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Ahfract-Stability of linear, time-invariant, multi-input mdti-output 
unity-feedback systems is considend under rronliwu, timevarying, stp- 
ble perturbatioas. Ntwmsary and suflkient are obtained for 
stability d the perturbed system and spcdptivea for the case d one 
arbitrary failure w h  location in unlaown. Coatrdler design metbods 
are developed e m u r i a  stability under an unknown stable failure uf at 
most one arbitrary ~eneor or actuator. 

I. INTRODUCTION 
We consider the stability of the standard linear, time-invariant 

(LTI), multi-input multi-output (MIMO) unity-feedback system 
(called S( P, C)) under nonlinear, time-varying (NLTV), stable, 
diagonal perturbations of the plant. We refer to post-multiplicative 
diagonal perturbations on the plant as sensor failures and pre- 
multiplicative ones as actuator failures. 

The problem studied here is a generalization of the system integrity 
problem, which requires maintaining closed-loop stability in the 
presence of disconnection failures of a y  number of sensor or actuator 
channels [5]. The standard integrity problem considers a specific 
failure class, where the sensor or the actuator channel is completely 
disconnected when it fails. An unrestricted failure description is 
used here, allowing the corresponding output to be perturbed by any 
arbitrary stable NLTV map (including zero) in case of failure. 

For single-input single-output systems, stabiIity robustness is guar- 
anteed under complete actuator or sensor failure if and only if both 
the plant and the stabilizing controller are stable. Requiring MIA40 
systems to have complete integxity against simultaneous failure of all 
sensors or of all actuators also restricts the plants and the stabilizing 
controllers to be stable. Motivated by the fact that the plant and the 
controller need not be stable when all sensor or actuator channels 
are not expected to fail simultaneously, we examine the case of at 
most one unknown stable perturbdon in any one of the sensors or 
actuators without restrictions on the nature or location of the failure. 
For this case of one arbitrary failure whose location is unknown, we 
obtain necessary and sufficient conditions for stability of the perturbed 
system; for certain classes of plants, we develop algebraic controller 
design methods, which ensure shultaneous stabilization of the nom- 
inal system and any of the systems resulting from one loop failure. 
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sensors or actuators may fail one at a time, without prior knowledge 
of the failure location, a family of stabilizing controllers is explicitly 
derived in Proposition 3.2.1. These controllers are LTI and guarantee 
stability in the presence of NLTV failures. 

The following notation is used in this note. Due to the input-output 
approach adopted, the setting can be continuous-time or discrete-time. 

Notation: All NLTV maps considered are causal and are defined 
over appropriate products of an extended space Le; see [2] for a 
thorough study of general extended spaces within the input-output 
approach to nonlinear systems. Bold-face letters are used to denote 
nonlinear maps. A nonlinear map is called bicausal if it is causal 
and has a causal inverse. The set of bounded signals is denoted by 
C, where the bound is determined by the associated mm 11 . 11. 
A causal NLTV map H: LE* -+ Cro is said to be t-stable iff 
there exists a continuous nondecreasing 4: lR+ -+ IR+ such that 
llHu11 5 d(11u11) for all U E Ln* (see for example [3]). An L- 
stable NLTV map H is L-unimoddar iff H-' is also L-skjble. Italic 
letters are used to denote linear time-invariant (LTI) maps that have 
finite-dimensional state-space representations. With a slight abuse of 
notation, a causal LTI map and its associated proper transfer-function 
representation are denoted by the same italic letter. The identity map 
(of some appropriate dimension) is denoted by I; the j-th column 
of I is denoted by e,. For LTI maps, the terms causal and proper, 
bicausal and biproper are used interchangeably. The set of matrices 
whose entries are in R C R, is denoted by M ( R ) ,  where R, 
denotes proper rational functions with real coefficients and R denotes 
proper rational functions which do not have any poles in the region 
of instability U; here U is the extended closm right-half-plane (for 
continuous-time systems) or the complement of the open unit-disk 
(for discrete-time systems). A map M is called R-stable iff M E 
M ( R ) ;  an R-stable map M is called R-unimodular iff M-' is also 
R-stable. All LTI maps considered here have coprime factorizations 
over R. A right-coprime-factorization (RCF) and a left-coprime- 
factorization (LCF) of P E RpnoXn' are denpted by ( N p , D p )  
and ( ~ ~ P , ~ G P ) ,  respectively; N P ,  D P ,  N P , _  DP- E M ( R ) ,  DP 
and b p  are biproper and P = NpDp' = D i ' N p .  An RCF-and 
LCF of C E Rp"'Xnu are denoted by ( N c , D c )  and ( d c , N c ) .  
The composition of two NLTV m p s  F and G is denoted by the 
map FG. For NLTV maps A and 3 of appropriate dimensions, the 

