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Abstract 

We study reliable stabilization of linear, time- 
invariant, multi-input multi-output , two-channel de- 
centralized control systems. We develop necessary 
and sufficient conditions for reliable decentralized 
stabilizability under sensor or actuator failures and 
present reliable decentralized controller design meth- 
ods for strongly stabilizable plants. 

1. Introduction 

We consider the reliable stabilization problem using 
the linear, time-invariant (LTI), multi-input, multi- 
output (MIMO), two-channel decentralized system 
configuration S( P, c d )  (Figure 1). The reliable 
stabilization problem aims to  find two controllers 
such that the system S( P, c d )  is stable when both 
controllers are acting together (normal mode) and 
when each controller is acting alone (failure mode). 
The failure of a controller is modeled by setting its 
transfer-function equal to  zero. 

A multi-controller system configuration achieving re- 
liable stabilization was introduced in [5], [6]. Fac- 
torization methods were used in [2], [3], [9] to study 
reliable stability with two full-feedback controllers; it 
was shown that a given plant can be reliably stabi- 
lized with two full-feedback controllers if and only if 
it is strongly stabilizable (i.e., it can be stabilized us- 
ing a stable controller) in the standard unity-feedback 
system. Reliable stabilization using a two-channel de- 
centralized control system was considered in [7]. 

In this paper, we develop necessary and sufficient 
conditions for existence of decentralized controllers, 
which achieve reliable stability. For certain classes 
of plants we present decentralized controller de- 
sign methods. Due to the algebraic methods used 
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here, the results apply to  continuous-time as well as 
discrete-time systems. 

2. Main Results 

Notation: 0 Let M ( R )  be the set of matrices 
whose entries are in R C R,, where R, denotes 
proper rational functions with real coefficients and 
'R denotes proper rational functions which do not 
have any poles in the region of instability U ;  here 
U contains the extended closed right-half-plane (for 
continuous-time systems) or the complement of the 
open unit-disk (for discrete-time systems). A map M 
is called R-stable iff M E M ( R )  ; An R-stable map 
M is R-unimodular iff M-' is also %stable. 0 Let 
the norm of an R-stable map M E M ( R )  be defined 
as 11 M 11 = s u p s E a ~  * ( M ( s ) )  , where 5 de- 
notes the maximum singular value and aU denotes 
the boundary of U . A right-coprime-factorization 
(RCF) and a left-coprime-factorization (LCF) of P E 
RPnoxn* are denoted by ( N p  , D p  ) and ( .6p, E p  ) , 
where N p  , D p  , N p  , D p  E M(R2,  D p  and 5, 
are biproper and P = N p  0;' = 0;' E p  . 

- -  

2.1. System description 

Consider the LTI, MIMO, two-channel decentral- 
ized control system S( P, Cd) shown in Figure 1: 
S( P, c d )  is a well-posed system, where 

9 1  P12 P = [ p21 p22 ] E Rpnaxn;,  

cd = diag [Cl , C2] E Rpn*xno , 
cj E R , n i j x n o j  , j = 1 , 2 ; P and c d  represent the 
plant and the decentralized controller, respectively. 
I t  is assumed that P and Cd do not have any hidden 
modes associated with eigenvalues in U .  For j = 
1 , 2 , Fsj and  FA^ are R-stable maps representing 
sensor and actuator failures in the first and second 
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channels, respectively. Under normal operation, Fsj 
= I and Faj = I ;  the (complete disconnection) 
failure of the j-th channel is represented by setting 
the corresponding Fsj or FAj equal to zero. 

Using an RCF ( N p ,  D p )  of P and an 
LCF ( E c j ,  f i c j )  of C j ,  with D p &  = - e p  

and Ecjycj = N c j e c j ,  j = 1,  2 ,  D c =  
diag [ & I ,  &2 ] , N c  = diag [ ficl , ficz ] , Fs = 
diag [Fsi  , Fsz], FA = diag [ FA1 , FAZ] , U P  = 

y c  = ( ycl , ycz  ) , the system S( P, c d  ) is described 
as follows: 

- 
- 

( u P l , u P z ) , U c  = ( u c l , u C z ) , Y P  = ( Y P l , Y P Z ) ,  

Equation (1) is of the form D H [  = U ,  y = N t .  
The system S( P, Cd ) is well-posed if and only if 
the map DH is biproper, equivalently, the closed- 
loop map H : ( u p ,  u c )  +, ( y p  , yc ) is proper; 
S( P, c d )  is automatically well-posed if P or cd is 
strictly proper. 

