime, equivalently, there exist $u_j \in \mathcal{R}, v_j \in \mathcal{R}$ such that

$$v_j \psi_j + u_j \lambda_j = 1. \tag{5}$$

3. Main results

We now show that P and KP are simultaneously \mathcal{R} -stabilizable for any real positive constant K; we also show that only certain classes of plants can be simultaneously \mathcal{R} -stabilized with KP when K is negative.

Theorem 3.1 (Simultaneous \mathscr{R} -stabilizability of P and KP). Let $P \in \mathbb{R}_p^{n_0 \times n_1}$ be any given plant and let $K \in \mathbb{R}$ be a given constant.

(a) Let K > 0; then P and KP are simultaneously \mathcal{R} -stabilizable.

(b) Let K < 0. Consider the Smith-McMillan form (4) of P. Let $s_i \in \mathbb{R} \cap \mathcal{U}$, $i \in \{1, ..., m\}$, be such that

 $\psi_{\ell_i}(s_i) = 0$ for some $\ell_i \in \{1, \ldots, r\}$, and

 $\psi_j(s_i) \neq 0$ for all $j \in \{1, ..., r\}$ such that $j \ge (\ell_i + 1)$, and

 $\lambda_j(s_i) = 0$ for all $j \in \{1, \dots, r\}$ such that $j \ge (\ell_i + 1)$.

Let $\{\ell_1, \ldots, \ell_m\}$ denote the set of indices corresponding to the set $\{s_1, \ldots, s_m\}$.

(i) Suppose that P has no real blocking \mathcal{U} -zeros (including infinity); then P and KP are simultaneously \mathcal{R} -stabilizable if and only if the indices in the set $\{\ell_1, \ldots, \ell_m\}$ are either all even or all odd.

(ii) Suppose that P has at least one real blocking \mathcal{U} -zero (including infinity); then P and KP are simultaneously \mathcal{R} -stabilizable if and only if all of the indices in the set $\{\ell_1, \ldots, \ell_m\}$ are even.

(c) Let K = 0; then P and KP are simultaneously \mathcal{R} -stabilizable if and only if $P \in \mathcal{M}(\mathcal{R})$.

Corollary 3.2 (Conditions for simultaneous \mathscr{R} stabilizability of scalar P and KP). Let $P \in \mathbb{R}_p$ be any given (scalar) plant and let $K \in \mathbb{R}$, K < 0 be a given negative constant. Then P and KP are simultaneously \mathscr{R} -stabilizable if and only if P either has no real \mathscr{U} -zeros (including infinity) or has no real \mathscr{U} -poles.

Proof of Theorem 3.1. The case for K = 0 is obvious as explained in Remark 2.3(i). We prove cases (a) and (b) in detail.

Let (N,D) be any RCF and (\tilde{D},\tilde{N}) be any LCF of P; let $U, V, \tilde{U}, \tilde{V} \in \mathcal{M}(\mathcal{R})$ satisfy (2). By Fact 2.2(iii), there exist simultaneously \mathcal{R} -stabilizing controllers for P and KP if and only if there exists $Q \in \mathcal{M}(\mathcal{R})$ such that (3) holds. By (2), $K \neq 0$ implies

$$(I_{n_i} - K^{-1}(K-1)UN)(I_{n_i} + (K-1)UN) + (K^{-1}(K-1)U\tilde{V})((K-1)\tilde{D}N) = I_{n_i},$$
(6)

and, hence, the pair $((I_{n_i} + (K - 1)UN), (K - 1)DN)$ is right-coprime. Therefore, there exists $Q \in \mathcal{M}(\mathcal{R})$ such that (3) holds if and only if the pair $(I_{n_i} + (K - 1)UN, (K - 1)DN)$ satisfies the parity-interlacing-property, equivalently, $\det(I_{n_i} + (K - 1)UN)$ has the same sign at all real blocking \mathcal{U} -zeros of DN. If K = 1, as expected since this corresponds to the nominal system $\mathcal{S}(P, C)$, the parity-interlacingproperty is satisfied because $\det(I + (K - 1)UN) = 1$. We now investigate the parity-interlacing-property when $K \neq 1$: Consider the Smith–McMillan form (4) of P. Any RCF (N, D) and any LCF (D, \tilde{N}) of P is given in terms of this Smith-McMillan form as