augmentedmap[A B]isdefinedby[A B][;] := A(x)+B(y).  
The notation a := b means a is defined as b. 

* 

II. ANALYSIS 

A. System Description: S(Fs, P, FA, C )  
Consider the interconnection SCFs, P, FA, C) shown in Fig. 1: 

S(Fs. P. FA, C) is a well-posed system, where P E 'Rioxn' and 
C E RF2 Xno represent the plant and the controller, respectively. It is 
assumed that P and C do not have any hidden modes associated with 
eigenvalues in U. Let Fs and FA be NLTV C-stable maps represent- 
ing sensor and actuator failures, respectively. If FS and FA are both 
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UP for some R-stable Q such that (Vp - Q f i p )  is biproper (which holds 
for all Q E M ( R )  when P is strictly-proper), where Up, Vp? U c ,  Vp 
y e  ?-stable maFces such-that VpDp + UpNp = I ,  DpVp + 
NpUp = I ,  VpUp = UpVp. In fact, a well-posed interconnection 
S(P, C), where C is-an NLTV controller, is L-stable if and only if 
C = (Z'p + DpQ)(Vp - NpQ)-l  for some NLTV, L-stable map 

I - F A  I - F s  

Fig 1. The system S(Fs,P,F4,C).  

zero, then S ( F s ,  P, F A ,  C )  becomes the standard unity-feedback 
system denoted by S(P,  C), which we call the nominal system. 

The analysis results presented in Sections 11-A and II-B do not put 
restrictions on the NLTV L-stable maps Fs  and F A .  Starting with 
Section 11-C, it is assumed that Fs and FA are diagonal NLW t- 
stable maps, where the failure of the j-th channel is represented by 
a NLW L-stable perturbation; furthermore, at most one of the no 
sensors (or nr actuators) may fail and the particular channel which 
may fail is not known a priori. The class of sensor failures and the 
class of actuator failures corresponding to one failure are denoted by 
Fsi and  AI 

FSI := {e3f3eT I f3: Le -+ Le,  NLTV, 

;FA' := { e 3 f 3 e r  1 f3: Le + L,,NLTV, 

L-stable, j = 1,. . . ,no}, 

G-stable, j = 1,. . . ,nt}. 
Under normal operation, f, is zero; all other values of the NLTV 
L-stable map f, imply a failure; in particular, when f3 is the identity 
map, the corresponding channel is completely disconnected. 

Using an RCF (Np ,  D P )  of P and an RCF (Nc,  D c )  of C, 
with D p t p  = e p  and DcEc = e c ,  the system S ( F s ,  P, F 4, C) is 
described in the form DHE = U ,  y = NE 

- ( I - F A ) N c ]  [:&&I = [::I 
D c  

The system S ( F s ,  P, F A ,  C) is well-posed if and only if the map 
DH is bicausal, eqyivalently, the closed-loop map H: (up ,  u c )  H 

( yp. yc) exists. 

B. Conditions for Stability 
A well-posed NLW interconnection is said to be L-stable iff the 

map from exogenous inputs to closed-loop signals is L-stable. The 
notion of L-stability is used only in the case of NLTV interconnec- 
tions and analyses thereof. When the interconnections are LTI, the 
equivalent condition of R-stability is used, namely, all closed-loop 
transfer-functions are in M ( R ) .  

