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Let 

We can get the closed-loop system in the form of (1) with 2 
input and 3 output. If we choose an identity weight matrix W 
and the given matrix Q 

Q = [; lo:] 
the bound on the L, norm is 

C [ Y ]  tr QW-’ = 12.3327. 

c 

Fig. 1. The system S(P,  C) .  
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Using the continuous time algorithm given, the optimal is Absfract-This note studies the problem of decoupling in the linear, 
time invariant, multiinput-multioutput unity-feedback system. A param- 
eterization of all stabilizing decoupling controllers and all achievable 
decoupled closed-loop transfer functions is obtained for full-row rank 
plants which do not have any coinciding poles and zeros in the undesir- 
able region of the complex plane. 

7.8153 ’ [ 67%; 125.1410] ’ 

Using W, the bound is 

C[Y] tr QTk’ = 3.1112 I. INTRODUCTION 
an improvement of a factor of four. Discretizing the closed-loop 
system with sampling time T = 0.1 we can get the discrete 
closed-loop system in the form of (36). With the same Q matrix, 
if we choose identity weight matrix wd, the bound on the L, 
norm is 

C [ Y ]  tr QW;’ = 1.2323. 

If we use the weight matrix 

7.8125 
w d  [ 76%: i 2 m i o ]  

obtained by the discrete algorithm, the bound becomes 

C [ Y ]  tr e@;’ = 0.3109 
a factor of four improvement. 0 

For this example, the initial weight matrix is identity. With the 
the algorithm converges in seven itera- 

111. CONCLUSION 

The optimal L, bounds are given for disturbance rejection. 
The algorithm which produces these bounds is iterative and 
several examples show that the algorithm converges very quickly. 
These bounds are explicit in the output covariance matrix and 
may have a use in synthesizing convariance controllers to achieve 
a specified degree of disturbance rejection. This is an interesting 
problem for future work. 

error tolerance 
tions. 
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Notation: we use := for “defined as,” i.e., a := b (or b = : a) 
Of 

complex numbers, where % is and symmetric about the 
real axis, +M E % and C \ Z is nonempty. For continuous-time 
systems, z 3 C, := {S E Cl%e(s) 2 0) and for discrete-time 
systems, 1). ht 9%, [w,(~), [w,,(~), and [w (~ )  
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be the ring of proper rational functions which have no poles in 
Z, the ring of proper rational functions, the set of strictly proper 
rational functions, and the field of rational functions of s (with 
real coefficients). The group of units of 9% is Y a n d  the set of 
nonstrictly proper elements of 9% is 3=sg\ R,,(s). The set 
of matrices whose entries are in 9% is denoted A 
matrix M is called 9vstable iff M  EM(^%); M  EM(^^) is 
9&unimodular iff det M E S, where det M denotes the deter- 
minant of the matrix M .  If p , q  EA?%, then p - q iff p = mq 
for some m E 5 The identity matrix of size n is denoted I,,. The 
diagonal matrix, whose entries are a, ,  a2; .* ,  a ,  is denoted 
diag[a, a,]. 

11. MAIN RESULTS 

A. The System S(P, C) 
Consider the LTI, MIMO feedback system S(P, C )  shown in 

Fig. 1, where P: ep - y, and C: e,  - y ,  represent the plant and 
the controller transfer functions. We assume that: 1) the plant 
and the controller have no hidden modes associated with eigen- 
values of Z; 2) P and C are proper ( P  E Rp(s)noxn' and 
C E I W p ( ~ ) n ' X n o ) ;  and 3) the system S(P,C) is well posed, i.e., 

y, 
(Infl + P c ) - '  EM(R,(S)). 

The closed loop input-output transfer function H,,: U, 
of S(P,  C )  is 

Hpc = PH,, = PC(I, ,  + PC)- '  

where H,,: U, - y ,  is given by H,, = CCI,,, + Pc)-'. 
Definition 2.1.1: The system S(P, C )  is said to be 9&able iff 

H,,,,: [I;] -  EM(^%); S ( P ,  C )  is said to be decoupled iff 
it is 9&stable and the input-output transfer function Hpc: U, - y, is diagonal and nonsingular. 

