CONDITIONS FOR STABILITY OF FEEDBACK SYSTEMS UNDER SENSOR FAILURES

A. Nazli Gündeş Department of Electrical Engineering and Computer Science University of California, Davis, CA 95616

ABSTRACT

We derive conditions for the closed-loop stability of the linear, time-invariant, multiinput-multioutput unity-feedback system under sensor failures. We find compensators that achieve stability under sensor failures for a class of plants.

1. INTRODUCTION

For any given plant (which has no unstable hidden modes), there exists proper compensators such that the linear, time-invariant (lti), multiinput-multiioutput (MIMO) unity-feedback system is internally stable. In this paper, we find proper compensators for a class of plants allowing one or several of the sensor connections fail. We do not allow all of the sensor connections to fail; this would require that the plant is stable (see [Des.1, Fuj.1]). Notation: \mathcal{U} is a closed, nonempty subset of \mathbb{C} ; \mathcal{U} is symmetric about the real axis and $\mathbb{C} \setminus \mathcal{U}$ is nonempty. $\overline{\mathcal{U}} := \mathcal{U} \cup \{\infty\}$. $\mathcal{R}_{\mathcal{U}}$ denotes the ring of proper scalar rational functions of s (with real coefficients) which have no poles in \mathcal{U} . \mathcal{J} denotes the group of units of $\mathcal{R}_{\mathcal{U}}$. $\mathbb{R}_p(s)$ denotes the sting of proper rational functions. \mathcal{I} denotes the set of non-strictly proper relements of $\mathcal{R}_{\mathcal{U}}$. $\mathcal{M}(\mathcal{R}_{\mathcal{U}})$ denotes the set of matrices whose entries are in

 $\mathcal{R}_{\mathcal{U}}$. A matrix $A \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular iff det $A \in \mathcal{J}$.

2. SYSTEM DESRIPTION AND ANALYSIS

Consider the lti, MIMO feedback system $S(F_S, P, C)$ (Figure 1), where $P: e \mapsto y$, $C: \hat{e} \mapsto \hat{y}$ and $(I_{no} - F_S): y \mapsto y_S$ represent the plant, , the compensator and the sensor connections, respectively. The entries of the diagonal matrix F_S are 1s and 0s; the *j*-th entry is 1 if the *j*-th connection fails and 0 otherwise. Let $H_S: \begin{bmatrix} u\\ \hat{u} \end{bmatrix} \mapsto \begin{bmatrix} y\\ \hat{y} \end{bmatrix}$ denote the closed-loop input-output (I/O) map of $S(F_S, P, C)$. **2.1 Assumptions:** i) $P \in \mathbb{R}_P(s)^{noxni}$; ii) $C \in \mathbb{R}_P(s)^{nixno}$;

2.1 Assumptions: i) $P \in \mathbb{R}_{p}(s)^{n \circ x n i}$; ii) $C \in \mathbb{R}_{p}(s)^{n i \times n o}$; iii) $S(F_{S}, P, C)$ is well-posed, i.e., $H_{S} \in \mathcal{M}(\mathbb{R}_{p}(s))$; iv) Pand C have no hidden-modes associated with eigenvalues in $\bar{\mathcal{U}}$. 2.2 Closed-loop I/O maps: Let Assumptions 2.1 hold. Let $Q_{S} := C(I_{no} + (I_{no} - F_{S})PC)^{-1}$. The I/O map H_{S} is $H_{S} := \begin{bmatrix} (I_{no} - PQ_{S}(I_{no} - F_{S})P & Q_{S} \\ -Q_{S}(I_{no} - F_{S})P & Q_{S} \end{bmatrix}$.

2.3 Definition ($\mathcal{R}_{\mathcal{U}}$ -stability): The system $S(F_S, P, C)$ is said to be $\mathcal{R}_{\mathcal{U}}$ -stable iff $H_S \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$.