Following standard definitions (see for example [lo]), the nominal 
system S(P,  C) is said to be R-shble iff the closed-loop transfer- 
function H from U := ( U P , U C )  to y := (yp,yc) is R-stable. 
Similarly, when Fs  and F A  are E-stable, S(Fs ,  P, F A ,  C) is said 
to be L-stable iff the NLW closed-loop map H: U H y is G-stable 
(see for example [3]). The contrqller C is said to be an R-stabilizing 

. controller for P in the nominal system S(P,  C) iff C E and 
S (P, C) is R-stable. The controller C is an %stabilizing controller 
fo_r P if  and only if there exist an RCF ( N c ,  Dc)  and an LCF 
( D c ,  A%) of C satisfymg the following identity [lo], [61 

It is well known that C is an R-stabilizing controller for P if and 
.only if C is given by [lo], [6] 

C = (Vp - Qfip)-'(Zjp + Q b P )  
= ( C ~ P  + DPQ)(VP - NpQ)-' (3) 

Q such that (f'p - N p Q )  is bicausal [4]. 

Failures): 
Theorem 2.21-L-Stability Under Both Sensor and Actuator 

a) Let ( N p ,  D p )  be any RCF and ( p p ,  e p )  be any LCF of P: 
let (Nc, Dc)  be any RCF and (Dc ,  Nc)  be any LCF of C. 
Then S ( F s ,  P. F A ,  C) is L-stable if and only if 

is L-unimodular. 

(4) 
1 D P  - ( I  - FA)Nc 

[ ( I  - Fs)Np  DC 
D H  := 

b) k t  C-be an R-stabilizing controller for P in S( P, C); let 
(Dc ,  Nc)  be an LCF and (Nc ,  Dc)  be an RCFof C satisfy- 
ing (2). Then the following three conditions are equivalent: 

i) S(Fs, P, F A ,  C) is L-stable; 
ii) the map DH in (4) is L-unimodular; 

iii) the map 

Proof of Theorem 2.2. I :  
a) If D H  is L-unimodular, then by (l), since the map N 

is L-stable, the closed-loop map H = NDH' is L-stable. 
Conversely, let Up, Vp , UC , VC be R-stable matrices such that 
VpDp + UpNp = I ,  VCDC + UCNC = I ;  such matrices 
exist since ( N p ,  D p )  and ( Nc, Dc)  are right-coprime pairs. 
Let D ,  V, U be block-diagonal matrices defined similarly as 
N and let 

1 

then D H  = D + FN. If the system S ( F s , P , F a , C )  
is L-stable, then H = ND;' L-stable implies that (U - 

is L-stable. 
b) The equivalence of i) and ii) was shown in part a) above for 

any RCF of C. To show the equivalence of ii) to iii), define 
the matrices in (2) as M M - '  = I .  Let 

VF)(ND, ' )  + V = [ (U  - V F ) N  + VDn]D,' = DH1 

then D H  = M-' + FN, Since M is L-unirnodular, it follows 
by composition of these two maps thatpH is L-unimodular if 
and only if h l D ~  = (I+ M # N )  = D H  is L-unimodular. 0 

From Theorem 2.2.1-b), letting either FA or F S  be zero in the 
map D H  of (9, the following necessary and sufficient conditions 
are obtained for L-stability under either sensor or actuator failures: 
When the actuators have no failure ( F A  = O ) , S ( F S , P , F A , C )  is 
L-stable if and only if 

I - :VcFsNp is L-unimodular. (6) 

When the sensors have no failure ( F s  = 0), S ( F s .  P,F4, C )  is 
L-stable if and only if 

I - I q p F ~ n ' c  is C-unimodular. (7) 

, . .̂. 
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C. Nonlinear Perturbations of One Sensor or Actuator 
In this Section we assume that Fs and FA are diagonal NLTV 

C-stable maps and at most one of the rr, sensors or one of the n, 
actuators may fail, i.e., Fs E FSI  and F 4 E FAI . 

