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Abstract

We study reliable stabilization of linear, time-
invariant, multi-input multi-output, two-channel de-
centralized control systems. We develop necessary
and sufficient conditions for reliable decentralized
stabilizability under sensor or actuator failures and
present reliable decentralized controller design meth-
ods for strongly stabilizable plants.

1. Introduction

We consider the reliable stabilization problem using
the linear, time-invariant (LTI), multi-input, multi-
output (MIMO), two-channel decentralized system
configuration S(P,Cy) (Figure 1). The reliable
stabilization problem aims to find two controllers
such that the system S(P,Cy) is stable when both
controllers are acting together (normal mode) and
when each controller is acting alone (failure mode).
The failure of a controller is modeled by setting its
transfer-function equal to zero.

A multi-controller system configuration achieving re-
liable stabilization was introduced in [5], [6]. Fac-
torization methods were used in [2], [3], [9] to study
reliable stability with two full-feedback controllers; it
was shown that a given plant can be reliably stabi-
lized with two full-feedback controllers if and only if
it is strongly stabilizable (i.e., it can be stabilized us-
ing a stable controller) in the standard unity-feedback
system. Reliable stabilization using a two-channel de-
centralized control system was considered in [7].

In this paper, we develop necessary and sufficient
conditions for existence of decentralized controllers,
which achieve reliable stability. For certain classes
of plants we present decentralized controller de-
sign methods. Due to the algebraic methods used
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here, the results apply to continuous-time as well as
discrete-time systems.

2. Main Results

Notation: e Let M(R) be the set of matrices
whose entries are in R C R,, where R, denotes
proper rational functions with real coefficients and
R denotes proper rational functions which do not
have any poles in the region of instability I/ ; here
U contains the extended closed right-half-plane (for
continuous-time systems) or the complement of the
open unit-disk (for discrete-time systems). A map M
is called R-stable iff M € M(R); An R-stable map
M ‘is R-unimodular iff M~! is also R-stable. e Let
the norm of an R-stable map M € M(R) be defined
as || M || = sup, .y 5(M(s)), where G de-
notes the maximum singular value and 9U denotes
the boundary of /. ® A right-coprime-factorization
(RCF) and a left-coprime-factorization (LCF) of P €
Rp™°*™ are denoted by (Np, Dp) and ( Dp, Np ),
where Np, Dp, Np, Dp € M(’R,) Dp and Dp
are biproper and P = Np Dp' = Dp' Np .

2.1. System description

Consider the LTI, MIMO, two-channel decentral-
ized control system S(P,Cy) shown in Figure 1:
S(P,Cy) is a well-posed system, where

Py P ] noxn;
P = Rymexmi,
[ Py Py € Rr
Cq = diag [C, Cg] € an.-xn,, N

C; € Rp"¥*™7 j =1,2; P and Cy represent the
plant and the decentralized controller, respectively.
It is assumed that P and C; do not have any hidden
modes associated with eigenvalues in . For j =
1,2, Fs; and F4; are R-stable maps representing
sensor and actuator failures in the first and second
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channels, respectively. Under normal operation, Fls;
= I and Fu; = I; the (complete disconnection)
failure of the j-th channel is represented by setting
the corresponding Fis; or Fy4; equal to zero.

Using an RCF (Np,Dp) of P and an
LCF ~(bcj, ﬁoj)~0f Cj, with Dpép = ep
and Dcjyc; = Nejeci, j = 1,2, Dec=
diag[Dc1, D], Ne= diag[Ne1, Nez2], Fs=
diag[Fs1, Fs2], Fa= diag[Fa1, Fa2], up =
(up1, up2),uc = (uc1, uc2), yp = (yr1,yP2),
yc = (ye1, ycz2 ), the system S( P, Cyq) is described
as follows:

v 70 a0 )=l %))
Nc¢FsNp D¢ ye | |0 Nc¢ ue |’

el = ] o
yc 0 I ye |’
Equation (1) is of the form Dgé = u, y = NE.
The system S(P,Cq) is well-posed if and only if
the map Dy is biproper, equivalently, the closed-
loop map H : (up,uc) — (yp, yc) is proper;
S(P,Cy) is automatically well-posed if P or Cy is
strictly proper.

