TP-15 - 4:10

Parametrization of All Decoupling Compensators and All Achievable Diagonal Maps for the Unity-feedback System

A. Nazli Gündeş

Department of Electrical Engineering and Computer Science University of California, Davis, CA 95616

ABSTRACT

This paper gives a parametrization of all stabilizing compensators which achieve decoupling in the unity-feedback system. It is assumed that the plant transfer-function matrix is full rowrank and does not have unstable poles coinciding with zeros.

1. INTRODUCTION

In the linear, time-invariant, (LTI) multi-input multi-output (MIMO) unity-feedback system, decoupling is achieved if the closed-loop transfer-function H_{pc} from the command-input to the plant-output is diagonalized by using a stabilizing compensator. In this paper we parametrize all decoupling compensators and all achievable diagonal, nonsingular maps when the full row-rank plant does not have coinciding undesirable poles and zeros.

Notation: \mathcal{U} is a subset of \mathbb{C} (the field of complex numbers) such that \mathcal{U} is closed and symmetric about the real axis, $\pm \infty \in \mathcal{U}$ and $\mathbb{C} \setminus \mathcal{U}$ is nonempty. $\mathcal{R}_{\mathcal{U}}$ is the ring of proper rational functions of s (with real coefficients) which have no poles in \mathcal{U} ; $\mathbb{R}_{p}(s)$ is the ring of proper rational functions, $\mathbb{R}_{sp}(s)$ is the set of strictly proper rational functions and $\mathbb{R}(s)$ is the field of rational functions of s. \mathcal{J} is the group of units of $\mathcal{R}_{\mathcal{U}}$ and $\mathcal{I} = \mathcal{R}_{\mathcal{U}} \setminus \mathbb{R}_{sp}(s)$. The set of matrices whose entries are in $\mathcal{R}_{\mathcal{U}}$ is denoted $\mathcal{M}(\mathcal{R}_{\mathcal{U}})$. A matrix $M \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular iff det $M \in \mathcal{J}$. The identity maps of size n_i and n_o are denoted I_{ni} and I_{no} ; n_i and n_o denote the number of inputs and outpus.

2. SYSTEM DESRIPTION AND ANALYSIS

Consider the LTI, MIMO feedback system S(P, C) in Figure 1, where $P: e_p \mapsto y_p$ and $C: e_c \mapsto y_c$ represent the plant and the compensator transfer-functions. The closed-loop input-

output map o

f S(P, C) is denoted
$$H_{yu}: \begin{bmatrix} u_c \\ u_p \end{bmatrix} \mapsto \begin{bmatrix} y_c \\ y_p \end{bmatrix}$$
.

2.1 Assumptions: i) the plant $P \in \mathbb{R}_{p}(s)^{ni \times ni}$; ii) the compensator $C \in \mathbb{R}_{p}(s)^{ni \times no}$; iii) the system S(P, C) is well-posed; equivalently, $H_{yu} \in \mathcal{M}(\mathbb{R}_{p}(s))$; iv) P and C have no hidden-modes associated with eigenvalues in \mathcal{U} . \Box

The closed-loop input-output map is given by
$$\begin{split} H_{yu} &= \begin{bmatrix} H_{cc} & -H_{cc} P \\ PH_{cc} & (I_{no} - PH_{cc})P \end{bmatrix}, \text{ where } H_{cc} : u_c \mapsto y_c \text{ is } \\ H_{cc} &= C \left(I_{no} + P C \right)^{-1} \text{ and the map } H_{pc} : u_c \mapsto y_p \text{ that we } \\ \text{wish to decouple is } H_{pc} &= PH_{cc} = P C \left(I_{no} + P C \right)^{-1}. \end{split}$$

Let (N_P, D_P) be a right-coprime-fraction representation (rcfr) and $(\widetilde{D}_P, \widetilde{N}_P)$ be a left-coprime-fraction representation (lcfr) of $P \in \mathbb{R}_P(s)^{n \otimes n i}$, where $N_P \in \mathcal{R}_U^{n \otimes n i}$, $D_P \in \mathcal{R}_U^{n i \times n i}$, $\widetilde{N}_P \in \mathcal{R}_U^{n \otimes n i}$, $\widetilde{D}_P \in \mathcal{R}_U^{n \otimes n \otimes n o}$, $P = N_P D_P^{-1} = \widetilde{D}_P^{-1} \widetilde{N}_P$; det $D_P \in \mathcal{I}$, (det $\widetilde{D}_P \in \mathcal{I}$) if and only if $P \in \mathcal{M}(\mathbb{R}_P(s))$.