Theorem 2.3.I-(C-Stability for All Failures Either in 
Fsl or in FA'): Let the system S(Fs. P.FA,C)  be well 
posed. Let C be an R-stabilizing controller for P in S( P. C); let 
(de, ' q ~ )  be an LCF and (Arc*, Dc)  be an RCF of C satisfying (2). 

a) Let FA be the zero map. Then S(Fs, P, FA, C )  is L-stable for 
all F5 E F51 if and only if all diagonal entries of (.hr~>.qc) 
are equal to zero. 

b) Let FS be the zero map. Then S(Fs. P. FA, C) is C-stable-for 
all FA E F41 if and only if all diagonal entries of ( N c N p )  
are equal to zero. 

Proof of Theorem 2.3.1: We prove a); the proof of b) is similar. 
With FA equal to zero, the system S( Fs, P, FA, C )  is well-posed 
if and only if ( I  - Li'cFsN~) is bicausal. By Theorem 2.2.1, 
S(Fs. P,FA, C) is L-stable for all Fs E 3sl if and only if 
(6) holds for all Fs = e,fiey. j = 1, , . . . no; equivalently, 
( I  - iqce, fi e: AJp) is L-unimodular. Define the j th  diagonal entry 
of (.Vph-c) as eFNpfice, =: h,. Necessity: Suppose that h, # 0; 
$en we need to show that there exists an fi such that ( I  - 
iVcp3f3eFNp) is not L-mimodular. Since the NCTV failure class 
Fsl includes LTI failures, it suffices to find an Ln-failure for fJ. 
The advantage of f3 being LTI is that ( I  - f,eTNpNc.e,)-' is L- 
stable if and only if ( I  - Nce,f,eTA;p)-' is L-stable (note that 
this is not necessafily the case if f3 is not LTI). Now the scalar 
map (I-f,eTIVpNce,) = (l-fih,)-' clearly cannotbeL-stable 
for all possible choices of f, since h, is not zero. To see this, let 
so be in undesirable region U such that hj(so) # 0; then using 
standard arguments, it is easy to construct a R-stable LTI f3 such 
that fJ(s,) = (h , ( s , ) ) - '  (see for example [lo], Section 7.4). Since 
(1 - f, h, ) - '  has a pole at s, E U by construction, it is not L- 
stable. Sufficiency: If h, = O, then the scalar map I = (I - h3f3) 
= (I - e:'NpNce,f,) is L-unimodular. Define erNp =: A and 
A$ceJf, =: B. Since A is linear, ( I  - -4B)-' L-stable implies that 
(I + B ( I  - AB)-'A) = ( I  + B A ( I  - BA)-') = ( I  - BA)-' 
is C-stable; (I - BA)-1 exists since (I - BA) is bicausal by 
the well-posedness assumption on S(Fs, P, FA,  C) . Therefore, 
(I - iv(,e,f,ef N p )  is L-unimodular and hence, S(Fs. P,FA, C) 
is C-stable. 0 

Theorem 2.3.1 establishes that L-stability of S(F.;, P, FA, C )  
under arbitrary failures of one sensor is achievable by the R- 
stabilizing controller C if and only if C is such that the closed-loop 
transfer-function Hpc:  uc yp of the nominal system S(P. C) has 
all zero diagonal entries. Similarly, L-stability of S(Fs, P. FA, C) 
under arbitrary failures of one actuator is achievable by an R- 
stabilizing controller C which guarantees zero diagonal entries for 
the transfer-function HLp:  uc ++ yp of S(P, C) . It is clear from the 
proof that the conditions of zero diagonal entries are still necessary 
and sufficient even if the failures are restricted to only stable LTI 
maps. 

