TP5 - 4:15

DECOUPLING OF LINEAR MULTIVARIABLE PLANTS BY DYNAMICAL OUTPUT FEEDBACK

C. A. Descer and A. N. Gündeş

Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory University of California, Berkeley, CA 94720

Abstract

This paper presents an *algebraic* theory for decoupling linear multivariable feedback systems. A global parametrization of *all diagonal nonsingular* I/O maps and *all* D/O maps achievable by a stabilizing compensator or a given plant is given in the theorem.

Introduction

In the design theory of linear time-invariant (LT-I) multi-input multi-output (MIMO) systems, the characterization of all designs which can be achieved by a stabilizing controller for a given plant shows the limitations on achievable performance imposed by the plant and the constraints of linearity and stability. This paper presents a general algebraic design method for all diagonal I/O maps which can be achieved by a stabilizing two-input one output controller K for a given plant P. This method gives a decoupled closed loop system for which the (diagonal) 1/O map can be specified independently of the D/O map.

The system $\Sigma(P,K)$ shown in Fig. 1 represents a more general case in that y_2 , the output of interest, is not the same as z, the measured output; furthermore, the disturbance d is applied directly to the pseudo-state of P rather than being an additive input as for example in [Des. 1].

Algebraic Structure: [Bou. 1], [Lang. 1]

- H: A principal ring (PID), (e.g., R_U, the ring of proper rational functions analytic in U).
- $\widetilde{\mathbf{G}}$: The field of fractions over $\mathbf{H}(\mathbf{e.g.}, \mathbf{R}(s))$.
- I: A multiplicative subset of H; equivalently, $I \subset H$, $0 \notin I$, $i \in I$, and $x, y \in I$ implies that $xy \in I$ (e.g., $f \in I$ if $f \in R_{U}$ and $f(\infty) = 1$.)
- G: = $\{n / d : n \in \mathbb{H}, d \in \mathbb{I}\}$, subring of \widetilde{G} (e.g., $\mathbb{R}_{p}(s)$)
- $\begin{array}{ll} \textbf{U}(\textbf{H}): &= \{m \in \textbf{H}: m^{-1} \in \textbf{H}\}, \text{ the group of units in } \textbf{H} \text{ (e.g.,} \\ &f \in \textbf{U}(\textbf{H}) \Longleftrightarrow f \in \textbf{R}_{\textbf{U}} \text{ and } f(\textbf{s}) \neq 0 \forall \textbf{s} \in \textbf{U} \text{)}. \end{array}$

Problem Description an Assumptions

We consider the LT-I, MIMO system $\Sigma(P,K)$ in Figs. 1 and 2. Given a plant P, we design a controller K with two inputs and one output such that the resulting system is stable, K is proper and the I/O map $v \mapsto y_2$ is nonsingular and decoupled, i.e., diagonal. We assume:

(P)
$$P \in \mathbf{G}^{2n \times n}$$
 has a right-coprime factorization (r.c.f.)

$$\begin{bmatrix} P^o \\ p^m \end{bmatrix} = \begin{bmatrix} N_{pr}^o \\ N_{pr}^m \end{bmatrix} D_{pr}^{-1} \text{ with } D_{pr}, N_{pr}^o, N_{pr}^m \in \mathbf{H}^{n \times n} \text{ det } \\ D_{pr} \in \mathbf{I} \text{ and det } N_{pr}^o \neq \mathbf{0}.$$

(K) $K \in \mathbf{G}^{n \times 2n}$ has a left-coprime factorization (l.c.f.) $D_{cl}^{-1}[N_{nl}, N_{fl}]$ with $D_{cl}, N_{nl}, N_{fl} \in \mathbf{H}^{n \times n}$, det $D_{cl} \in \mathbf{I}$ and det $(D_{cl}D_{pr} + N_{fl}N_{pr}^m) \in \mathbf{L}$

Definition: The system $\Sigma(P,K)$ is called H-stable if and only if the map $H_{yu}: (v^T, u_1^T, u_2^T, d^T)^T \mapsto (y_1^T, y_2^T, z^T)$ has elements in H.

Let

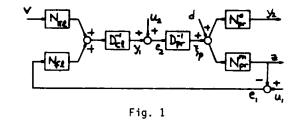
$$D_h := D_{cl} D_{pr} + N_{fl} N_{pr}^m \in \mathbf{H}^{n \times n}$$
(1)

 $\Sigma(P,K)$ is H-stable if and only if det $D_h \in U(H)$ [Des. 1, corollary 3.1]; w.l.o.g. if and only if we can take $D_h = I$ [Vid. 1]. By (1), $\Sigma(P,K)$ H-stable implies that (N_{pr}^m, D_{pr}) are right-coprime.