2.2. Definitions: a) S(P, C) is said to be $\mathcal{R}_{\mathcal{U}}$ -stable iff $H_{yu} \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$. b) S(P, C) is said to be decoupled iff S(P, C) is $\mathcal{R}_{\mathcal{U}}$ -stable and the map $H_{pc} : u_c \mapsto y_p$ is diagonal and non-singular. c) C is said to be an $\mathcal{R}_{\mathcal{U}}$ -stabilizing compensator for P (or $C \ \mathcal{R}_{\mathcal{U}}$ -stabilizes P) iff $C \in \mathbb{R}_p(s)^{ni \times no}$ and S(P, C) is $\mathcal{R}_{\mathcal{U}}$ -stable.

d) C is said to be a decoupling compensator for P (or C decouples P) iff C is an $\mathcal{R}_{\mathcal{U}}$ -stabilizing compensator and the map H_{pc} : $u_c \mapsto y_p$ is diagonal and nonsingular. e) The set $\mathcal{S}(P) := \{ C \mid C \in \mathbb{R}_p(s)^{ni \times no} \text{ and } S(P, C) \text{ is } \mathcal{R}_{\mathcal{U}}\text{-stabil} \}$ is called the set of all $\mathcal{R}_{\mathcal{U}}$ -stabilizing compensators for P. f) The set $\mathcal{A}(P) := \{ H_{pc} : u_c \mapsto y_p \mid C \in \mathcal{S}(P) \}$ is called the set of all achievable input-ouput maps for S(P, C) from the input u_c to the output y_p . g) The set $\mathcal{S}_{\mathcal{D}}(P) := \{ C \mid C \in \mathcal{S}(P) \text{ and } H_{pc} \text{ is diagonal and nonsingular } \}$ is called the set of all decoupling compensators for P. h) The set $\mathcal{A}_{\mathcal{D}}(P) := \{ H_{pc} \mid C \in \mathcal{S}_{\mathcal{D}}(P) \}$ is called the set of all achievable decoupled input-ouput maps H_{pc} . \Box

2.3. Smith-McMillan form of the Plant: Let $P \in \mathbb{R}_{p}(s)^{ni \times no}$. Let rank $P = n_{o}$. Then there exist $\mathcal{R}_{\mathcal{U}}$ -unimodular matrices $L \in \mathcal{R}_{\mathcal{U}}^{no \times no} \ R \in \mathcal{R}_{\mathcal{U}}^{ni \times ni}$ such that $L^{-1}PR^{-1} = \Lambda \Psi^{-1} = \tilde{\Psi}^{-1}\Lambda$; equivalently, $P = L\Lambda\Psi^{-1}R = L\tilde{\Psi}^{-1}\Lambda R$, where $\tilde{\Lambda} = \operatorname{diag}[\lambda_{1} \dots \lambda_{no}], \ \tilde{\Psi} = \operatorname{diag}[\psi_{1} \dots \psi_{no}], \ \Lambda = \begin{bmatrix} \tilde{\Lambda} & \vdots & 0_{no \times (ni-no)} \end{bmatrix}, \ \Psi = \operatorname{diag}[\tilde{\Psi} \ I_{(ni-no)}]$. Here λ_{j} and $\psi_{j} \in \mathcal{R}_{\mathcal{U}}$ are the invariant-factors of the numerator and denominator matrices, where, for $j = 1, \dots, n_{o}, \lambda_{j}, \psi_{j} \in \mathcal{R}_{\mathcal{U}}$, the pair (λ_{j}, ψ_{j}) is coprime (equivalently, there exist $u_{j} \in \mathcal{R}_{\mathcal{U}}$, the pair (λ_{j}, ψ_{j}) is coprime (equivalently, there exist $u_{j} \in \mathcal{R}_{\mathcal{U}}$, the pair (λ_{j}, ψ_{j}) ; rank $P = n_{o}$ implies that $\lambda_{no} \neq 0$. An refr of P is given by $(N_{P}, D_{P}) = (L\Lambda, R^{-1}\Psi)$ and left of P is given by $(\tilde{D}_{P}, \tilde{N}_{P}) = (\tilde{\Psi}L^{-1}, \Lambda R)$. Let $\tilde{U} := \operatorname{diag}[\tilde{V} \ I_{(ni-no)}]$.