Using the expressions for iqc and NC given by (3) in the 
conditions of Theorem 2.3.1, we observe the following: If the 
actuators have no failure (FA is zero), then C E M(R,) is a 
controller such that S(Fs, P, FA, C) is L-stable for all F s  E Fsl 
if and only if C is given by (3) for some R-stable Q E R"""" 
such that all diagonal entries of Nr(Lrp  + Q D p )  are equal to 
zero. Similarly, if the sensors have no failure (Fs is zero), then 
C E M ( R p )  is a controller such that S ( F ~ , P , F A ,  C )  is C-stable 
for all F 4 E 341 if and only if C is given by (3) for some R-stable 
Q E RnZxn" such that all diagonal entries of (UP + DPQ)NP 

are equal to zero. Note that the controller is proper if and only if 
Q E RnCxno is such that (Vp - QiVp) is biproper; this condition 
holds for all Q E M (R)  if the plant is strictly-proper. 

III. CONTROLLER DESIGN 
Throughout this section we assume that FS and FA are diagonal 

NLTV C-stable maps, which belong to the failure classes FSI and 
 FA^, respectively. We show controller design methods for the system 
S(Fs. P, FA, C) with possible sensor failures in the class-Fsl or 
actuator failures in the class FA'. Clearly, controllers achieving C- 
stability under all possible failures of one sensor or one actuator 
may not exist for some plants. We now describe two classes of plants 
and associated design methods. These two classes of plants are 1) R- 
stable plants (Section 111-A) and 2) a class of not necessarily R-stable 
plants for which certain nominal maps can be decoupled (Section 
111-B). 

A. Controller Design for R-Stable Plants 

Let P E M ( R ) ;  by Theorem 2.3.1, the set of all controllers 
such that S(Fs. P,FA, C) is C-stable for all Fs E FSI (or for 
all FA E FA.') is given by (8) (or 9), respectively 

e: PQe, = 0, j = 1,. . . , n o }  

{C = & ( I  - PQ)-' I Q E RnaXno, 

(8) 

(9) 

In the sets of all controllers (8) and (9), the R-stable controller 
parameter should also satisfy the condition that (I - PQ)  is biproper 
so that the controllers are proper (as remarked before, this holds 
automatically for all Q when the plant is strictly-proper). One method 
to choose R-stable Q satisfying this condition with all diagonal 
entries of PQ (or Q P )  equal to zero is based on performing 
elementary-column-operations (or elementary-row-operations) over 
the ring R. The controller C = Q ( I  - E'&)-' is in the set (8) 
if Q is chosen as follows: 

a) If no = nz,  then there is an R-unimodular map R such that 
(PR) is lower-triangular (see Hermite form in [lo]); in this 
case, let Q = ( R Q T ) ,  where QT is any lower-triangular 
R-stable map with zero diagonal entries. 

b) If n, < n,, then there is an R-unimodular map R such that 

P R  = [PI ! 01, where PT is (no x n, ) lower-triangular; in 

this case, let Q = R , where QT is any (no x no)  lower- 

triangular R-stable map with zero diagonal entries and Q A  is 
a completely arbitrary R-stable map of suitable size. 

c) If no > n,, then there is an R-unimodular map R such that 

PR = [z] ,  where PT is (n, x n,) lower-triangular; in 

this case, let Q be R[QT!O], where QT is any (n, x n,) 
lower-triangular R-stable map with zero diagonal entries. 

( C  = ( I  - QP)-'Q 1 Q E Rnzxno, 
eFQPe, = 0, j = 1, .  . . , n,}.  

@ 

[:: I 

B. Controller Design for Unstable Plants 
Suppose that the plant is not R-stable. For linear, time-invariant 

failures, if the closed-loop system is R-stable for all failures of one 
sensor or one actuator, then the denominator matrices of coprime 
factorizations of the plant must satisfy certain conditions [7]. Since 
these conditions are necessary for LTI failures, clearly they must 
be satisfied when we consider the wider class of NLTV failures. 
These conditions must hold whenever the failure modes include a 
disconnected channel, where the corresponding sensor output is mul- 
tiplied by zero; therefore such constraints are not due to considering 
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general nonlinear perturbations in possible failure modes but in fact 
they would be necessary even for simple LTI failure subclasses. We 
briefly state these necessary conditions. 