The I/O Map $H_{y_{s^2}}$ and the D/O Map $H_{y_{s^2}}$

Definition (Δ_L): Let Δ_L be a diagonal matrix

$$\Delta_L = \operatorname{diag}[\Delta_{L1}, \Delta_{L2}, \dots, \Delta_{Ln}] \in \mathbf{H}^{n \times n}$$
(2)



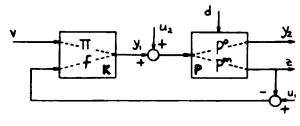


Fig. 2

where, for k = 1, ..., n, Δ_{lk} is the g.c.d. over H of the elements of the k-th row of N_{pr}^0 . Then

$$N_{pr}^{o} = \Delta_L \, \widetilde{N}_{pr}^{o} \tag{3}$$

where Δ_L , \tilde{N}_{pr}^o are not unique since each Δ_{Lk} is defined within a unit factor. (In Rg, Δ_L "book-keeps" the plant zeros in U that are common to all elements of the k-th row of N_{pr}^o .)

Definition (Δ_R) : Let Δ_R be a diagonal matrix

$$\Delta_R = \operatorname{diag}[\Delta_{R1}, \Delta_{R2}, \dots, \Delta_{Rn}] \in \mathbf{H}^{n \times n}$$
(4)

where, for j = 1, ..., n, Δ_{Rj} is a l.c.m. of $d_{1j}, ..., d_{nj}$ where the j-th column of $(\widetilde{N}_{pr}^{o})^{-1}$ is $\left[\frac{m_{1j}}{d_{1j}}, \cdots, \frac{m_{nj}}{d_{nj}}\right]^T$, $d_{ij}, m_{ij} \in \mathbf{H}^{n \times n}$, i = 1, ..., n. Δ_R is defined within a unimodular factor.

For any $\Sigma(P,K)$ satisfying (P) and (K), the 1/0 map $H_{y_{\mathbf{z}}\mathbf{y}}: \boldsymbol{v} \mapsto y_2$ and the D/0 map $H_{y_{\mathbf{z}}\mathbf{d}}: \boldsymbol{d} \mapsto y_2$ are given by

$$H_{\boldsymbol{y}_{\boldsymbol{\pi}^{\boldsymbol{y}}}} = N_{\boldsymbol{p}\boldsymbol{r}}^{\boldsymbol{o}} D_{\boldsymbol{h}}^{-1} N_{\boldsymbol{\pi}\boldsymbol{l}} = \Delta_{L} \widetilde{N}_{\boldsymbol{p}\boldsymbol{r}}^{\boldsymbol{o}} N_{\boldsymbol{\pi}\boldsymbol{l}}$$
(5)

$$H_{ygd} = N_{pr}^{o} [I - D_{h}^{-1} N_{fl} N_{pr}^{m}] = N_{pr}^{o} D_{cl} D_{pr}$$
(6)

where we use (1), (2) and take $D_h = I$ since $\Sigma(P,K)$ is H-stable.

Achievable Performance of $\Sigma(\mathbf{P},\mathbf{K})$

Let P be given and satisfy (P).

- $\begin{array}{l} \mathbf{H}_{\boldsymbol{y},\boldsymbol{z}^{\boldsymbol{y}}} : &= \{ \ \boldsymbol{H}_{\boldsymbol{y},\boldsymbol{z}^{\boldsymbol{y}}} : \text{ for the given P, there exists a K satisfying} \\ & (K) \text{ such that } \Sigma(\mathbf{P},\mathbf{K}) \text{ is H-stable with } \boldsymbol{H}_{\boldsymbol{y},\boldsymbol{z}^{\boldsymbol{y}}} \text{ diagonal} \\ & \text{ and nonsingular } \} \end{array}$
- $\begin{array}{l} \mathbf{H}_{\boldsymbol{y},\boldsymbol{g}\boldsymbol{d}} \colon = \{ \ H_{\boldsymbol{y},\boldsymbol{g}\boldsymbol{d}} \colon \text{ for the given P, there exists a K satisfying} \\ (K) \text{ such that } \Sigma(P,K) \text{ is H-stable with } H_{\boldsymbol{y},\boldsymbol{g}\boldsymbol{v}} \text{ diagonal} \\ \text{ and nonsingular.} \end{array}$

Theorem: Consider $\Sigma(P, K)$ of Fig. 1: Let P and K satisfy (P) and (K). Let $P^m = D_{pl}^{-1} N_{pl}^m$ be a l.c.f. of P^m . Let Δ_L and Δ_R be defined by (2) and (4). then

i) the map $H_{\nu} \in \mathbf{H}^{n \times n}$ is an achievable diagonal, nonsingular 1/0 map of the H-stable $\Sigma(\mathbf{P}, \mathbf{K})$ if and only if

$$H_{\boldsymbol{v}} \in \mathbf{H}_{\boldsymbol{y},\boldsymbol{g}^{\boldsymbol{v}}}(P) = \{\Delta_L \Delta_R \, Q_{\boldsymbol{d}} : Q_{\boldsymbol{d}} \in \mathbf{H}^{n \times n}, Q_{\boldsymbol{d}} \\ \text{ is diagonal, nonsingular.} \}$$
(7)