The set f i P ) : =  {ClC E Rp(s)"tx"fl and S(P,C) is 9%-sta- 
ble} is called the set of all 9vstabilizing controllers for P. The set 
d P )  := {H,,: U, - yplC ~ f i P ) )  is called the set of all achiev- 
able input-output transfer functions from the input U, to the 
output yp. The set P O ( P ) : =  {ClC ~ 9 l P )  and H,, is diagonal 
and nonsingular) is called the set of all decoupling controllers for 
P. The set .dO(P):= {H,,IC EP&,(P)} is called the set of all 
achieuable decoupled input-output transferfunctions Hpc from the 

0 
To achieve decoupling in the system S(P,C), the plant's 

transfer function P must be full (normal) row rank (Lemma 
2.1.2). If P E has full-row rank (i.e., rank P = no), 
then a sufficient condition for the existence of decoupling con- 
trollers in the system S(P ,C)  is that the full-row rank plant P 
does not have any %-poles coinciding with Z-zeros. In Section 
11-B, we parameterize the class of all decoupling controllers 
9&(P) and all achievable decoupled transfer functions sf'( P )  
for plants which satisfy this sufficient condition. Coprime factor- 
izations of the plant derived from its Smith-McMillan form are 
used in this parameterization; we discuss these briefly in Fact 
2.1.3. 

Lemma 2.1.2 (Necessary Condition for Decoupling): Let P E 
Rp(s)nox"l. If the system S(P,  C )  is decoupled, then rank P = 
no I n,. 

Prooj If S(P, C )  is decoupled, then the no x no transfer 
function Hpc is nonsingular, where Hpc = PH,,, therefore, 

input U, to the output y,. 

rank Hpc = n o  = rank(PH,,) I rank P I min{n,,n,}. 

Consequently, rank P = no, moreover, n,  I n,. 0 

Facts 2.1.3 [SI, [31: Let P E Rp(s)nox"t and let rank P = no. 

i )  Smith-McMillan Form of P: There exist sVunimodular 
Under these assumptions, the following holds: 

matrices L E ~ Z ' " ~  and R ~9;'"' such that 

P = L [ A  i Onox(nr-no)Idiag [TI ~ ( n r - n o ) ] ~  

= LW-'[A j O n o x ( n r - n o ) l R  (2.1) 

A := diag [ A, ... A,,,,], W := diag [ +1 t,hnfl]. (2.2) 

For j = l ; . . ,n , , ,  AI ~9%, $ E g g ,  A, divides A,,,, and I , $ ~ ~  

divides $. The pair (A,, I,$) is coprime, equivalently, there emst 
U] E 9%, U, E 9% such that 

uIAl + U,$ = 1. (2.3) 

The factors A, and $ ~ 9 %  are called the (numerator and 
denominator) invariant factors. The denominator invariant fac- 
tors I),;.., I,!I~~ €3 if and only if P EM(R,(s)) .  By assumption, 
rank P = no, therefore, A,,, # 0. 

ii) Coprime Factorizations of P and Bezout Identities: For j = 
l;.., no, let U] ~ 9 %  and 

U : =  diag[ul ... U,,] V:= diag[u, * . *  U,,,,] (2.4) 

E 9% satisfy (2.3). Let 

therefore, UA + VW = AU + WV = I,,,,. Let 

N p : =  L [ A  j Onox(nr-no)]  D p : =  R-'diag[W 

(2.5) 
- 8, := WL-'  Np := [ A  j Onox(n,-no)]R (2.6) 

V, := diag [ V  I(ni-nfl)]R, pp := LV. (2.7) 

Then- P NpDpl is a right-coprime factorization (rcf) and 
P = DF1Np is a left-coprjme factorization (lcf) of P ,  i.e., Np E 
~Z""'7 D,  ~ 9 g ~ ~ ~ ,  Np E S ? ~ ~ " ~ ,  D,  E~F'"', det D, - 
det 8, €3 and 