Consider the sensor failure case, i.e., let FA be zero. Let ( D p ,  f i p )  

be any LCF of P. For j = 1.. . . , no, let dJ := Dpe, denote the ~ t h  
column of D p .  If S(F7, P, F-4, C) is C-stable for all F? E Fs~, 
then each individual column d, of the denominator map Dp has a 
(non-unique) left-inverse, denoted by 6, E Rlxno (equivalently, 2, 
is full-rank for all s E U).  Define Ysl E RnoXno as the map whose 
j-th row is i J ;  then the diagonal entries of (Ys1Dp) are all equal 
to one. 

Similarly, consider now the actuator failure case, i.e., let Fs be 
zero. Let ( N p . D p )  be any RCF of P. For j = l,...,nt, let d, 
denote the j th row of Dp. If S ( F s ,  P , F a , C )  is L-stable for all 
F 4 E  FA^, then each individual row d, of Dp has a (nonunique) 
right-inverse, denoted by y, E RnoX1 (equivalently, d, is full-rank 
for all s E U) [7]. Define Y A ~  E Rr"4Xn' as the map whose j th 
column is y,; then the diagonal entries of ( D P Y A 1 )  are all equal 
to one. Since these conditions on the plant's denominator D p ( ~ p )  
are necessary, we assume that they hold whenever sensor (actuator) 
failures are considered. 

The maps E';1 and E 7 ~ l  described above are clearly nonunique; 
Y& is any map whose rows are the nonunique inverses of the 
columns of Dp and Y A ~  is any map whose columns are the non- 
unique inverses of the rows of Dp. In Proposition 3.2.1, we obtain a 
class of controllers, parametrized by Ys l ,  which achieve L-stability 
of S(Fs, P. F 4,  C) under sensor failures for an important class of 
plants; a dual method is developed for the actuator failure case using 
121. We now explain the motivation for studying this class of plants: 

Recall from Theorem 2.3.1 that L-stability of S(Fs, P, FA, C) 
under arbitrary failures of one sensor (actuator) is achieved if and 
only if all diagonal entries of the closed-loop transfer-function H,, 
( H , ,  for the actuator failure case) of the nominal system S( P, C) 
are equal to zero. For the sensor failure case, using the controller 
parametrization (3), the goal is then to make all diagonal entries of 
Hpc = A'pHc = Np(Up + Q D p )  equal to zero. Observe that if 
an R-stable could be found such that (NPUP)  is diagonal, then 
choosing Q = --UPYsl, the map Hpr = NPC'P(I - Ys1Dp) has 
all zero diagonal entries by construction of YSl . So it is clear that 
controllers achieving L-stability of S( F 9, P, F A ,  C) under arbitrary 
failures of one sensor can be constructed by starting with a decoupling 
controller (i.e., the controller VP'VP such that ( N P U P )  is diagonal) 
and then using the controller C = (VP - ( - U P Y S I ) N P ) - ~ ( U P  + 
( -C$Y~~)b jp )  in the final design to achieve zero diagonal entries 
for H p c .  This is the motivation for considering plants that can be 
decoupled, i.e., for the sensor failure case, plants for which there exist 
R-stabilizing controllers such that the map Hpc = P C ( I  + PC)-' 
of the nominal system S( P, C) is diagonal and for the dual actuator 
failure case, plants for which there exist R-stabilizing controllers such 
that the map H , ,  = -CP(I+CP)- '  of S(P, C) is diagonal. (These 
plant classes are nonempty; a syfficient condition for decoupling is 
that the plant is full row-rank and has no coinciding poles and zeros 
in U. See [8] for the parametrization of all controllers which achieve 
decoupling and the set of all achievable diagonal maps Hpc  or 191 
for a decoupling controller design method). 