$$(N,D) = \left(L \begin{bmatrix} A & 0\\ 0 & 0_{(n_o-r)\times(n_i-r)} \end{bmatrix} M, \\ R^{-1} \begin{bmatrix} \Psi & 0\\ 0 & I_{(n_i-r)} \end{bmatrix} M \right),$$
(7)

$$(\tilde{D}, \tilde{N}) = \begin{pmatrix} \tilde{M} \begin{bmatrix} \Psi & 0\\ 0 & I_{(n_0 - r)} \end{bmatrix} L^{-1}, \\ \tilde{M} \begin{bmatrix} \Lambda & 0\\ 0 & 0_{(n_0 - r) \times (n_1 - r)} \end{bmatrix} R \end{pmatrix}$$
(8)

for some \mathscr{R} -unimodular $M \in \mathscr{M}(\mathscr{R})$ and for some \mathscr{R} unimodular $\tilde{M} \in \mathscr{M}(\mathscr{R})$. Let $U_D := \text{diag}[u_1 \cdots u_r]$, $V_D := \text{diag}[v_1 \cdots v_r]$; then by (5), $(V_D \Psi + U_D \Lambda) =$ I_r . A solution for $U, V, \tilde{U}, \tilde{V}$ satisfying (2) is

$$U := M^{-1} \begin{bmatrix} U_D & 0 \\ 0 & 0_{(n_i - r) \times (n_o - r)} \end{bmatrix} L^{-1},$$

$$V := M^{-1} \begin{bmatrix} V_D & 0 \\ 0 & I_{(n_i - r)} \end{bmatrix} R,$$

$$\tilde{U} := R^{-1} \begin{bmatrix} U_D & 0 \\ 0 & 0_{(n_i - r) \times (n_o - r)} \end{bmatrix} M^{-1},$$

$$\tilde{V} := L \begin{bmatrix} V_D & 0 \\ 0 & I_{(n_o - r)} \end{bmatrix} \tilde{M}^{-1}.$$
(9)

By (9),

$$\det(I_{n_{i}} + (K - 1)UN)$$

$$= \det\left(I_{n_{i}} + (K - 1)\begin{bmatrix}U_{D}A & 0\\0 & 0_{(n_{i} - r) \times (n_{i} - r)}\end{bmatrix}\right)$$

$$= \prod_{j=1}^{r} (1 + (K - 1)u_{j}\lambda_{j}).$$
(10)

By (7) and (8), since $M, \tilde{M} \in \mathcal{M}(\mathcal{R})$ are \mathcal{R} -unimodular,

$$(\tilde{D}N)(s_0) = \left(\tilde{M} \begin{bmatrix} \Psi & 0\\ 0 & I_{(n_0-r)} \end{bmatrix} L^{-1} L \begin{bmatrix} \Lambda & 0\\ 0 & 0_{(n_0-r)\times(n_1-r)} \end{bmatrix} M \right)(s_0) = 0$$

if and only if $(\Psi \Lambda)(s_0) = 0$, equivalently, $(\psi_j \lambda_j)(s_0) = 0$ for j = 1, ..., r. Since (λ_j, ψ_j) is coprime, $(\psi_j \lambda_j)(s_0) = 0$ means that either $\psi_j(s_0) = 0$ or $\lambda_j(s_0)$

= 0. For any $s_0 \in \mathbb{R} \cap \mathcal{U}$ such that $(DN)(s_0) = 0$, there are only two possibilities $(s_0 \text{ is either a block$ ing zero of <math>P, or s_0 is a pole of P which appears as a zero of the smallest invariant factor ψ_r or which coincides with a zero):

Case 1: Suppose that $\psi_j(s_0) \neq 0$ for all $j \in \{1, ..., r\}$, equivalently, det $\tilde{D}(s_0) \neq 0$; then $(\tilde{D}N)(s_0) = 0$ implies that $N(s_0) = 0$, i.e., s_0 is a blocking \mathcal{U} -zero of *P*. Therefore det $(I_{n_i} + (K - 1)UN)(s_0) = 1$.