2.4. All $\mathcal{R}_{\mathcal{U}}$ -stabilizing Compensators: The set $\mathcal{S}(P)$ of all $\mathcal{R}_{\mathcal{U}}$ -stabilizing compensators is given by $\mathcal{S}(P) =$

 $\begin{cases} R^{-1}(V-Q\Lambda)^{-1}(U+Q\tilde{\Psi})L^{-1} \mid Q \in \mathcal{R}_{\mathcal{U}}^{ni\times no}, \det(\tilde{V}-\Lambda Q) \in \mathcal{I} \\ \text{Using } C \in \mathcal{S}(P) \text{ in the map } H_{pc} = P \ C \ (I_{no} + P \ C)^{-1}, \\ \text{the set } \mathcal{A}(P) \text{ of all achievable maps is obtained as } \mathcal{A}(P) = \\ \{L\Lambda(U+Q\tilde{\Psi})L^{-1} = I_{no}-L(\tilde{V}-\Lambda Q)\tilde{\Psi}L^{-1} \mid Q \in \mathcal{R}_{\mathcal{U}}^{ni\times no}, \det(\tilde{V}-\Lambda Q) \in \mathcal{I} \\ \Lambda Q) \in \mathcal{I} \end{cases}.$ If P is strictly proper, then $\det(V-Q\Lambda) \in \mathcal{I}$ (equivalently, $\det(\tilde{V}-\Lambda Q) \in \mathcal{I}$) for all $Q \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$.

3. DECOUPLING

Let (N_P, D_P) be an rcfr and $(\widetilde{D}_P, \widetilde{N}_P)$ be an lcfr of $P \in \mathbb{R}_p(s)^{n \times ni}$. Let rank P denote the normal rank of P. Note that rank P = rank N_P = rank \widetilde{N}_P .

3.1. Lemma: Let $P \in \mathbb{R}_{p}(s)^{ni \times no}$. If the system S(P, C) is decoupled, then rank $P = n_{o} \leq n_{i}$. \Box .

Now $p_o \in \mathcal{U}$ is a \mathcal{U} -pole of P if and only if $\psi_1(p_o) = 0$; $z_o \in \mathcal{U}$ is a \mathcal{U} -zero of P if and only if $\lambda_{no}(z_o) = 0$. The plant P has no \mathcal{U} -poles coinciding with \mathcal{U} -zeros if and only if (λ_{no} , ψ_1) is a coprime pair; equivalently, there exist $\hat{\alpha}$, $\hat{\beta} \in \mathcal{R}_{\mathcal{U}}$ such that, for all $q \in \mathcal{R}_{\mathcal{U}}$, $\alpha \lambda_{no} + \beta \psi_1 := (\hat{\alpha} + q \psi_1) \lambda_{no} + (\hat{\beta} - q \lambda_{no}) \psi_1 = 1$. If $\lambda_{no} \in \mathbb{R}_{sp}(s)$, then $\beta := (\hat{\beta} - q \lambda_{no}) \in \mathcal{I}$ for all $q \in \mathcal{R}_{\mathcal{U}}$ such that $q(\infty) \neq \hat{\beta}(\infty)/\lambda_{no}(\infty)$.

Let $\widetilde{U}^* := \operatorname{diag} \left[\alpha \lambda_{no} / \lambda_1 \ \alpha \lambda_{no} / \lambda_2 \dots \alpha \lambda_{no} / \lambda_{no-1} \ \alpha \right], U^* :=$ $\begin{bmatrix} \widetilde{U}^* \\ 0_{(ni-no) \times no} \end{bmatrix}, \widetilde{V}^* := \operatorname{diag} \left[\beta \ \beta \psi_1 / \psi_2 \dots \beta \psi_1 / \psi_{no-1} \ \beta \psi_1 / \psi_{no} \right],$ $V^* := \operatorname{diag} \left[\widetilde{V}^* \ I_{(ni-no)} \right].$

The author's research is supported by the National Science Foundation Grant ECS-9010996.

