Reliable Control Using Two Controllers

A. N. Gündes *

Department of Electrical and Computer Engineering University of California, Davis, CA 95616

Abstract

We consider the reliable stabilization of linear, timeinvariant, multi-input multi-output control systems using a two-controller configuration. For any given plant, we develop a method of designing two controllers which maintain closed-loop stability both when working together and when acting independently. For stable plants, we develop a decomposition method of a given stabilizing controller into the sum of two controllers which provide reliable stabilization.

1. Introduction

A linear, time-invariant, multi-input, multi-output plant can be reliably stabilized in the configuration of the system $\mathcal{S}(P, C_1, C_2)$ (Figure 2) if and only if it is strongly stabilizable (i.e., it can be stabilized using a stable controller) in the standard unity-feedback configuration of the system $\mathcal{S}(P, C)$ (Figure 1) [1], [4]. In this paper we develop a method of finding two controllers that achieve reliable stabilization, where neither of the controllers is necessarily stable. We also develop a reliable decomposition method of a given stabilizing controller into the sum of two controllers.

We assume that the plant is free of unstable hidden-modes. The results apply to continuous-time as well as discrete-time systems.

2. Preliminaries

Notation: Let \mathcal{U} be a subset of the field \mathbb{C} of complex numbers: \mathcal{U} is closed and symmetric about the real axis, $\pm \infty \in \mathcal{U}$, $\mathbb{C} \setminus \mathcal{U}$ is nonempty. Let $\mathcal{R}_{\mathcal{U}}$, $\mathbb{R}_{p}(s)$, $\mathbb{R}_{sp}(s)$, $\mathbb{R}(s)$ be the ring of proper rational functions with no poles in \mathcal{U} , the ring of proper rational functions, the set of strictly proper rational functions and the field of rational functions of s (with real coefficients), respectively. Let \mathcal{J} be the group of units of $\mathcal{R}_{\mathcal{U}}$ and let $\mathcal{I} := \mathcal{R}_{\mathcal{U}} \setminus \mathbb{R}_{sp}(s)$. The set of matrices whose entries are in $\mathcal{R}_{\mathcal{U}}$ is $\mathcal{M}(\mathcal{R}_{\mathcal{U}})$. A matrix M is called $\mathcal{R}_{\mathcal{U}}$ -stable iff $M \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$; $M \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular iff det $M \in \mathcal{J}$. The identity matrix of size n is denoted I_n . The norm of a matrix $M \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ is defined as || M || := $\sup_{\omega} \bar{\sigma}(M(j\omega))$. Let (N_P, D_P) denote a rightcoprime-factorization (RCF) and (\tilde{D}_P , \tilde{N}_P) denote a left-coprime-factorization (LCF) of P, where P = $N_P \, D_P^{-1} \ = \ \tilde{D}_P^{-1} \, \tilde{N}_P \ , \ N_P \ , \ D_P \ , \ \tilde{N}_P \ , \ \tilde{D}_P \ \in$ $\mathcal{M}(\mathcal{R}_{\mathcal{U}})$, det D_P , det $\widetilde{D}_P \in \mathcal{I}$. Consider the system S(P, C) where $P \in \mathcal{I}$.

 $\mathbb{R}_{p}(s)^{no \times ni}$ and $C \in \mathbb{R}_{p}(s)^{ni \times no}$. The system $\mathcal{S}(P, C)$ is said to be $\mathcal{R}_{\mathcal{U}}$ -stable iff the transferfunction $H_{yu}(P, C)$: $\begin{bmatrix} u_C^T & u_P^T \end{bmatrix}^T \mapsto \begin{bmatrix} y_C^T & y_P^T \end{bmatrix}^T \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$. The controller C is said to be an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P iff C is proper and $H_{yu}(P, C) \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$. C is an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P if and only if $\tilde{D}_C D_P + \tilde{N}_C N_P$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular, equivalently, $\tilde{D}_P D_C + \tilde{N}_P N_C$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular for any LCF (\widetilde{D}_C , \widetilde{N}_C) and any RCF (N_C, D_C) of C.

Now consider the system $\mathcal{S}(P, C_1, C_2)$; this system is said to be $\mathcal{R}_{\mathcal{U}}$ -stable iff the transferfunction $H_{yu}(P, C_1, C_2) : [u_{C1}^T u_{C2}^T u_P^T]^T \mapsto [y_{C1}^T y_{C2}^T y_P^T]^T \in \mathcal{M}(\mathcal{R}_{\mathcal{U}}).$

2.1 Lemma: Let (N_P, D_P) , $(\widetilde{D}_P, \widetilde{N}_P)$ be any RCF and any LCF of P; let (N_{Cj}, D_{Cj}) be any RCF and $(\widetilde{D}_{Cj}, \widetilde{N}_{Cj})$ be any LCF of C_j , j = 1, 2. Then the following are equivalent:

i) The system $S(P, C_1, C_2)$ is $\mathcal{R}_{\mathcal{U}}$ -stable.