Proposition 3.2.1-A Set of Controllers Achieving L-Stability for 
One Failure: 

a) Let FA be the zero map. Let P be such that, for any LCF 
( D p .  N p  ), each column of D P  has a left-inverse in R. Assume 
that there is an R-stabilizing controller for P such that the map 
Hpc  = PC(I  + PC)-' is diagonal. Under these assumptions, 
a class of controllers C such that S ( F s ,  P. FA, C) is C-stable 

. 

for all Fs E FYI  is given by 

{ C  = ( D s v  + NsvYSlNP)-'(Nsv - i%?Ys1Dp) 

= - D ~ I V ~ ~ Y ~ ~ ) ( D ~ ~  + JvPfisvYsl)-l 
= C s v ( I +  YsllvPcsv)-l(I - Y S l B P ) }  (10) 

where Y s ~  is any map such that the diagonal entries of 
(I~SIDP) are equal to one; CSV is any R-stabilizing controller 
fo_r P, _such that the map Hpc = NPNSD is diagonal; 
( D s v ,  1vsv) and (NsD,-DsD) E any LCF and RCF of Csv 
satisfying (2): ( D S D  + N S D Y S I N P )  is bicausal. 

b) Let Fs be the zero map. Let P be such that, for any RCF 
( N P ,  D P ) .  each row of Dp has a right-inverse in R. As- 
sume that there is an R-stabilizing controller for P such 
that the map Hcp = -CP(I + CP)-' is diagonal. Un- 
der these assumptions. a class of controllers C such that 
S(Fs, P, FA. C) is L-stable for all FA E FAI is given by 

{ C  = ( D A D  + Y A ~ N A V ~ Q P ) - ~ ( ~ ~ A V  - Y A ~ N A D B P )  

= ( N A V  - D P Y A ~ ~ V A V ) ( D A V  + NPYAINAV)- '  
= ( I -  D P Y A ~ ) ( I +  CAVI'VPYA~)-~CAD} (11) 

where YA1 is any map such that the diagonal entries of 
( D P Y A ~ )  are equal to one; CAD is any R-stabjlizing Controller 
for P, such that the map H,, = NADNP is diagonal; 
( D  q ~ ,  I ~ A D )  and ( ~ V A V ,  DAD)  any LCF and RCF of C4v 
satisfying (2); ( D m  + YA1 N A v A ~ P )  is bicausal. 

Proof of Proposition 3.2.1: We prove a); the- proof of- b) is 
s e a r .  F e  controll_er C in (10) has an LCF ( Dc, Nc) := ( ( ~ S V  - 
Q N p ) ,  (NSV + Q D p ) ) ,  where Q = -NsFYsl. With this r_V., the 
map ( N P ~ ~ c )  becomes=VpNsv(I - Ysl D p ) ;  since ( N P N s D )  is 
diagonal and ( I  - Ysl 01.) has zero diagonal entries, the diagonal 
entries of ( N P N c )  are all zero, which implies that S(Fs, P, FA? C) 
is L-stable for all Fs E Fsl by Theorem 2.3.1. 

The controller C in (10) is proper if and only if DE1 is proper. 
If either WP or NSZ, is strictly-propef (equivalently, P 0'- CSV 
is strictly-proper), C = Csv(I + YslNpCsv)- l ( I  - Y s i D p )  is 
proper. So if P is strictly-proper, the controller C in (10) is proper 
for any choice of CSV. If P is not strictly-proper, then given any 
R-stabilizing controller C d  for P such that the map Hpc is diagonal, 
there exists a strictly-proper controller Csp;  o?e way to construct 
a strictly-proper CSZ, is as follows: Let (Dd,Jbrd) be any LCF of 
c d  satisfying (2).-Let x d  be any diagonal R-stable map such that 
X d ( O O )  = - det D P 1 ( m ) l ,  where the deteenant det D p ( m )  # 0 
since D p  is biproper. Let X := (det Dp)(NdXdDpl);  then X is 
R-stable since (detb5p)bp' is R-stable.-Let Cs? = DyANsp ,  
where (BSv,  NsV) := ( ( D %  - X N P ) ,  (ivd + X D p ) )  is an LCF 
of CSV satisfying (2); then A'sp is strictly-proper and furthennore, 
H p c  = N P N S D  is diagonal. Therefore, the existence of an R- 
stabilizing controller Cd diagonalizing H,, implies the existence of 
a strictly-proper controller CSV also diagonalizing E l p c ;  this strictly- 
proper controller Csv used in (10) guarantees that C is proper. 