CH2917-3/90/0000-2492\$1.00 © 1990 IEEE

Since for $j = 1, \ldots, n_o - 1$, λ_j divides λ_{j+1} and ψ_{j+1} divides ψ_j , and since $P \in \mathcal{M}(\mathbb{R}_p(s))$ implies that $\psi_j \in \mathcal{I}$, it is clear that $\lambda_{no}/\lambda_j \in \mathcal{R}_{\mathcal{U}}$ and $\psi_1/\psi_j \in \mathcal{I}$. The matrices $\tilde{U}^*, U^*, \tilde{V}^*, V^* \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$. If P has no \mathcal{U} -poles coinciding with \mathcal{U} -zeros, then $V^*\Psi + U^*\Lambda = I_{ni}$ and $\tilde{\Psi}\tilde{V}^* + \Lambda U^* = \tilde{\Psi}\tilde{V}^* + \tilde{\Lambda}\tilde{U}^* = I_{no}$.

3.2. Lemma: Let $P \in \mathbb{R}_p(s)^{n \times no}$. Let $\operatorname{rank} P = n_o$. Then there exists a decoupling compensator C for P if P has no \mathcal{U} -poles coinciding with \mathcal{U} -zeros. \square

3.3. Parametrization of Decoupling Compensators: Let $P \in \mathbb{R}_p(s)^{ni\times no}$. Let $\operatorname{rank} P = n_o$. Let P have no \mathcal{U} -poles coinciding with \mathcal{U} -zeros. Under these assumptions, it is possible to parametrize the class of all decoupling compensators for P and the class of all achievable decoupled maps H_{pc} . From the Smith-McMillan form, $N_P = L\Lambda = \begin{bmatrix} L\tilde{\Lambda} & 0_{no\times(ni-no)} \end{bmatrix}$, where $L\tilde{\Lambda} \in \mathcal{R}_{\mathcal{U}}^{no\times no}$ is nonsingular. Let $\delta_j \in \mathcal{R}_{\mathcal{U}}$ be a greatest-common-divisor (gcd) of the entries in the j-th row of $L\tilde{\Lambda}$. Let $\Delta := \operatorname{diag}[\delta_1 \dots \delta_{no}]$. Since $\delta_j \neq 0$, the square matrix $\Delta \in \mathcal{R}_{\mathcal{U}}^{no\times no}$ is nonsingular. Define \hat{N} as $L\tilde{\Lambda} = \Delta \hat{N}$, where $\hat{N} := \Delta^{-1}L\tilde{\Lambda} \in \mathcal{R}_{\mathcal{U}}^{no\times no}$ is nonsingular is nonsingular since $L\tilde{\Lambda}$ and Δ are both nonsingular; therefore $\hat{N} \in \mathcal{R}_{\mathcal{U}}^{no\times no}$ has an inverse, \hat{N}^{-1} . Let n_{ij}/d_{ij} denote the ij-th entry of \hat{N}^{-1} ; then $\hat{N}^{-1} \in \mathbb{R}(s)^{no\times no}$, where the pair (n_{ij}, d_{ij}) is coprime, $n_{ij} \in \mathcal{R}_{\mathcal{U}}, d_{ij} \in \mathcal{R}_{\mathcal{U}}, d_{ij} \neq 0$ (d_{ij} need not be in \mathcal{I}).

Let $\tilde{\delta}_j \in \mathcal{R}_{\mathcal{U}}$ be a least-common-multiple (lcm) of $(d_{1j}, d_{2j}, \ldots, d_{noj})$; equivalently, $\tilde{\delta}_j$ is an lcm of all denominators in the *j*-th column of \hat{N}^{-1} ; for each *j*, $\tilde{\delta}_j \neq 0$ since $d_{ij} \neq 0$. Let $\widetilde{\Delta} := \text{diag}[\tilde{\delta}_1 \ldots \tilde{\delta}_{no}]$. Since $\tilde{\delta}_j \neq 0$, the square matrix $\widetilde{\Delta} \in \mathcal{R}_{\mathcal{U}}^{no \times no}$ is nonsingular. Note that $\hat{N}^{-1} \widetilde{\Delta} \in \mathcal{R}_{\mathcal{U}}^{no \times no}$.