ii) the map $H_d \in \mathbf{H}^{n \times n}$ is an achievable D/O map of the H-stable $\Sigma(\mathbf{P}, \mathbf{K})$ if and only if

$$H_{d} = \mathbf{H}_{ygd}(P)$$

$$= \{N_{pr}^{o}[I - (U_{pr}^{m} + RD_{pl})N_{pr}^{m}]$$

$$= N_{pr}^{o}(V_{pr}^{m} - RN_{pl}^{m})D_{pr} : R \in \mathbf{H}^{n \times n}$$
s.t. det $(V_{pr}^{m} - RN_{pl}^{m}) \in \mathbf{I}.\}$
(8)

and
$$U_{pr}^{m}$$
, $V_{pr}^{m} \in \mathbb{H}^{n \times n}$ are such that $U_{pr}^{m} N_{pr}^{m} + V_{pr}^{m} D_{pr} = I$.

Comment: Diagonalizing the 1/0 map is achieved by choosing $N_{\pi l}$ ($= N_{pr}^o \Delta_R Q_d \in \mathbf{H}^{n \times n}$) and this choice is independent of that of $D_{cl}(=V_{pr}^m - RN_{pl}^m)$ and $N_{fl}(=U_{pr}^m + RD_{pl})$: thus this is a two-degrees-of-freedom design [Hor. 1]. These parameters specify a K that stabilizes and decouples P (with Q_d and R as above).

Example: We focus our attention on the diagonal 1/0 map of $\Sigma(P,K)$ and calculate only $N_{\pi l}$. Let $H := R(s, e^{-\tau s})$ = the entire ring of *proper rational* functions analytic in \mathbb{C}_+ with coefficients in $\mathbb{R}[e^{-\tau s}]$. P^o is strictly proper, is not H-stable and has a simple zero at s = 3: $P^o(s, e^{-\tau s}) =$

$$\frac{|\frac{e^{-s}}{s-1}|}{|\frac{e^{-s}}{s+1}|} = N_{pr}^{o} D_{pr}^{-1} = \begin{bmatrix} \frac{e^{-s}}{s+2} & \frac{s-1}{(s+1)^2} \\ \frac{(s-1)e^{-2s}}{(s+1)(s+2)} & \frac{(s-2)e^{-s}}{(s+1)^2} \end{bmatrix}$$

$$\operatorname{diag}\left[\frac{s-1}{s+2}, \frac{(s-1)(s-2)}{(s+1)^{2-1}}\right]^{-1} \operatorname{Then} \Delta_{L} = 1$$

diag
$$\left[\frac{1}{s+2r}, \frac{e}{s+1}\right]$$
 and from $(\widetilde{N}_{pr}^{o})^{-1} (\not\in \mathbf{H}^{n \times n})$ we obtain
 $\Delta_R = \operatorname{diag}\left[\frac{(s-3)e^{-s}}{(s+1)^2}, \frac{(s-3)e^{-s}}{(s+1)^2}\right]$ and

$$N_{\pi l} = (\tilde{N}_{pr}^{o})^{-1} \Delta_R Q_d = \begin{bmatrix} \frac{s-2}{s+1} & \frac{-(s-1)(s+2)}{(s+1)^2} \\ \frac{-(s-1)e^{-s}}{s+2} & e^{-s} \end{bmatrix} Q_d$$

So, $H_{y_{gv}} = \Delta_L \Delta_R Q_d = \text{diag}[\frac{(s-3)e^{-s}}{(s+2)(s+1)^2}, \frac{(s-3)e^{-2s}}{(s+1)^3}] \cdot Q_d$, $Q_d \in H^{n \times n}$. Note that each diagonal entry of Δ_R is equal to det \widetilde{N}_{pr}^o ; in fact in the 2x2 case, each diagonal entry of Δ_R is always equal to det N_{pr}^o (modulo a unit factor). Consequently, $H_{y_{gv}}$ has a zero of multiplicity two at s=3 and may have other C_+ -zeros due to Q_d .

Acknowledgement

Research sponsored by the National Science Foundation Grant ECS-8119763.

References

- [Bou. 1] N. Bourbaki, Commutative Algebra, Addison-Wesley 1970.
- [Des. 1] C. A. Desoer and C. L. Gustafson, *IEEE Trans. AC*, vol. AC-29, Nov. 1984, pp. 909-917.
- [Des. 2] C. A. Descer and A. N. Gündes, UCB ERL Memo M85/9.
- [Dat. 1] K. B. Datta and M. L. J. Hautus, SIAM J. Control and Optimization, vol. 22, no. 1, Jan. 1984, pp. 28-39.
- [Hor. 1] I. M. Horowitz, Synthesis of Feedback Systems, Academic Press 1963.
- [Lang 1] S. Lang, Algebra, Addison-Wesley 1971.
- [Vid. 1] M. Vidyasagar, H. Schneider, and B. Francis, *IEEE Trans. AC*, vol. AC-27, Aug. 1982, pp. 880-895.