V, E ~ F X ~ J ,  U, E ~ F X ~ O ,  V, E ~ F ~ ~ O ,  U, E B $ ~ ~ ~  are given 
by (2.7). 

iii) All 9&tabilizing Controllers and All Achievable 
Input-Output Transfer Functions: The set f i P )  of all Svstabi- 
lizing controllers is 

,. - - 1  
c = (v, - QN,) (U, + Q8,) 

Q €9FXnf l ,  det ( f p  - N p Q )  - det (V, - QH,) 

- det ( V  - A Q )  €31 . (2-9) 
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The set d P )  of all achievable input-output transfer functions 
is 

A?( P )  = Hpc = Np( U, + Qbp) = I,, - ( vp - N p Q ) b p  i 
= LA(U + Q'Y)L-' = I,, - L(V - A Q ) q L - ' [  

Q ~ 9 ~ ~ " ~ , d e t ( ~ , - N , Q )  -det(V,-Qv,) 

- det (V - A Q )  €3) . (2.10) 

If P is stricqy proper, then det (V, - QG,) - det ( f p  - N,Q) 
€3 for all Q  EA(^%), equivalently, det (V - A Q )  €3 for all 

iv) %-poles and %-zeros of P: Let pa E %, then pa is a %-pole 
of P if and only if t,bl(po) = 0. Let z ,  E %, then z ,  is a %-zero 
of P if and only if A,,(z,) = 0. Therefore, the plant P does not 
have any %-poles coinciding with %-zeros if and only if (A,,, &) 
is a coprime pair or equivalently, there exist a €SI, /3 
such that for all q ~ 9 %  

Q ~ d ( 9 ~ ) .  

a h n o  + Plcll = (a + 4+l)A,, + ( P  - qArIo)+1 = 1. (2.11) 
U )  Bezout Identities When %-Poles of P Do Not Coincide with its 

%-Zeros: Let (A,,, &) be a coprime pair (equivalently, (2.11) 
holds for some CY ~ 9 % ~  P ~9%). For j = l;.., n,, let 

(u j ,? )  = ((CY + q @ l ) A n o / A j ,  ( P - q 4 z o ) # l / # j )  (2.12) 
the pair (U,, 9) satisfies (2.3) for all q E 9%. The matrices U, V 
defined in (2.4) become 

U = diag [ ( a  + qlCr1)~,, /~1 ... (a + S+l)l 

V =  diag[(P - q A , o ) * . . ( P  - q A n o ) W k o I  

= (a + q+l)An0A-' (2.13) 

= ( P  - qAfl,)+lq-'. (2.14) 

vi) All 9&tabilizing Controllers and All Achievable 
Input-Output Transfer Functions When %-Poles of P Do Not 
Coincide with its %-Zeros: Let (A,,, +hl) be a coprime pair. Using 
U,V defined by (2.13) and (2.14) in (2.9) and (2.10), the sets 
f i  P )  and d P )  become 

(2.15) 

& ( P )  = { H ~ ~  = L A ( ~ A , , A - ~  + Q * ) L - ~  

= ~A,,,I,,, + L A Q ~ L - '  

= (1 - ~ Q ~ ) Z , ,  + L A Q ~ L - ~ ~ Q  E ~ F ~ ~ ~ ,  
det ( Phi,,, - A Q T )  €3). (2.16) 

If P is strictly proper, then det( P+lIno - A Q q )  €3 for all 
Q ~-&9%). 0 

B. Parameterization of Decoupling Controllers 

In this section, we assume that rank P = no and that P does 
not have any %-poles coinciding with %-zeros. Under these 

assumptions, it is possible to find decoupling controllers. In 
Theorem 2.2.4, we parameterize: 1) the class of all decoupling 
controllers for P ;  and 2) the class of all achievable decoupled 
input-output transfer functions Hpc. 