Case 2: Suppose that $\psi_{\ell}(s_0) = 0$ for some $\ell \in \{1, ..., r\}$, but $\psi_j(s_0) \neq 0$ for $j > \ell$; then $\psi_j(s_0) = 0$ for all $j \leq \ell$ because ψ_{j+1} divides ψ_j . Since (λ_j, ψ_j) is coprime, $\lambda_{\ell}(s_0) \neq 0$. But $(\tilde{D}N)(s_0) = 0$ implies $(\psi_j \lambda_j)(s_0) = 0$ for j = 1, ..., r; therefore $\lambda_j(s_0) = 0$ for all $j \geq (\ell + 1)$. By $(5), (u_j \lambda_j)(s_0) = 1$ for all $j \leq \ell$ and $(u_j \lambda_j)(s_0) = 0$ for all $j \geq (\ell + 1)$. By (10),

$$\det(I_{n_1} + (K - 1) UN)(s_0) = \prod_{j=1}^r (1 + (K - 1)(u_j \lambda_j)(s_0)) = K'.$$
(11)

Note that if $\ell = r$, then the smallest invariant factor $\psi_r(s_0) = 0$ and, hence, $\lambda_j(s_0) \neq 0$ for j = 1, ..., r. In this case, $\det(I_{n_i} + (K-1)UN)(s_0) = K^r$.

(a) Let K > 0. By (11), for all real blocking \mathcal{U} -zeros of $(\tilde{D}N)(s_0) = 0$ as in Case 2 above, det $(I_{n_i} + (K-1)UN)(s_0) = K' > 0$; since this sign agrees with the positive sign at all other blocking \mathcal{U} -zeros described in Case 1, the pair $((I_{n_i} + (K-1)UN), (K-1)\tilde{D}N)$ satisfies the parity-interlacing-property and, hence, there exist simultaneously \mathcal{R} -stabilizing controllers for *P* and *KP* for any given K > 0.

(b) Let K < 0. Suppose that DN has m real blocking \mathscr{U} -zeros s_1, \ldots, s_m as described in Case 2 above and the corresponding indices are ℓ_1, \ldots, ℓ_m ; i.e., $\psi_{\ell_i}(s_i)$ = 0 for $i \in \{1, \ldots, m\}$. By (11), the parity-interlacingproperty is satisfied for these zeros if and only if the sign of det $(I_{n_i} + (K - 1)UN)(s_i) = K^{\ell_i}$ remains the same for all s_i ; but when K < 0, the sign of K^{ℓ_i} is the same for all $i \in \{1, ..., m\}$ if and only if the indices ℓ_1, \ldots, ℓ_m are either all odd or all even numbers. Now if DN has any real blocking \mathcal{U} -zero s_0 as described in Case 1, then $N(s_0) = 0$, i.e., s_0 is a real blocking \mathscr{U} -zero of P. Since det $(I_{n_i} + (K-1)UN)(s_0) = 1$ is positive at these zeros, K^{ℓ_i} has to be positive so that the sign does not change; but when K < 0, K^{ℓ_i} is positive if and only if all of the indices ℓ_1, \ldots, ℓ_m are even numbers.

This proves cases (a) and (b). It remains to show that the simultaneously \mathcal{R} -stabilizing controllers, whenever they exist, can be chosen *proper*. If the