2.2. Conditions for stability 

Following standard definitions, with Fs and FA 
R-stable, the system S( P,Cd) is R-stable iff 
the closed-loop map H from ( u p , u c )  to ( y p , y c )  
is R-stable. From the system description (l), 
S( P, cd) is R-stable if and only if the map DH 
is R-unimodular. The decentralized controller c d  

is called an R-stabilizing controller for P iff cd is 
proper and S( P, c d  ) is R-stable. 

We now investigate R-stability of the system 
s( P, c d )  under various failure cases. Without loss of 
generality, we assume that the RCF ( N p  , Dp ) and 
the LCF ( 6 p  , f i p )  of P have a lower-triangular 
denominator matrix_ Dp and an upper-triangular de- 
nominator matrix Dp 111; i.e., 

Then from (l), the nominal system S( P, c d )  without 
failure is R-stable if and only if DH is R-unimodular, 

equivalently, 

is R-unimodular. (3) 

Case I: Sensor failure an the Jirst channel: Suppose 
that  FA^ = I ,   FA^ = I and Fsz = I .  Then 
S( P, c d  ) is R-stable with Fsl = 0 if and only if - 

Dii = I , DczDzz + EczNzz = I (4) 

- and 
Dcl = I . (5) 

Therefore, there exists an R-stabilizing decentralized 
controller cd for the plant P if and only if P is of 
the form 

( N22 , 0 2 2  ) right - coprime (6) - 
and 5 2 2 ,  V22 are R-stable matrices satisfying the 
following identity for the RCF N220;; of P22 for 
some R-stable matrices U 2 2 ,  VZZ [l]: 

By (4), cd E M (  Rp)  is a decentralized R-stabilizing 
controller for P if and only if CI is R-stable and C2 
is and R-stabilizing controller for P22, i.e., 

c d  = diag[ C1 , C2 ] , 

CZ = (Vzz - Q z f i z ~ ) - ~ ( u z z  + 9 2 0 2 2 )  

= (cm + 0 z z Q z ) ( v z z  + NzzQz)- '  

C1 E Rn0lxna1 , 

(8) 
for some R-stable Q2 such that 

( V22 - QZ f i 2 2  ) is biproper; (9) 

note that (9) automatically holds for all Q2 E M ( R )  
when Pzz is strictly proper [8]. 

Now S( P, cd) is R-stable with the controller Cd 
in (8) assuming that Fsl = 0 ;  but the controller 
should be designed to ensure R-stability for the 
nominal sptem_ as well. F;om-(2), (6) and (8), 
D q  = -U22N21 , _NZI  = V22 NZI  and ( &Z DZI 
+ N c z  N z i )  = Q2N21 [I]. The decentralized con- 
troller c d  is an R-stabilizing controller for P for both 
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of the possibilities of Fsl = I and Fsl = 0 if and 
only if C2 is the same as in (8) but C1 is given by 

where the Q1 E Rnilxnol is such that 
," 
DCl = I - &1 (Nl1 - N12 Q2fi21) (11) 

is R-unimodular. 

Case 2: Actuator failure in the first channel: Sup- 
pose that Fs1 = I ,  Fs2 = I and  FA^ = I. Then 
S( P, cd) is R-stable with  FA^ = 0 if and only if (4)- 
( 5 )  hold, i.e., if and only if S( P, c d  ) is R-stable with 
Fsl = 0 .  Therefore, there exists an R-stabilizing de- 
centralized controller c d  for the plant P if and only 
if P is of the form in (6) and c d  E M (  Rp)  is a de- 
centralized %stabilizing controller for P if and only 
if it is of the form given by (8). As in the sensor fail- 
ure case above, the decentralized controller c d  is an 
R-stabilizing controller for P for both of the possi- 
bilities of  FA^ = I and  FA^ = 0 if and only if C2 is 
the same as in (8) but C1 is given by (lo),  where 61 
is such that (11) is 12-unimodular. 