Lemma 2.2.1: Let A ~9'2'''' and let det A # 0. Let n i j / d i j  
E W(s) denote the ( i ,  j)-entry of A- ' ,  where the pair ( n i j ,  d i j )  is 
coprime, n i j ,  d i j  €SI, d i j  # 0. For j = l ; ~ ~ , n , ,  let ti, ~9~ be 
a least-common multiple (lcrn) of all of the denominators 
( d l j , d 2 , ; . . , d n o . )  in the j th column of A-'  and define A:= 
diag[d, ... ti,,i. For j = l;.-,n,, let 0, ~ 9 %  be an lcm of all of 
the denominators (djl, d j 2 ; - . ,  d,,,) in the j th row of A-'  and 
define 0 := diag [ O1 ... On,]. Under these assumptions: 

i) A - W, E 97 no for some diagonal, nonsingular, 9&a-  
ble matrix W, if and only if W, = AQ,, where QR ES'F~"~  is 
diagonal, nonsingular; 

ii) W, A -  ' E 97 for some diagonal, nonsingular, SI- 
stable matrix W, if and only if W, = QLO, where Q ,  ~ 9 2 ~ " ~  
is diagonal, nonsingular. 

Proot We only prove part i>; the proof of ii) is similar. 
Let W, = diag[w, w,,] be nonsingular and S5stable. 

Then A-'W, is sgstable if and only if for each j = l;.-,n,, 
n. .d- 'w,  IJ €9 I , i = l;..,n,. Since the pair ( n i j , d i j )  is coprime, 
n i j ~ i j ' w j  ~9~ for some w, ~ 9 %  if and only if d,i'w, E 9 % ,  
equivalently, w, is a multiple of all d,,, i = l;.., n ,  [ti]. There- 

0 
Lemma 2.2.2: Let P E Rp(s)"oxn' and let rank P = no.  Con- 

sider the Smith-McMillan form (2.1) of P. Let tiLj ~ 9 %  be a 
greatest-common divisor (gcd) of the entries in the j th row of 
L A  and define 

A ,  := diag [ ti,, ... t i , , , ] ,  $:= A i ' L A .  (2.17) 

fore, w, = Sjqj for some nonzero q, ~ 9 ~ .  

Let n i j / d i j  E W(s) denote the ( i ,  j )  entry of $-' = A-'L- 'A,, 
where the pair ( n i j ,  d i j )  is coprime, ni j ,  d i j  €SI, d i j  # 0. Let 
tiRj be an lcm ofhall of the denominators (dlj, d2 , ;** ,  d,,,) 
in the jth column of N-' and define 

A ,  := diag [ ti,, *.. ti,,,]. (2.18) 

&et e,, ~ 9 %  be a gcd of the entries in the j th column of 
D, = q L - '  and define 

@,:= diag[O,, ... O R , , ] ,  D : =  D,@,' = qL-'@,' .  (2.19) 

Let x i j / y i j  E W,(s) denote the ( i ,  j)-entry of 8-l = @,L'€-' ,  
where the pair (xi,, yij) is coprime, xi, ,  yij E g g ,  y i j  E Y .  Let 
e,, €3 be an lcAm of all of the denominators (yjl, y j 2 ; . - ,  yjnO) in 
the j th row of D-' and define 

A -  

0, := diag [ e,, ... O,,,]. (2.20) 

With these definitions, if P does not have any %-poles coincid- 
ing with %-zeros, then (ALAR,@,@,) is right coprime and 

0 

Comments: The entries tiLj ~ 9 %  of the diagonal matrix A L  
in (2.17) have the same %-zeros as those common to every entry 
in the j th row of LA.  So AL extracts those %-zeros of P which 
appear in every entry of some row of the numerator Np = L [ A  i 
O n o x ( n i - n o ) ] .  Similarly, 0, extracts those %-poles of P which 
appear in every entry of some column of the denominator 
D, = q,!-'. Since ti,, # 0 and e,, # 0, the matrices A, and 
0, are nonsingFlar. 