plant is strictly proper, then $N \in \mathcal{M}(\mathbf{R}_{sp})$, and, hence, $(V - Q\tilde{N})$ is biproper for all $Q \in \mathcal{M}(\mathcal{R})$; therefore the controllers are proper for any choice of Q. For proper plants which are not strictly proper, the choice of $O \in \mathcal{M}(\mathcal{R})$ satisfying (3) should be modified to ensure that the simultaneously *R*-stabilizing controllers are proper by choosing $Q \in \mathcal{M}(\mathcal{R})$ to satisfy the additional condition that $(V - Q\tilde{N})$ is biproper. One way to do this is explained here for K > 0; the case of negative K is similar whenever the conditions on the indices are satisfied and is omitted since ensuring the properness of the controllers is a technicality: For any $P \in \mathcal{M}(\mathbb{R}_p)$, there exists a solution of (2) with $U \in \mathcal{M}(\mathbf{R}_{sp})$; let $X, Y, \tilde{X}, \tilde{Y} \in \mathcal{M}(\mathcal{R})$ be any solution satisfying (2). Let $W \in \mathcal{R}^{n_1 \times n_0}$ be any \mathcal{R} -stable matrix such that $W(\infty) = -X(\infty)\tilde{D}^{-1}(\infty)$. Define $U := (X + W\tilde{D}), V := (Y - W\tilde{N}), \tilde{U} := (\tilde{X} + DW),$ $\tilde{V} := (\tilde{Y} - NW)$; then by construction, $U(\infty) = 0$. Let $a \in \mathbb{R}$, $-a \in \mathbb{C} \setminus \mathcal{U}$; define $Q =: (1/(s+a))\hat{Q}$, where $\hat{Q} \in \mathbb{R}_{sp}^{n_i \times n_o}$ is such that (3) holds, i.e., $[I_{n_1} + (K-1)UN + \hat{Q}(K-1)(1/(s+a))\tilde{D}N]$ is R-unimodular. (This last claim follows by showing that, when K > 0, $det(I_{n_i} + (K - 1)UN)(s_0) > 0$ for any $s_0 \in \mathbb{R} \cap \mathscr{U}$ such that $((1/(s+a))DN)(s_0) = 0;$ from (6), $det(I_{n_1} + (K - 1)UN) > 0$ at any real blocking \mathscr{U} -zero of (DN); now the only additional blocking \mathscr{U} -zero of ((1/(s+a))DN) is at infinity, where $det(I_{n_i} + (K - 1)UN)(\infty) = 1$ since $U(\infty) = 0$). Since U and Q are strictly proper, $(V - Q\tilde{N})$ is biproper because $(V - Q\tilde{N})(\infty)D(\infty) =$ $I - (U + (1/(s+a))\hat{Q}\tilde{D})(\infty)N(\infty) = I$; the corresponding controller $C = (V - (1/(s+a))\hat{Q}\tilde{N})^{-1}(U+$

Proof of Corollary 3.2. As in the proof of Theorem 3.1, let (N, D) be any coprime factorization of P; let $U, V \in \mathcal{M}(\mathcal{R})$ satisfy VD + UN = 1. There exist simultaneously \mathcal{R} -stabilizing controllers for P and KP if and only if the pair (1 + (K - 1)UN, (K - 1)DN) satisfies the parity-interlacing-property, equivalently, (1+(K-1)UN) has the same sign at all real \mathcal{U} -zeros of DN. But when K < 0, this sign cannot be the same if P has both real \mathcal{U} -zeros and real \mathcal{U} -poles: At the real \mathcal{U} -zeros of D, (1 + (K - 1)UN) = 1 > 0 and at the real \mathcal{U} -zeros of D, (1 + (K - 1)UN) = K < 0. Therefore, the parity-interlacing-property is satisfied if and only if P either has no real \mathcal{U} -zeros or it has no real \mathcal{U} -poles.

 $(1/(s+a))\hat{Q}\hat{D})$ is in fact strictly proper.

An alternate proof follows from Theorem 3.1 (b): If P has any real \mathcal{U} -poles, then the only denominator

invariant factor index is $\ell = 1$ because P is scalar; since the index is an odd number, the parityinterlacing-property is satisfied if and only if P does not have real \mathcal{U} -zeros when it has real \mathcal{U} -poles. \Box

Comments 3.3 (Special cases for simultaneous \mathcal{R} stabilizability of P and KP). Theorem 3.1 shows that P and KP are simultaneously \mathcal{R} -stabilizable for any given plant $P \in \mathcal{M}(\mathbb{R}_p)$ and any given positive real constant K. If K is negative, then P and KP are simultaneously \mathcal{R} -stabilizable only for certain classes of plants. In the single-input single-output case, the characterization of this class of plants is simple; as stated in Corollary 3.2, plants in this class are allowed to have either real \mathcal{U} -poles or real \mathcal{U} -zeros, but not both. Note that $\infty \in \mathcal{U}$ so when K < 0, if P is strictly proper, then it can be simultaneously \mathcal{R} stabilized with KP if and only if it has no real \mathcal{U} poles.