 $\begin{aligned} \mathbf{ii}) \begin{bmatrix} \widetilde{D}_{C1} D_P + \widetilde{N}_{C1} N_P & -\widetilde{D}_{C1} \\ \widetilde{N}_{C2} N_P & \widetilde{D}_{C2} \end{bmatrix} & \text{is } \mathcal{R}_{\mathcal{U}} \text{-unimodular.} \\ \\ \mathbf{iii}) \begin{bmatrix} \widetilde{D}_P D_{C1} + \widetilde{N}_P N_{C1} & \widetilde{N}_P N_{C2} \\ -D_{C1} & D_{C2} \end{bmatrix} & \text{is } \mathcal{R}_{\mathcal{U}} \text{-unimodular.} \end{aligned}$

2.2 Corollary: a) If $\mathcal{S}(P, C_1, C_2)$ is $\mathcal{R}_{\mathcal{U}}$ -stable, then $(\tilde{D}_{C1}, \tilde{D}_{C2})$ is right-coprime and (D_{C1}, D_{C2}) is left-coprime, where (N_{Cj}, D_{Cj}) is any RCF and $(\widetilde{D}_{Cj}, \widetilde{N}_{Cj})$ is any LCF of $C_j, j = 1, 2$.

b) Let $(\tilde{D}_{C1}, \tilde{D}_{C2})$ be right-coprime and (D_{C1}, D_{C2}) be left-coprime, where (N_{Ci}, D_{Ci}) is any RCF and $(\widetilde{D}_{Cj}, \widetilde{N}_{Cj})$ is any LCF of C_j , j = 1, 2. Then i) $C := C_1 + C_2 = \widetilde{D}_{C_1}^{-1} (\widetilde{N}_{C_1} D_{C_2} + \widetilde{D}_{C_1} N_{C_2}) D_{C_2}^{-1}$, where (\widetilde{D}_{C1} , $\widetilde{N}_{C1}D_{C2} + \widetilde{D}_{C1}N_{C2}$) is left-coprime and

 $(\widetilde{N}_{C1}D_{C2} + \widetilde{D}_{C1}N_{C2}, D_{C2})$ is right-coprime. ii) $\mathcal{S}(P, C_1, C_2)$ is $\mathcal{R}_{\mathcal{U}}$ -stable if and only if C := $C_1 + C_2$ is an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P.

3. Main Results

From Lemma 2.1, $\mathcal{S}(P, C_1, C_2)$ is $\mathcal{R}_{\mathcal{U}}$ -stable with $C_1 = 0$ if and only if C_2 is an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P; similarly, it is $\mathcal{R}_{\mathcal{U}}$ -stable with $C_2 = 0$ if and only if C_1 is an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P.

^{*}Research supported by the National Science Foundation Grant ECS-9010996

In Algorithm 3.4, we develop a design method such that $S(P, C_1, C_2)$ is $\mathcal{R}_{\mathcal{U}}$ -stable when C_1 and C_2 work together and when one of them is zero. In Algorithm 3.5, we show a reliable decomposition of a given $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller C for $\mathcal{R}_{\mathcal{U}}$ -stable plants; i.e., for $P \in \mathcal{R}_{\mathcal{U}}^{no\times ni}$, and a given $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller $C \in \operatorname{IR}_p(s)^{ni\times no}$, we find two controllers C_1 and C_2 such that $C = C_1 + C_2$, $C_1 \mathcal{R}_{\mathcal{U}}$ -stabilizes P, $C_2 \mathcal{R}_{\mathcal{U}}$ -stabilizes P and $S(P, C_1, C_2)$ is $\mathcal{R}_{\mathcal{U}}$ -stable. Note that $H_{yu}(P, C_1, C_2) \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ implies that $C = C_1 + C_2 \mathcal{R}_{\mathcal{U}}$ -stabilizes P but the converse is not necessarily true.

3.1 Definitions: a) The pair (C_1, C_2) is said to be a *reliable controller pair* for P iff (i) C_1 is an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P, (ii) C_2 is an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P and

(iii) $S(P, C_1, C_2)$ is $\mathcal{R}_{\mathcal{U}}$ -stable.

b) The pair (C_1, C_2) is said to be a reliable decomposition of C iff (i) $C_1 + C_2 = C$ and

(ii) (C_1, C_2) is a reliable controller pair for P.

3.2 Lemma: [1] There exists a reliable controller pair (C_1, C_2) for P if and only if there exists an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P which is $\mathcal{R}_{\mathcal{U}}$ -stable (i.e., P is strongly $\mathcal{R}_{\mathcal{U}}$ -stabilizable).

3.3 Corollary: a) If P is $\mathcal{R}_{\mathcal{U}}$ -stable, then (C_1, C_2) is a reliable controller pair for P if and only if for $j = 1, 2, C_j = (I_{ni} - Q_j P)^{-1} Q_j$, where $Q_j \in \mathcal{R}_{\mathcal{U}}^{ni \times no}$ is such that $(I_{ni} - Q_2 P Q_1 P)$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular; additionally, Q_j must satisfy det $(I_{ni} - Q_j P) \in \mathcal{I}$ (which automatically holds for all $Q_j \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ when P is strictly proper).

b) If the pair (C_1, C_2) is a reliable controller pair for P, then $C_2P(I_{ni} + C_1P + C_2P)^{-1}C_1$ is a strongly $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P. Conversely, if C_1 and C_2 are two $\mathcal{R}_{\mathcal{U}}$ -stabilizing controllers such that $C_2P(I_{ni} + C_1P + C_2P)^{-1}C_1$ is a strongly $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P, then the pair (C_1, C_2) is a reliable controller pair.