2.2. Conditions for stability

Following standard definitions, with Fg and Fjy
R-stable, the system S(P,C4q) is R-stable iff
the closed-loop map H from (up,u¢) to (yp,¥c)
is R-stable.  From the system description (1),
S(P,C4q) is R-stable if and only if the map Dy
is R-unimodular. The decentralized controller Cy
is called an R-stabilizing controller for P iff Cy is
proper and S( P,Cy) is R-stable.

We now investigate R-stability of the system
S8( P,Cq) under various failure cases. Without loss of
generality, we assume that the RCF (Np, Dp) and
the LCF (Dp, Np) of P have a lower-triangular
denominator matrix Dp and an upper-triangular de-
nominator matrix Dp [1]; i.e.,

-1
_ -1 _ | Nuu Ni Dn 0
P = NpDp' = Na; N Da; Dy

~ ~ -1p ~ ~
~ Dyy Dso N1 Nio
= D3'Np = ~ ~ ~ .
p P [ 0 Dsy ] [ Na1  Nas ]
2
Then from (1), the nominal system S( P,Cy) without
failure is R-stable if and only if Dy is R-unimodular,

equivalently,

J?m Dy + Jch Ny Nei Nip
D¢y D31 + Noz Nay Dea Dag + Nea Noo

is R-unimodular. (3)

Case 1: Sensor failure in the first channel: Suppose
that Fqy = I, Fas = I and Fso = I. Then
S(P,Cy) is R-stable with Fs; = 0 if and only if

Dyy =1, DeaDys + NeaNag = I (4)

and
Doy =1 . (5)

Therefore, there exists an R-stabilizing decentralized
controller Cy for the plant P if and only if P is of
the form

-1
- N1 Npo I 0
P: N D 1 = [~ N ] [ U N ] ’
P Vaz Na1 Noa | |-Ua22a Nay D3y

(N22 s D22 ) I‘ight - coprime (6)

and [722, \722 are R-stable matrices satisfying the
following identity for the RCF Ny D5,' of Pyy for
some R-stable matrices Uzz, Voo [1]:

Voa U2 ] Doy —Usy
b = ~ = T. 7
[ ~Naa Do [ N3z Voo ] @

By (4), Ca € M(R,) isadecentralized R-stabilizing
controller for P if and only if C; is R-stable and C,
is and R-stabilizing controller for P, i.e.,

Cq = diag[01 , Cg] , Cp € RPerXnmir

C2 = (Vag — Q2 Nag)™* (Usz + Q32 Day)
= (Usz 4+ D22Q2)(Vaz + Naz Q2)™" (8
for some R-stable @2 such that

(Vaz — Q2 Nay) is biproper; (9)

note that (9) automatically holds for all Q2 € M(R)
when Pyy is strictly proper [8].

Now S(P,Cy) is R-stable with the controller Cy
in (8) assuming that Fg; = 0; but the controller
should be designed to ensure R-stability for the
nominal system as well. From (2), (6) and (8),
D3y = =Uz»Na1y, Nay = Vo Nay and (Dez Dy
+NegaNa1) = Q2 N2 [1]. The decentralized con-
troller Cy is an R-stabilizing controller for P for both



of the possibilities of Fg; = I and Fgs; = 0 if and
only if Cy is the same as in (8) but C) is given by

Ci = (I = Qi(Nuu — N1aQ2No1 )™ Q1 , (10)

where the @1 € R™**"* is such that

Dci = I = @Qi(Nu — N2 Q2 Nyy)

(11)
is R-unimodular.