The matrix N-' = A-'L-'AL is not necessyily sI-stable or 
may not even be proper. But postmultiplying N-' by the Piago- 
nal matrix A ,  makes the product 9-s tab le .  Similarly, D-' = 

(@,OR, A L A R )  is left coprime. 
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ORD,' = O R L W '  is not necessarily 9%-stable; it, has to be 
proper since fi;' is proper. But premultiplying D - '  by the 
diagonal matrix 0, makes the product S%-stable. Since aR1 # 0 
and OLj # 0, the diagonal matrices A R  and 0, are also nonsin- 
gular. 

If an rcf NpD;' other than the one in (2.5) or an lcf D p ' k p  
other than the one in (2.6) are used for the plant P,  then the 
diagonal matrices obtained following the same procedure as 
described in Lemma 2.2.2 to obtain the matrices A,, AR, OR, 0, 
would have diagonal entries differing only by units in 9% from 
those of the matrices defined by (2.17)-(2.20). It can be shown 
easily that the entries of the diagonal matrices A L ,  A,, OR, 0, 

0 
Proof of Lemma 2.2.2: Since A, divides A,, for j = l;.., n ,  

- 1, the matrix K ' A , ,  is 9%-stable. Bx(2.17), I'?'(A~~A,,) = 
A-'L-'A,,  EA(^%), where A i  'Ano = Nk-'L-'A,,, E A ( 9 % )  is 
diagonal, nonsingular. By Lemma 2.2.14) N-'(AL 'A,,) E A ( S v )  
if and only if (ALIA,,) = ARQR for some diagonal, nonsingular 
QR EAS~), i.e., 

are unique within unit multiples in S[4].  

Similarly, Vy-$b1 is Zv-stable. By (2.191, ( t , ! ~ ~ @ R ' ) f i - '  = 
(CI,LW1 CA(&?%), where $ lOi '  = ~ , + L v - ' b  E&(A'%) is di- 
agonal, nonsingular. BY Lemma 2.2.1-ii) (+l~il)fi-l EA(S%) 
if and only if ') = e,@, for some diagonal, nonsingular 
Q, EA(S%), i.e., 

By assumption, P does not have %-poles coinciding with Z-zeros, 
equivalently, (A,,, is coprime, i.e., (2.11) holds for some 
a, /3 ~9%. By (2.21), (2.22), and (2.11) 

where all of the matrices in (2.23) are diagonal, scstable and 
hence, (ALAR, @,OR) is right coprime and (@,OR, ALAR) is left 

Corollary 2.2.3: Under the assumption of Lemma 2.2.2, if P 
does notA haveA any %-poles coinciding with %-zeros, then the 
matrix N-'WL-'  is Sgstable for some diagonal, nonsingular, 
sustable matrix W if and only if W = ARQDO, for some 
diagonal, nonsingular, Sgstable matrix QD. 

Pro05 (e) By definition of AR, ??'AR E.&(.~Y~~), by defi- 
nition of O,, O L D p '  EM(Z%). Therefore, if W = ARQDO, for 
some diagonal, nonsingular, Sgstable matrix QD, then 
A-' W Z -  ' =,A- 'hRQ,O, 6 ' E A( sr). 
(2) If N-'WZ-'  =: M  EA(^%) then k ' W  = M b  E 

.&(.5Yz> for some diagonal, nonsingular W E & ( 9 % ) .  By Lemma 
2.2.1-i) W,= ARQp for some diagonal, nonsingular QR E A ( S % ) .  
Since WD-' = NM EA(S%), by Lemma 2.2.14) W = Q,OL 
for some diagonal, nonsingular QL EA&%'%). Therefore, W = 

ARQR = e,@,. By Lemma 2.2.2, (0,, AR) is left coprime, there- 
fore, QR = h,'Q,O, = Q,A,'O, EA(S%) if and only if 
QLA,'  EA(^%) [8], [3]. Hence, W = Q,O, = AR(ARIQL)OL 
= ARQDO,, where Q, := AR'Q,  EA(^%) is diagonal and 
nonsingular. 0 