For MIMO plants, when K < 0, the characterization of the class of P which can be simultaneously \mathcal{R} stabilized with KP is not as simple since it requires a careful account of all possible real blocking *U*-zeros of the product (DN). The blocking \mathcal{U} -zeros of D and of N are obviously among the blocking \mathcal{U} -zeros of (DN). However, there may also be additional blocking \mathcal{U} -zeros: If P is strictly proper or it has at least one real blocking \mathcal{U} -zero, then N(z) = 0 for some $z \in \mathbb{R} \cap \mathcal{U}$, which is clearly a blocking \mathcal{U} -zero of $(\tilde{D}N)$. Considering the Smith–McMillan form in (4), all other real blocking \mathscr{U} -zeros of $(\tilde{D}N)$ are either \mathscr{U} -zeros of the smallest invariant factor ψ_r of the denominator or they are *U*-zeros of some denominator invariant factor ψ_{ℓ} , which also appear immediately as a zero of the next numerator invariant factor $\hat{\lambda}_{(\ell+1)}$. It is clear that the conditions in Theorem 3.1 (b) are satisfied for the following special cases:

(i) If P has no real \mathcal{U} -poles, then there are no s_i as described in Theorem 3.1 (b); therefore P and KP are simultaneously \mathcal{R} -stabilizable for any K < 0.

(ii) If *P* has no real \mathscr{U} -zeros (including infinity), then none of the numerator invariant factors λ_i have real \mathscr{U} -zeros and, hence, the only blocking \mathscr{U} -zeros of $(D\overline{N})$ are due to the smallest denominator invariant factor ψ_r , i.e., the only index $\ell_i = r$; therefore *P* and *KP* are simultaneously \mathscr{R} -stabilizable for any K < 0.

(iii) If P has no real \mathcal{U} -poles coinciding with \mathcal{U} -zeros, then the only s_i are due to $\psi_r(s_i) = 0$, i.e., the only index $\ell_i = r$. In this case, if P has real

blocking \mathcal{U} -zeros (including infinity), then P and KP are simultaneously \mathcal{R} -stabilizable for any K < 0 if and only if the rank r is even. If P is full (row or column) rank, i.e., if $r = \min\{n_0, n_i\}$, then obviously these comments on r apply to the smaller of the number of inputs (n_i) and outputs (n_o) .

4. Conclusions

It is shown that P and KP are simultaneously \mathcal{R} stabilizable for any given P and any given positive real constant K > 0. This result is equivalent to existence of an \mathcal{R} -stabilizing controller C such that KC is also an \mathcal{R} -stabilizing controller for P. It is also shown that P and KP are not always simultaneously stabilizable for K < 0 and a complete characterization of the class of plants that can be simultaneously \mathcal{R} -stabilized with KP is given in Theorem 3.1.

References

- V. Blondel, Simultaneous Stabilization of Linear Systems, Lecture Notes in Control and Information Sciences, Vol. 191 (Springer, Berlin, 1994).
- [2] G. Chockalingam and S. Dasgupta, Strong stabilizability of systems with multiaffine uncertainties and numerator denominator coupling, *IEEE Trans. Automat. Control* 39 (1994) 1955–1958
- [3] C.A. Desoer and M.G. Kabuli, Linear stable unity-feedback system: necessary and sufficient conditions for stability under nonlinear plant perturbations, *IEEE Trans. Automat. Control* 34 (1989) 187-191.
- [4] A.N. Gündeş and C.A. Desoer, Algebraic Theory of Linear Feedback Systems with Full and Decentralized Compensators, Lecture Notes in Control and Information Sciences, Vol. 142 (Springer, Berlin, 1990).
- [5] M. Vidyasagar, Control System Synthesis: A Factorization Approach (MIT Press, Cambridge, MA, 1985).
- [6] M. Vidyasagar and N. Viswanadham, Algebraic design techniques for reliable stabilization, *IEEE Trans. Automat. Control* 27 (1982) 1085–1095.