Case 2: Actuator failure in the first channel: Sup-
pose that Fgy = I, Fsa = I and Fas = I. Then
S(P,Cq) is R-stable with F4; = 0 if and only if (4)-
(5) hold, i.e., if and only if S( P,Cy) is R-stable with
Fsy = 0. Therefore, there exists an R-stabilizing de-
centralized controller Cy for the plant P if and only
if P is of the form in (6) and Ca € M(R,) is a de-
centralized R-stabilizing controller for P if and only
if it is of the form given by (8). As in the sensor fail-
ure case above, the decentralized controller C; is an
R-stabilizing controller for P for both of the possi-
bilities of F43 = I and F4; = 0 if and only if Cs is
the same as in (8) but C; is given by (10), where @;
is such that (11) is R-unimodular.

Case 3: Simultaneous sensor and actuator failure
in the first channel: Suppose that Fso = I and
F42 = I. Then S(P,C;) is R-stable with Fg; = 0
and F41 = 0 if and only if (4) holds. In this case (5)
is not needed because when both the sensors and ac-
tuators of the first channel fail, yo; = 0; since C is
no longer taken into account, it need not be R-stable.
Therefore, there exists an R-stabilizing decentralized
controller Cy for the plant P if and only if P is of
the form in (2) and C4 € M(R,) is a decentralized
R-stabilizing controller for P if and only if C; is of
the form given by (8). Now the same controller will
also R-stabilize the nominal system S( P,Cq) with-
out failure if and only if the additional constraint (10)
is put on C} , except that the R-stable matrix @; is
chosen such that the matrix in (11) biproper since C;
need not be R-stable in this case; note that (11) is
biproper for any strictly proper Q; .

Case J: Sensor failure in the second channel: Sup-
pose that Fq1 = I, Fgq2 = I and Fgy = I. Then
S(P,Ca) is R-stable with Fg; = 0 if and only if

[501 D11+ Nea N Nea N ] is R-unimodular
D» Dos
(12)
and

Dcz =1 . (13)
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Therefore, Cs is necessarily R-stable.

Now the system S(P,C3) is R-stable for either
Fsy = I or Fg = 0 (i.e., with or without sen-
sor failure of the second channel) if and only if both
(3) and (12) hold.

Case §: Actuator failure in the second channel: Sup-
pose that Fig; = I, Fso = I and Fyy = I. Then
8(P,C3) is R-stable with Fs» = 0 if and only if
(12) holds, i.e., if and only if S(P,Cy) is R-stable
with Fgo = 0. As in the sensor failure case above,
S(P,Cy) is R-stable for either Fapy = I or Fap = 0
(i.e., with or without actuator failure of the second
channel) if and only if both (3) and (12) hold.

Case 6: Simullaneous sensor and actuator failure in
the second channel: Suppose that Fs; = I and
Fa; = I. Then S(P,Cy) is R-stable with Fsy = 0
and F42 = 0 if and only if (12) holds. In this case,
(13) is not needed because when both sensors and ac-
tuators of the second channel fail, yco = 0; since
C> is no longer taken into account, it need not be
R-stable. Now the nominal system S(P,Cy) is also
R-stable if and only if (3) also holds in addition to
condition (12).

Case 7: Simultaneous sensor and actuator failure in
either the first or the second channel: We now in-
vestigate R-stability of the system S( P,C;) under
simultaneous sensor and actuator failure in either the
first or the second channel; this is the same as the re-
liable decentralized stabilization problem studied in
[7]. We study this case in detail in section 2.3 below.

2.3. Reliable decentralized stabilizability

The system S( P,Cy) is said to be reliably stabilized
iff S(P,C;) is R-stable under any of the following
three conditions:

i) The nominal system S( P,Cy) is stable,
ie,Fs =T and Fy = I

ii) the system S( P,Cy) is stable with
simultaneous sensor and actuator failure
in the first channel, 1.e., Fs; = 0,

Fpr =0,Fs2 = I,Fps =1

#i1) the system S( P,Cy) is stable with
simultaneous sensor and actuator failure
in the second channel, i.e., Fso = 0,
Fpaa=0,Fs1 =1,Fyq =1.