Theorem 2,2.4 011 Decoupling Controllers, all Achievable De- 
coupled Maps): Let P E R p ( ~ ) " ' X n o  and let rank P = n,. Let P 
have no %-poles coinciding with %-zeros. Let A,, A,, OR, 0, be 
defined by (2.17142.20). Under these assumptions: 

coprime. 0 

i) the set d9( P )  of all decoupled input-output transfer func- 
tions Hpc is given by 

d g ( P )  Hpc ~ A , , , I , ,  + ALARQDOLORI i 
QD = diag [qi ... q,oI 

j = l;..,n,} (2.24) 

ii) the set Y $ P )  of all decoupling controllers for P is given 
by 

(2.25) 

Comments: In (2.24) and (2.23, for j = I,..., no ,  q, E 9 %  sat- 
isfies 

(2.26) 

Condition (2.26) guarantees that the decoupling controllers are 
proper. If P is strictly proper, (2.26) is satisfied for any q, E 9%. 

To ensure the nonsingularity of the achieved decoupled trans- 
fer functions Hpc = aA,,,In0 + ALARQ,O,OR = (1 - /W1)In, 
+ ALARQDOLOR, q, ~ 9 %  must also satisfy 

(2.27) 

However, as shown in the proof of Lemma 2.2.2, (2.22) implies 
that (e,, eRl) is not coprime with $, except when GI = 1 (equiv- 
alently, P is Sustable). Therefore, (2.27) is automatically satis- 
fied for all q, ~ 9 %  except when P  EM(^%), in which case, the 
additional condition that q, # 0 should be included in the pa- 

0 
is coprime, 

hence, by Fact 2.1.3-vi) H E d P )  is diagonal if, and only if 
Hpc = ah,,I,, + LhQTLPc' = aA,,,I,,, + ALNQDOR is diag- 
onal for some Q EA(S%). But a A n O I , ,  is diagonal and A, and 
0, are diagonalnand nonsingular, therefore, Hpc is diagonal if 
and oqly if P?QD =: W is diagonal for some Q E A ( 9 % )  [i.e., 
Q = N-'W&' EA(S%) for some diagonal matrk W E  
~ f ( 9 ~ ) ] .  By Corollary 2.2.3, W = ARQDOL, hence, Hpc is diago- 
nal if and only if Q is of the form 

Q = A-1~R~DeL6-1  (2.28) 

for some diagonal Q,  EA(^%). With QD =:diag[q, ... q,,], 
HPE = aA,,I,, + A,ARQ,O,OR is nonsingular if and only if 

(2.22), for J = l;..,n,, there exist Q,, E.%% such that JI1 = 

Q,,e,,ORl, therefore, if $, # 1 [equivalently, P then 
Hpc is nonsingular for all q, E A ( 9 % ) .  If = 1 [equivalently, 
P ~ & ( 9 % ) ] ,  then Hpc is nonsingular if and only if q, # 0 (see 
Corollary 2.2.5). 

- P*1- 1 - -aAfl ,  

" # ' R I  'I.] ' R I  ' 

rameterizations as shown in Corollary 2.2.5 below. 
Proof of Theorem 2.2.4: By assumption, (A,,, 

ahno + 6L,6RjqjeL.jeR] = - P*I + 6L,6R1q]eL1eRl # By 
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The parameterization (2.25) is obtained from (2.15) by letting 
Q be as in (2.28). Since L is S?uunimodular, in the parameteri- 
zation (2.151, det ( p+lZ,,O - A Q T )  E 9 if and only if 
det(L( p+,,Z,, - AQTb5-l)  = det(Z,,, - I f p c )  = det( P+ll,,, - 

E 4; equivalently ( pthI - 6 ~ ~ 6 ~ , q ~ e ~ , 6 ~ , )  
(m) # 0. 0 

Corollary 2.2.5 (Decoupling Controllers for sgStable Plants): 
Let P ~9;’”~ and let rank P = no.  Then the sets d g ( P )  and 
Y 9 ( P )  become 

HPc = ALARQDIQD diag[ql .*. qflOI 

[5] J. Hammer and P. P. Khargonekar, “Decoupling of linear systems 
by dynamic output feedback,” Math. Syst. Theory, vol. 17, no. 2, pp. 