Let $\theta_j \in \mathcal{R}_{\mathcal{U}}$ be a gcd of the entries in the *j*-th column of $\widetilde{D}_P = \widetilde{\Psi}L^{-1}$. Let $\Theta := \operatorname{diag}[\theta_1 \dots \theta_{no}]$. Since $\theta_j \neq 0$, the square matrix $\Theta \in \mathcal{R}_{\mathcal{U}}^{no\times no}$ is nonsingular. Let $\widetilde{D}_P = \widehat{D} \Theta$, where $\widehat{D} := \widetilde{D}_P \Theta^{-1} \in \mathcal{R}_{\mathcal{U}}^{no\times no}$. The matrix \widehat{D} is nonsingular since \widetilde{D}_P and Θ are both nonsingular; in fact, det $\widehat{D} \in \mathcal{I}$ since $P \in \mathcal{M}(\mathbb{R}_p(s))$ by assumption. Consequently, $\widehat{D} \in \mathcal{R}_{\mathcal{U}}^{no\times no}$ has an inverse, \widehat{D}^{-1} . Let x_{ij}/y_{ij} denote the *ij*-th entry of \widehat{D}^{-1} ; then $\widehat{D}^{-1} \in \mathbb{R}_p(s)^{no\times no}$, where the pair (x_{ij}, y_{ij}) is coprime, $x_{ij} \in \mathcal{R}_{\mathcal{U}}, y_{ij} \in \mathcal{R}_{\mathcal{U}}$ ($y_{ij} \in \mathcal{I}$ since y_{ij} is a factor of det $\widehat{D} \in \mathcal{I}$).

Let $\tilde{\theta}_i \in \mathcal{R}_{\mathcal{U}}$ be a lcm of $(y_{i1}, \ldots, y_{ino})$; equivalently, $\tilde{\theta}_i$ is an lcm of all denominators in the *i*-th row of \hat{D}^{-1} , where $\tilde{\theta}_i \in \mathcal{I}$ since $y_{ij} \in \mathcal{I}$. Let $\tilde{\Theta} := \text{diag}[\tilde{\theta}_1 \ldots \tilde{\theta}_{no}]$. Since $\tilde{\theta}_i \in \mathcal{I}$, the square matrix $\tilde{\Theta} \in \mathcal{R}_{\mathcal{U}}^{no \times no}$ is nonsingular. Note that $\tilde{\Theta} \hat{D}^{-1} \in \mathcal{R}_{\mathcal{U}}^{no \times no}$.

3.4. Theorem: Let $P \in \mathrm{IR}_{p}(s)^{ni \times no}$. Let rank $P = n_{o}$. Let P have no \mathcal{U} -poles coinciding with \mathcal{U} -zeros. Then

i) the set $\mathcal{A}_{\mathcal{D}}(P)$ of all decoupled input-output maps H_{pc} is:

$$\mathcal{A}_{\mathcal{D}}(P) = \{ \alpha \lambda_{no} I_{no} + \Delta \widetilde{\Delta} Q_D \widetilde{\Theta} \Theta = (1 - \beta \psi_1) I_{no} + \Delta \widetilde{\Delta} Q_D \widetilde{\Theta} \Theta \}$$

$$| Q_D = \operatorname{diag}[q_1 \dots q_{no}], \text{ for } j = 1, \dots, n_o,$$

$$q_j \in \mathcal{R}_{\mathcal{U}}, q_j \neq \frac{\beta \psi_1 - 1}{\delta_j \ \delta_j \ \theta_j \ \theta_j}, q_j(\infty) \neq \frac{\beta \psi_1}{\delta_j \ \delta_j \ \theta_j}(\infty) \};$$

ii) the set $S_{\mathcal{D}}(P)$ of all decoupling compensators is: $S_{\mathcal{D}}(P) =$

$$\left\{R^{-1}\left[\begin{array}{c}\tilde{U}^{\bullet}+\tilde{\Psi}\,\hat{N}^{-1}\,\widetilde{\Delta}\,Q_{D}\,\tilde{\Theta}\,\hat{D}^{-1}\\Q_{A}\end{array}\right](L\tilde{V}^{\bullet}-\Delta\,\widetilde{\Delta}\,Q_{D}\,\tilde{\Theta}\,\hat{D}^{-1})^{-1}\right.$$

- (ni-na)×na

$$\{ Q_{A} \in \mathcal{R}_{\mathcal{U}}^{(m-n)/n}, Q_{D} = \text{diag}[q_{1} \dots q_{no}], \text{ for } j = 1, \dots, n_{o}, \\ q_{j} \in \mathcal{R}_{\mathcal{U}}, q_{j} \neq \frac{\beta\psi_{1} - 1}{\delta_{j} \ \overline{\delta}_{j} \ \overline{\theta}_{j} \ \theta_{j}}, q_{j}(\infty) \neq \frac{\beta\psi_{1}}{\delta_{j} \ \overline{\delta}_{j} \ \overline{\theta}_{j} \ \theta_{j}}(\infty) \}.$$