Now the first of these conditions is satisfied if and only
if (3) holds. The second condition was explained in
case 3 of section 2.2 above; it is satisfied if and only



if (4) holds. The third condition was explained in
case 6 of section 2.2 above; it is satisfied if and only
if (12) holds. Note that P is of the form given by (6)
for conditions 2 and 3 to hold. Putting (3), (4) and
(12) together with the necessary form of P in (6), we
conclude that the system S(Fs, P, F4,C) is reliably
stabilized if and only if

D3y — N2 ﬁgl @1 N1z is R-unimodular.  (14)

Furthermore, Cq = diag[C1, C2] is a decentralized
R-stabilizing controller such that S( P, Cy) isreliably
stabilized if and only if Cy and C3 are given by (10)
and (8), respectively, for some R-stable Q1 and Q2
(of appropriate sizes) satisfying (11) and (9) and are
such that (14) holds, i.e.,

Dy + (Uzz + D23 Q2) Nay Q1 Nig

(15)

Although condition (15) characterizes all parame-
ter matrices ¢}; and @ that achieve reliable sta-
bilization of S(P,Cy), it does not explicitly de-
scribe how to choose them in order to make the ma-
trix in (15) R-unimodular. However, from (14) and
equivalently (15), the conditions. in Theorem 2.3.1
below on the plant P are necessary for existence
of decentralized controllers which reliably stabilize
S(Fs,P,Fs,C). By Theorem 2.3.1, to achieve re-
liable decentralized stabilization, Py and Ps; are
necessarily strongly R-stabilizable. An LTI system
P is said to be strongly R-stabilizable if there is an
R-stable R-stabilizing controller C € M(R) for P
(in the standard full-feedback system). If 4 = €y,
P is strongly R-stabilizable if and only if it satisfies
the parity interlacing property, i.e., P has an even
number of poles between pairs of blocking zeros on
the positive real-axis ([8], [9]). From a coprime fac-
torizations view-point, P is strongly R-stabilizable if
and only if, for any RCF (Np, Dp) of P, there ex-
ists an R-unimodular D such that D Dp + N Np is
R-unimodular for some R-stable NV .

is R-unimodular.

2.3.1. Theorem (Necessary conditions for re-
liable decentralized stabilizability): Let P € R™*™
be as in (2). If there exists a decentralized controller
Cy such that S(FS,P F4,C) is reliably stabilized,
then i) (Ni2, D22) is an RCF of Pia and Pyy is
strongly R-stabilizable, and i) (Dn, N21) is an
LCF of Pp; and P»; is strongly R-stabilizable. 0O

From Theorem 2.3.1, reliable decentralized stabiliza-
tion may not always be possible to achieve. We now
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study special cases where there exist decentralized
controllers achieving reliable stabilization.

Reliable decentralized stabilization for stable plants:
Let the plant P be R-stable; then an RCF of P
is given by (P,I). The decentralized controller
Cy achieves reliable stabilization if and only if Cy
= diag [C1 , C2], with

Ci=(I~-@Qi (P~ P2@:Pn))'Qy,
Co=(I—-Q2P)'Q0, (16)
where 1, @2 € M(R) are such that
I + Q3 P31 @1 P12 is R-unimodular, (17)

(I — Q1(P11 — P12Qs Pzi)) is biproper,

(I — Q9 P22) is biproper (18)
Reliable decentralized stabilization for lower- or
upper-triangular plants: From (2), the plant P is
lower-triangular (upper-triangular) if and only if N2
=0 (ﬁgl = 0, respectively). In either case, from
(14), reliable stabilization can be achieved if and only
if Dag is R-unimodular, equivalently, P is R-stable.
Hence, Cy achieves reliable stabilization if and only
if it is given by (16), where @1, Q2 € M(R) are
such that (18) holds; note that (17) is automatically
satisfied since either Pjo = 0 or Py; = 0.