[6] C. A. Lin and T. F. Hsieh, “Decoupling controller design for linear 
multivariable plants,” IEEE Trans. Automat. Contr., vol. 36, no. 4, 
pp. 485-489, 1991. 

[7] A. I. G. Vardulakis, “Internal stabilization and decoupling in 
linear multivariable systems by unity output feedback compensa- 
tion,” IEEE Trans. Automat. Contr., vol. AC-32, no. 8, pp. 735-739, 
1987. 

[8] M. Vidyasagar, Control System Synthesis: A Factorization Approach. 
Cambridge, MA: M.I.T. Press, 1985. 

135-157, 1984. 
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qLI €SZ\ (01, q,(w) # -(m), j = 1;-, n ,  
~ L J  ~ R J  

(2.29) 

(2.30) 
1 

qj(m) + - 
aLjaRj 

Proog When P is sgstable, without loss of generality, 
T = I,,, an$ +l = 1, i! (2.11k a = 0 and p = 1. Then 0, = I,,, 
= 0, and D = L = D,. The parameterizationsj2.29) and (2.30) 
follow by substituting these values of O,, OR, D into (2.24) and 
(2.25), where the additional constraint that qJ # 0 is imposed to 

0 

111. CONCLUSIONS 
For LTI, MIMO, full-row rank plants which do not have any 

undesirable poles coinciding with zeros, we parameterized the 
class of all controllers such that the unity-feedback system is 
(internally) stable and the closed-loop transfer function from the 
command-input U, to the plant-output y p  is diagonal and non- 
singular. If the plant had undesirable poles coinciding with 
zeros, this class of controllers could not be used, in that case, 
two-degrees-of-freedom stabilizing decoupling controllers would 
be more useful since any full-row rank plant (which does not 
have any undesirable hidden modes) can be decoupled using 
two-parameter controllers [l], [3]. 

ensure that HPE is nonsingular. 
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Brad Lehman and Joseph Bentsman 

Abslract-This note shows that vibrational stabilization can be effec- 
tive for linear systems with large bounded delays. Theorems are given 
that define the procedures for the search of the stabilizing vibrations. 
Robust oscillatory stabilization insensitive to the delay size is also shown 
to take place for some classes of systems. 

I. INTRODUCTION 
A number of practically important systems, such as chemical 

reactors [l]  and combustion systems [2] are best described by 
including time delays in their states. Feedback stabilization of 
such systems [3], [4] is usually not an easy task, especially if the 
delays are significant and there are restrictions on sensing and 
actuation. In recent papers [5], [6] an open-loop vibrational 
control technique introduced in [7] was shown to be effective for 
a class of systems with small delays in the states. While the 
results of [5] and [6] demonstrated the viability of the technique 
as a possible alternative to feedback for time lag systems as well 
as provided the tools for the synthesis of fast periodic feedback 
for this class of systems, the restriction that the delay size be 
small limited their practical utility. The purpose of the present 
note is to remove this restriction on the delay size. This is not a 
trivial task and it partially motivated development of new averag- 
ing theorems for differential delay equations [SI. The techniques 
presented can also be used for the synthesis of fast periodic 
feedback controllers for systems with large bounded time lags. 
The present note gives the conditions for the existence of the 
stabilizing vibrations for a class of linear time lag systems with 
arbitrary fixed bounded delays and presents the procedure for 
the search of the parameters of the stabilizing vibrations (Sec- 
tion 11). The calculation formula for the choice of the parame- 
ters of the stabilizing vibrations, and the conditions for the 
vibrational stabilization to be insensitive to the delay size are 
also given for specific classes of systems (Section III). The results 
are supported by the numerical examples (Section IV). Conclu- 
sions are given in Section V. 
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