3.5. Comment: i) For $j = 1, ..., n_o$, the condition $q_j \neq (\beta\psi_1 - 1)/\delta_j \ \tilde{\delta}_j \ \tilde{\theta}_j \ \theta_j$ on $q_j \in \mathcal{R}_{\mathcal{U}}$ guarantees that the achieved decoupled input-output maps H_{pc} are nonsingular, where $H_{pc} = \alpha\lambda_{no}I_{no} + \Delta \ \tilde{\Delta} Q_D \ \tilde{\Theta} \ \Theta = (1 - \beta\psi_1)I_{no} + \Delta \ \tilde{\Delta} Q_D \ \tilde{\Theta} \ \Theta$. If $(\theta_j \ \tilde{\theta}_j)$ is coprime with ψ_1 , then this condition is satisfied for any $q_j \in \mathcal{R}_{\mathcal{U}}$. ii) For $j = 1, \ldots, n_o$, the condition $q_j(\infty) \neq \beta\psi_1(\infty)/\delta_j \ \tilde{\delta}_j \ \tilde{\theta}_j \ \theta_j(\infty)$ on $q_j \in \mathcal{R}_{\mathcal{U}}$ guarantees that the decoupling compensators are proper. If the plant is strictly proper, then this condition is satisfied for $any \ q_j \in \mathcal{R}_{\mathcal{U}}$ and $\Psi = I_{ni}$ since $\psi_1 = 1$, one choice for $\hat{\alpha}$ is $0, \hat{\beta}$ is 1 and $\overline{U}^* = 0$ and $\Psi = I_{ni}$. In this case, $\Theta = I_{no} = \overline{\Theta}$ and $\hat{D} = L^{-1}$. Therefore when $P \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$, the parametrizations $\mathcal{S}_p(P)$ and $\mathcal{A}_p(P)$ become: $\mathcal{A}_p(P) = \{\Delta \ \tilde{\Delta} Q_D \ Q_D = \text{diag}[q_1 \ldots q_{no}], \text{for } j = 1, \ldots, n_o, q_j \in \mathcal{R}_{\mathcal{U}} \ 0, q_j(\infty) \neq 1/\delta_j \ \tilde{\delta}_j(\infty) \ \};$ $\mathcal{S}_p(P) = \{R^{-1} \left[\begin{array}{c} \hat{N}^{-1} \ \tilde{\Delta} Q_D L \\ Q_A \end{array} \right] (I_{no} - L^{-1} \Delta \ \tilde{\Delta} Q_D L)^{-1}L^{-1} \\ |Q_A \in \mathcal{R}_{\mathcal{U}} \ (n, q_j(\infty) \neq 1/\delta_j \ \tilde{\delta}_j(\infty) \ \}.$

4. CONCLUSIONS

For LTI, MIMO plants which have no undesirable hiddenmodes, full row-rank transfer-function matrices and no undesirable poles coinciding with zeros, we parametrized the class of all compensators such that the unity-feedback system is (internally) stable and the closed-loop transfer-function from the commandinput to the plant-output is diagonal and nonsingular. If the plant has undesirable poles coinciding with zeros, then this class of compensators cannot be used; however, any full row-rank plant which has no undesirable hidden-modes can be decoupled using two-parameter compensation [2, 3].

Figure 1: The system S(P, C)

REFERENCES

- A. I. G. Vardulakis, "Internal stabilization and decoupling in linear multivariable systems by unity output feedback compensation" *IEEE Transactions on Automatic Control*, vol. AC-32, No. 8, pp. 735-739, 1987.
- [2] C. A. Desoer, A. N. Gündeş, "Decoupling linear multiinputmultioutput plants by dynamic output feedback: An algebraic theory," *IEEE Transactions on Automatic Control*, vol. AC-31, No. 8, pp. 744-750, 1986.
- [3] A. N. Gündeş, C. A. Desoer, "Algebraic Theory of Linear Feedback Systems with Full and Decentralized Compensators," *Lecture Notes in Control and Information Sciences*, vol. 142, Berlin: Springer-Verlag, 1990.
- [4] J. Hammer, P. P. Khargonekar, "Decoupling of linear systems by dynamic output feedback," *Math. Syst. Theory*, vol. 17, No. 2, pp. 135-157, 1984.
- [5] C. A. Lin, T. F. Hsieh, "Decoupling compensator design for linear multivariable plants," Proc. American Control Conference, pp. 2201-2202, 1990.