Case 3: Simultaneous sensor and actuator failure 
in the first channel: Suppose that Fs2 = I and 
F.42 = I. Then S( P, Cd ) is R-stable with Fsl = 0 
and  FA^ = 0 if and only if (4) holds. In this case (5 )  
is not needed because when both the sensors and ac- 
tuators of the first channel fail, ycl = 0 ; since C1 is 
no longer taken into account, it need not be R-stable. 
Therefore, there exists an R-stabilizing decentralized 
controller c d  for the plant P if and only if P is of 
the form in (2) and c d  E M (  Rp)  is a decentralized 
R-stabilizing controller for P if and only if C2 is of 
the form given by (8). Now the same controller will 
also R-stabilize the nominal system S( p, c d )  with- 
out failure if and only if the additional constraint (10) 
is put on C1, except that the R-stable matrix Q1 is 
chosen such that the matrix in (11) biproper since C1 
need not be R-stable in this case; note that (11) is 
biproper for any strictly proper & I .  

Case 4: Sensor failure in the second channel: Sup- 
pose that  FA^ = I ,   FA^ = I and Fsl = I. Then 
S( P, c d )  is R-stable with Fs2 = 0 if and only if 

- and 
Dc2 = I 

Therefore, C2 is necessarily R-stable. 

Now the system S( P, c d )  is R-stable for either 
Fs2 = I or Fs2 = 0 (i.e., with or without sen- 
sor failure of the second channel) if and only if both 
(3) and (12) hold. 

Case 5: Actuator failure in the second channel: Sup- 
pose that FSI = I ,  Fs2 = I and  FA^ = I .  Then 
S( P, c d  ) is %stable with F,42 = 0 if and only if 
(12) holds, i.e., if and only if S( P, cd) is R-stable 
with Fs2 = 0 .  As in the sensor failure case above, 
S( p, cd) is R-stable for either  FA^ = I or  FA^ = 0 
(i.e., with or without actuator failure of the second 
channel) if and only if both (3) and (12) hold. 

Case 6: Simultaneous sensor and actuator failure in 
the second channel: Suppose that Fsl = I and 
Fa1 = I. Then S( P, c d  ) is R-stable with Fs2 = 0 
and  FA^ = 0 if and only if (12) holds. In this case, 
(13) is not needed because when both sensors and ac- 
tuators of the second channel fail, gc2 = 0 ;  since 
C2 is no longer taken into account, it need not be 
R-stable. Now the nominal system S( P, cd) is also 
R-stable if and only if (3) also holds in addition to 
condition (12). 

Case 7: Simultaneous sensor and actuator failure in 
either the first or the second channel: We now in- 
vestigate 77.-stability of the system S( P, c d )  under 
simultaneous sensor and actuator failure in either the 
first or the second channel; this is the same as the re- 
liable decentralized stabilization problem studied in 
[7]. We study this case in detail in section 2.3 below. 

2.3. Reliable decentralized stabilizability 

The system S( P, c d  ) is said to be reliably stabilized 
iff S( P, c d )  is R-stable under any of the following 
three conditions: 

z) The nominal system S( P, c d )  is stable, 
i.e., Fs = I and FA = I 
2 2 )  the system S( P, cd) is stable with 
simultaneous sensor and actuator failure 
in the first channel, i.e., Fsl = 0 ,  
 FA^ = 0, Fs2 = I ,   FA^ = I 
iii) the system S( P, c d )  is stable with 
simultaneous sensor and actuator failure 
in the second channel, i.e., Fs2 = 0 ,  
 FA^ = 0,  Fsl = I ,   FA^ = I. 

Now the first of these conditions is satisfied if and only 
if (3) holds. The second condition was explained in 
case 3 of section 2.2 above; it is satisfied if and only 
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if (4) holds. The third condition was explained in 
case 6 of section 2.2 above; it is satisfied if and only 
if (12) holds. Note that P is of the form given by (6) 
for conditions 2 and 3 to hold. Putting (3), (4) and 
(12) together with the necessary form of P in (6), we 
conclude that the system S ( F s ,  P, FA, C )  is reliably 
stabilized if and only if 

0 2 2  - NCZ fiz1 Q1 N12 is R-unimodular. (14) 