3.4 Algorithm (Reliable controller pair design): Let $P \in \mathbb{R}_p(s)^{n \circ \times ni}$ be a given strongly $\mathcal{R}_{\mathcal{U}}$ -stabilizable plant. Let (N_P, D_P) and $(\tilde{D}_P, \tilde{N}_P)$ be any RCF and LCF of P.

Method 1: Step 1: Find an $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller $C_S \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ for P. Let $(\tilde{D}_C, \tilde{N}_C)$ be an LCF and (N_C, D_C) be an RCF of C_S such that $\tilde{D}_C D_P + \tilde{N}_C N_P = I_{ni}$ and $\tilde{D}_P D_C + \tilde{N}_P N_C$ $= I_{no}$. Step 2: Find $Q_2 \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ so that $(I_{ni} - \tilde{N}_C N_P + Q_2 N_P \tilde{N}_C N_P)$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular and det $(I_{ni} - Q_2 N_P) \in \mathcal{I}$. Step 3: A reliable controller pair (C_1, C_2) is given by $C_1 := C_S$ and $C_2 := \tilde{D}_C^{-1} (I_{ni} - Q_2 N_P)^{-1} Q_2$.

Method 2: Repeat steps 1 and 2 above. Step 3: Find $Q_1 \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ such that $(I_{ni}-Q_1\tilde{N}_P\tilde{D}_C^{-1}Q_2N_P)$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular and det $(I_{ni}-Q_1\tilde{N}_P\tilde{D}_C^{-1}N_P) \in \mathcal{I}$. Step 4: A reliable controller pair (C_1, C_2) is given by $C_1 := \tilde{D}_C^{-1}(I_{ni}-Q_1\tilde{N}_P\tilde{D}_C^{-1})^{-1}(\tilde{N}_C+Q_1\tilde{D}_P)$, C_2 $:= \widetilde{D}_C^{-1} (I_{ni} - Q_2 N_P)^{-1} Q_2.$ One of the two controllers in Method 1 of Algo-

One of the two controllers in Method 1 of Algorithm 3.4 is always $\mathcal{R}_{\mathcal{U}}$ -stable; the second controller is also $\mathcal{R}_{\mathcal{U}}$ -stable if and only if Q_2 is such that $(I_{ni}-Q_2N_P)$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular. The two controllers in Method 2 may or may not be $\mathcal{R}_{\mathcal{U}}$ -stable.

3.5 Algorithm (Reliable decomposition): Let $P \in \mathcal{R}_{\mathcal{U}}^{no\times ni}$. Let $C \in \mathbb{R}_{p}(s)^{ni\times no}$ be any given $\mathcal{R}_{\mathcal{U}}$ -stabilizing controller for P; let $(\tilde{D}_{C}, \tilde{N}_{C})$ and (N_{C}, D_{C}) be any LCF and RCF of C. Step 1: Find any $\hat{Q} \in \mathcal{R}_{\mathcal{U}}^{ni\times no}$ such that $(I_{ni} - \hat{Q}P)$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular. Step 2: Define $\alpha := || \hat{Q}P ||, \beta$:= $|| \hat{Q}D_{C}P ||$. Choose any $k > \alpha + \beta$. Step 3: Define $Q_{1} := \hat{Q}/k$. A reliable controller pair (C_{1}, C_{2}) is given by $C_{1} := (I_{ni} - Q_{1}P)Q_{1}, C_{2}$:= $C - C_{1} = C - (I_{ni} - Q_{1}P)^{-1}Q_{1}$.

The controller C_1 in the reliable decomposition of Algorithm 3.5 is chosen $\mathcal{R}_{\mathcal{U}}$ -stable. A sufficient condition to make $(I_{ni} - \hat{Q}P) \mathcal{R}_{\mathcal{U}}$ -unimodular is to choose \hat{Q} so that $|| \hat{Q} || < 1/|| P ||$. The controller C_2 is $\mathcal{R}_{\mathcal{U}}$ -stable if and only if the given controller C is.

References

- K. D. Minto and R. Ravi, "New results on the multi-controller scheme for the reliable control of linear plants," *Proc. American Control Conf.*, pp. 615-619, 1991.
- [2] D. D. Siljak, "On reliability of control," Proc. Conf. Decision and Control, pp. 687-694, 1978.
- [3] M. Vidyasagar and N. Viswanadham, "Algebraic design techniques for reliable stabilization," *IEEE Trans. Automatic Control*, vol. 27, pp. 1085-1095, 1982.
- [4] M. Vidyasagar and N. Viswanadham, "Reliable stabilization using a multi-controller configuration," Automatica, vol. 21, pp. 599-602, 1985.

Figure 1: The system S(P, C)

Figure 2: The system $S(P, C_1, C_2)$

446