0 

, 

Example 3.2.2: Let 

Y 
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Each column of Dp is full-rank for all s E U. One choice for Ysl 
is [ i2 :] . A decoupling controller for P is 

- -  
C ~ Z ,  = DqALV,5p 

- -3(s - 3) 
----(I- s + l  [A :I) 

has zero diagonal entries. 

N. CONCLUSION 
We considered the stability of LTI, MIMO systems under stable 

NLTV diagonal post-multiplicative perturbations of the plant (sensor 
failures) and pre-multiplicative perturbations of the plant (actuator 
failures). Assuming that any one of the sensors or actuators may 
fail one at a time, without prior knowledge of the NLTV failure 
and its location, we obtained necessary and sufficient conditions for 
stabilization of the LTI plant using LTI controllers. We developed 
controller design methods for two classes of plants and explicitly 
derived a family of controllers achieving closed-loop stability under 
an unknown stable NLTV failure of at most one loop. 

The closed-loop stability condition for all possible unrestricted 
stable NLTV perturbations of one sensor or actuator is that all 
diagonal entries of certain transfer functions of the nominal LTI 
system are exactly zero. Note that such a strict condition is due to 
the general unconstrained nature of the NLTV perturbations. If this 
condition could not be met and the diagonal entries were not zero 
(but their gains were bounded by sufficiently small E), then as in 
standard robustness results based on the small-gain theorem, closed- 
loop stability is still guaranteed for a restricted class of perturbations 
(whose gains are bounded by l /~ ) .  

The design goal stated above can easily be expressed as a convex 
design specification [ 11. Despite the obvious advantages of convex 
problem formulations, optimization based design approaches cannot 
bring an explicit answer in cases where there does not exist such a 
controller (in general, not for a particular finite parametrization only) 
or make explicit use of the plant properties in successive redesigns 
(each new plant will be treated as a new design problem). Hence, 
whenever applicable, analytical solutions should be used to weed 
out infeasible constraints and initialize feasible ones. The results 
in this note are intended for shch complementary utilization. The 
analysis results provide valuable necessary conditions on plants that 
admit such controllers. For two classes of plants, the explicit design 
approach developed here guarantees a desired nominal controller. 
The particular design approach complements the convex optimization 
based control design approach since it explicitly generates a family 
of feasible stable parameters for the controller. The freedom can then 
be used to satisfy other design specifications. 
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Design of Observers for Descriptor Systems 

M. Darouach and M. Boutayeb 

Absbact-In this note simple and straightforward methods to design 
full- and reducedader observers for linear time-invariant descriptor 
systems are presented. The approach for the reducedader observer 
design m based on the generazed Sylvester equation. sufficient eonditiolrs 
for the existence of the observers are given.-An illustrative erampk is 
included. 

, 

I. INTRODUCTION 
The problem of designing observers for descriptor systems has 

received considerable attention in the last two decades [ 11-[7]. Many 
approaches exist to design observerg for descriptor systems. In [l], a 
method based on the singular value decomposition and the concept 
of matrix generalized inverse to design a reduced-order observer has 
been proposed. In [2], the generalized Sylvester equation was used 
to develop a procedure for designing reduced-order observers. In [3], 
a method based on the generalized inverse, which extend the method 
developed in [SI, was presented. Full- and reduced-order observers for 
discrete-time descriptor systems have been presented in [5]  and [7]. 

All these works have been done under the assumptions of regularity 
and generalized observability. Theae conditions are very restrictive 
and, as can be seen in [6], the design of the observer can be done 
under less restrictive conditions. In [6], the conditions of regularity 
and modal observability have been assumed. In [lo], a new method 
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