Furthermore, c d  = diag [ C1 , CZ] is a decentralized 
R-stabilizing controller such that s( P, cd ) is reliably 
stabilized if and only if C1 and C2 are given by (10) 
and (S), respectively, for some R-stable Q1 and Q2 
(of appropriate sizes) satisfying (11) and (9) and are 
such that (14) holds, i.e., 

Dzz + ( G z z  + Dzz Q z )  Gzi & I  N I Z  

is R-unimodular. (15) 
Although condition (15) characterizes all parame- 
ter matrices Q1 and Qz that achieve reliable sta- 
bilization of s( P, cd) , it does not explicitly de- 
scribe how to choose them in order to make the ma- 
trix in (15) R-unimodular. However, from (14) and 
equivalently (15), the conditions in Theorem 2.3.1 
below on the plant P are necessary for existence 
of decentralized controllers which reliably stabilize 
S(Fs, P, FA, C). By Theorem 2.3.1, to achieve re- 
liable decentralized stabilization, P12 and Pzl are 
necessarily strongly R-stabilizable. An LTI system 
P is said to be strongly R-stabilizable if there is an 
R-stable R-stabilizing controller C E M ( R )  for P 
(in the standard full-feedback system). If U = C+ , 
P is strongly R-stabilizable if and only if it satisfies 
the par i ty  in ter lac ing  proper ty ,  i.e., P has an even 
number of poles between pairs of blocking zeros on 
the positive real-axis ([8], [9]). From a coprime fac- 
torizations view-point, P is strongly R-stabilizable if 
and only if, for any RCF ( Np , Dp 1 of P , there ex- 
ists an R-unimodular 5 such that D D p  + fi Np is 
R-unimodular for some R-stable E .  

2.3.1. Theorem ( N e c e s s a r y  condi t ions  f o r  re- 
liable decentralized stabilizabili ty):  Let P E Rnoxnk 
be as in (2). If there exists a decentralized controller 
Cd such that S(Fs, P, FA, C) is reliably stabilized, 
then i )  ( N I Z  , D 2 2  ) is an RCF of PIZ and PIZ is 
strongly R-stabilizable, and ii) ( 5 2 2  , fiz1 ) is an 
LCF of P21 and Pz1 is strongly R-stabilizable. 0 

From Theorem 2.3.1, reliable decentralized stabiliza- 
tion may not always be possible to achieve. We now 

study special cases where there exist decentralized 
controllers achieving reliable stabilization. 

Reliable decentralized stabilization for stable plants: 
Let the plant P be R-stable; then an RCF of P 
is given by ( P , I )  . The decentralized controller 
c d  achieves reliable stabilization if and only if cd 
= diag [Cl  , CZ] , with 

= ( 1  - Q I ( P I I  - P ~ z Q z P z ~ ) ) - ~ Q ~ ,  

cz = ( 1  - Q ~ ~ ~ ~ ) - ~ Q ~ ,  (16) 
where Q1,  Q2 E M ( R )  are such that 

I + QZ Pz1 Q1 P12 is R-unimodular, 

( I  - Qi ( 9 1  - PIZ Q z  PZI 1 )  is biproper, 

(17) 

( I  - Qz P Z Z )  is biproper 

Reliable decentralized stabilization for lower- or 
upper-triangular plants: From (2), the plant P is 
lower-tGangular (upper-triangular) if and only if NI2 

= 0 (N21 = 0 ,  respectively). In either case, from 
(14), reliable stabilization can be achieved if and only 
if DZZ is R-unimodular, equivalently, P is R-stable. 
Hence, c d  achieves reliable stabilization if and only 
if it is given by (16), where Q1,  QZ E M ( R )  are 
such that (18) holds; note that (17) is automatically 
satisfied since either PIZ = 0 or P21 = 0 .  