Reliable decentralized stabilization when Payy 1s
strongly R-stabilizable: Let P,y be strictly proper
and strongly R-stabilizable. Suppose that Py and
P;; are square and invertible. A sufficient condi-
tion for decentralized reliable stabilization is that
Pys is strongly R-stablhzable and in addition, P12

= Dy N12 and P;;' = N3' Doy are R-stable, i.e.,

Nio and Ny are R-unimodular. In this case, let
Cs be any R-stable R-stabilizing controller for Py
Without loss of generality, we can assume that the
RCF (Njg, Djy) of Pyy is such that Day + Cs Nap

= I,; and hence,
I Cs Day —Cs | _ I
Ngg I - ’
(19)

—Naz2 I— NpCs
Then for some A € M(R), Uyp in (7) is Uy =
(Cs + Dy2 A). A reliable decentralized controller
is given by Cyq = diag [C1, Cs], where Cs is given
by (8) with Qg = —A and Cy is given by (10) with
Q1 = Noy™ N22N12 :

Now with P,y strongly R-stabilizable, suppose that
Py is square and invertible and Py = M Py for



some R-unimodular matrix M . Then Ny = M Ny, .
These conditions are also sufficient for existence of
reliable decentralized controllers. In this case, a con-
troller similar to the one given above can be used,

where Q2 = —A and Q; = ﬁzl_l M-,

Reliable decentralized stabilization when P! is
strongly R-stabilizable: Suppose that Pys, P, and
P,; are square and invertible. A sufficient condi-
tion for decentralized reliable stabilization is that
Pr' is strongly R-stabilizable, and in addition, P3!

= Dy Np! and Pl = N21 D,y are R-stable,
i.e., N2 and Ng] are R-unimodular. Since P22 is
strongly R-stabilizable, there exists a @2 € M(R)
such that (Uzz + D322 Q2) is R-unimodular, where
Usa satisfies (7). In this case, a reliable decentralized
controller is given by Cq = diag [Cy, C2], where
C, is given by (8) with Q2 such that ( T2 + D32 Q2)
is R-unimodular and C; is given by (10) with Q; =

-1~
Nyt (Usz + D22 @)~ [=Doy + I|NS.

Reliable decentralized stabilization when X Py =
Pyy and P51 Y = Pjy: Let Pyy be strictly proper
and strongly R-stabilizable. Suppose that there exist
R-stable matrices X and Y of appropriate dimen-
sions such that X P12 = Pp; (equivalently, X Nyy
= Niz2) and Py Y = Py (equivalently, Ny Y
= Naz). These conditions are also sufficient for ex-
istence of reliable decentralized controllers. Again,
let Cs be any R-stable R-stabilizing controller for
Py, and assume that the RCF (sz, Dzz) of Py,
is such that Dys +Cs N2y = In; and hence, (19)
holds. Then for some A € M(R), Uz; in (7) is
Uz = (Cs + Dz A). A reliable decentralized con-
troller is C; = diag [Cy, C:], where C, is given
by (8) with Q2 = —A and C; is given by (10)
with @1 = YQlX and Q1 is chosen as follows:
Let k be any integer larger than || Cs Njz ||; then
(I — (Cs Na2)/k)* is R-unimodular. By the bino-
mial expansion (see for example [9]),

(I = (Cs Na2)/k)*

k

=1 - (CsNn) + 3 r(CsNa)t,
t=2

where 7, are the binomial coefficients. Choose @, as
k
t - 2

For this ¢ , condition (15) is satisfied and hence, the
system is reliably stabilized.

r¢(Cs Na2 )% Cs . (20)
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3. Conclusions

Reliable decentralized stabilization was considered
using a factorization approach. It was shown that
reliable stabilization can be achieved using two decen-
tralized controllers only if Pj» and Py are strongly
stabilizable. Decentralized controllers achieving reli-
able stabilization were proposed for plants, where Py
is also strongly stabilizable.
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Figure 1: The system S(P,Cy)