Reliable decentralized stabilization w h e n  P22 as 
strongly R-stabilizable: Let P22 be strictly proper 
and strongly R-stabilizable. Suppose that P ~ z  and 
P z ~  are square and invertible. A sufficient condi- 
tion for decentralized reliable stabilization is that 
Pzz is strongly R-stabilizable, and in addition, Pfi' 
= D22 NGL and PG1 = NG1 DZZ are R-stable, i.e., 
N ~ z  and Nzl are R-unimodular. In this case, let 
Cs be any R-stable R-stabilizing controller for PZZ . 
Without loss of generality, we can assume that the 
RCF ( Nzz , 0 2 2  ) of P22 is such that 0 2 2  + CS N22 

= Ini and hence, 

- -  

I cs ] [;; -?I = I .  [ -Nzz I - N22 Cs 
- (19) 

Then for some A E M ( R ) ,  622 in (7) is U22 = 
(Cs  + 0 2 2  A ) .  A reliable decentralized controller 
is given by cd = diag [ C1 , CZ] , where CZ is given 
by (8) with Q2 = -A and C1 is given by (10) with 

Qi = Nzi N22 NG1.  
Now with Pz2 strongly R-stabilizable, suppose that 
Pzl is square and invertible and P12 = M P22 for 

- -1  
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some R-unimodular matrix M . Then N 1 2  = M N 2 2  . 
These conditions are also sufficient for existence of 
reliable decentralized controllers. In this case, a con- 
troller similar to the one given above can be used, 
where Q 2  = - A  and Q1 = N 2 1  

Reliable decentralized stabilization when PG1 is 
strongly U-stabilizable: Suppose that P 2 2 ,  P 1 2  and 
P 2 1  are square and invertible. A sufficient condi- 
tion for decentralized reliable stabilization is that 
PG1 is strongly R-stabilizable, and in addition, PG1 
= D 2 2  NG1 and PG1 = fiG1 6 2 2  are R-stable, 
i.e., N 1 2  and F 2 1  are R-unimodular. Since PG1 is 
strongly R-Cabilizable, there exists a Q 2  E M ( R )  
such that ( U 2 2  + 0 2 2  Q 2  ) is 72-unimodular, where 
.!&2 satisfies (7). In this case, a reliable decentralized 
controller is given by c d  = diag [Cl,, CZ] , where 
C 2  is given by (8) with Q 2  such that ( U 2 2  + 0 2 2  Q 2 )  

is R-unimodular and C 1  is given by (10) with Q 1  = 
f i 2 1 - ’ (  8 2 2  + 0 2 2  Q 2 ) - l [  - 0 2 2  f I ]  N G 1 .  
Reliable decentralized siabilization when X P 1 2  = 
P 2 2  and P 2 1  Y = P 2 2  : Let P 2 2  be strictly proper 
and strongly R-stabilizable. Suppose that there exist 
R-stable matrices X and Y of appropriate dimen- 
sions such that X P 1 2  = P 2 2  (equivalently, X N I 2  

= N 2 2 )  and P 2 l Y  = P 2 2  (equivalently, f i 2 l Y  

= N 2 2 ) .  These conditions are also sufficient for ex- 
istence of reliable decentralized controllers. Again, 
let Cs be any R-stable %stabilizing controller for 
P 2 2  and assume that the RCF ( N 2 z  , D 2 2  ) of P 2 2  

is such that D 2 2  +Cs N 2 2  = Ini and hence, (19) 
holds. - Then for some A E M ( R ) ,  6 2 2  in (7) is 
U 2 2  = ( Cs + D 2 2  A ) .  A reliable decentralized con- 
troller is Cd = diag [Cl , C Z ] ,  where C 2  is given 
by (8) with Q 2  = - A  and C 1  is given by (10) 
with Q1 = Y Q l X  and Q 1  is chosen as follows: 
Let k be any integer larger than 11 Cs N 2 2  11 ; then 
( I  - (Cs is R-unimodular. By the bino- 
mial expansion (see for example [9]), 

( 1  - ( CS N 2 2 ) / k ) k  

- - 1  
M-’. 

k 
= 1 - ( C s N z z )  + ~ c ( c s N m ) ‘ ,  

L = 2  

where ri are the binomial coefficients. Choose Q 1  as 

k 

Q1 = c re (CS N 2 2 ) -  cs - (20) 
c = 2  

For this 01, condition (15) is satisfied and hence, the 
system is reliably stabilized. 

3. Conclusions 

Reliable decentralized Stabilization was considered 
using a factorization approach. It was shown that 
reliable stabilization can be achieved using two decen- 
tralized controllers only if P12 and 4 1  are strongly 
stabilizable. Decentralized controllers achieving reli- 
able stabilization were proposed for plants, where P 2 2  

is also strongly stabilizable. 
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