2.4 Analysis: Let (N_P, D_P) be any right-coprime-fraction representation (rcfr) of P; i.e., let $N_P \in \mathcal{R}_{\mathcal{U}}^{noxni}$, $D_P \in \mathcal{R}_{\mathcal{U}}^{nixni}$, det $D_P \in \mathcal{I}$, $P = N_P D_P^{-1}$ and let V_P , $U_P \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ be such that $V_P D_P + U_P N_P = I_{ni}$. Let $(\widetilde{D}_P, \widetilde{N}_P)$ be any left-coprime-fraction representation (lcfr) of P; i.e., let $\widetilde{N}_P \in \mathcal{R}_{\mathcal{U}}^{noxni}$, $\widetilde{D}_P \in \mathcal{R}_{\mathcal{U}}^{noxno}$, det $\widetilde{D}_P \in \mathcal{I}$, $P = \widetilde{D}_P^{-1}\widetilde{N}_P$ and let \widetilde{V}_P , $\widetilde{U}_P \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ be such that $\widetilde{V}_P \widetilde{D}_P + \widetilde{U}_P \widetilde{N}_P = I_{no}$. Similarly, let (N_C, D_C) be any rcfr and $(\widetilde{D}_C, \widetilde{N}_C)$ be any lcfr of C. Let ξ_C denote the pseudo-state of C; using $D_C\xi_C = \hat{e}$, $N_C\xi_C = \hat{y}$, $y = Pe = \widetilde{D}_P^{-1}\widetilde{N}_P e$, $y_S = (I - F_S)y$, $\hat{e} = \hat{u} - y_S$ and $e = u + \hat{y}$, the system $S(F_S, P, C)$ is described as: $\begin{bmatrix} \widetilde{D}_P & -\widetilde{N}_P N_C \\ 0 & I \end{bmatrix} \begin{bmatrix} y \\ \xi_C \end{bmatrix} = \begin{bmatrix} \widetilde{N}_P & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} u \\ \hat{u} \end{bmatrix}$, $\begin{bmatrix} I & 0 \\ 0 & N_C \end{bmatrix} \begin{bmatrix} y \\ \xi_C \end{bmatrix} = \begin{bmatrix} y \\ \hat{y} \end{bmatrix}$.

M. Güntekin Kabuli Integrated Systems Inc. 2500 Mission College Blvd. Santa Clara, CA 95054

2.5 Theorem ($\mathcal{R}_{\mathcal{U}}$ -stability under failures): Let Assumptions 2.1 hold. Let $(\widetilde{D}_P, \widetilde{N}_P)$ be any lcfr of P and (N_C, D_C) be any rcfr of C. Then S(F_S, P, C) is $\mathcal{R}_{\mathcal{U}}$ -stable if and only if $D_{HS} := \begin{bmatrix} \widetilde{D}_P & -\widetilde{N}_P N_C \\ (I-F_S) & D_C \end{bmatrix}$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular. \Box

If $S(F_S, P, C)$ is $\mathcal{R}_{\mathcal{U}}$ -stable, then $((I - F_S), \widetilde{D}_P)$ is a right-coprime (rc) pair since D_{HS} is $\mathcal{R}_{\mathcal{U}}$ -unimodular.

3. STABILIZABILITY UNDER FAILURES

We derive necessary conditions on the plant P for the existence of stabilizing compensators in the presence of sensor failures. We consider two classes of sensor failures: i) only one but any one of the sensor connections may fail; this class is described by $\mathcal{F}_{S1} := \{ F_S = \text{diag}[f_1 \ f_2 \dots f_{no}] \mid f_j = 1 \text{ or } 0; f_j f_k = 0, \text{ for } k \neq j \};$ ii) any number of the sensor connections, but not all n_o of them fail; this class may is described by $\mathcal{F}_{Sm} := \left\{ F_S = \text{diag}[f_1 \ f_2 \dots f_{no}] \mid f_j = 1 \text{ or } 0, \ \prod_{j=1}^{n_0} f_j = 0 \right\}.$ 3.1 Definition ($\mathcal{R}_{\mathcal{U}}$ -stabilizing compensator): A compensator *C* is said to $\mathcal{R}_{\mathcal{U}}$ -stabilize the plant $P \in \mathbb{R}_{p}(s)^{n \circ \times n i}$ iff $C \in \mathrm{IR}_{\mathcal{P}}(s)^{ni \times no}$ and the system $\mathrm{S}(F_S, P, C)$ is $\mathcal{R}_{\mathcal{U}}$ -stable. 3.2 Theorem ($\mathcal{R}_{\mathcal{U}}$ -stability under failures): Let $P \in \mathbb{R}_{p}(s)^{no \times ni}$; let (N_{P}, D_{P}) and $(\widetilde{D}_{P}, \widetilde{N}_{P})$, be any refr and lcfr of P. Then the following necessary conditions hold: i) If there is a compensator which $\mathcal{R}_{\mathcal{U}}$ -stabilizes P for all $F_S \in \mathcal{F}_{S1}$, then there is an $\mathcal{R}_{\mathcal{U}}$ -unimodular matrix $L_1 \in \mathcal{R}_{\mathcal{U}}^{n \circ \times n \circ}$ such that

$$L_{1} \widetilde{D}_{P} = \begin{bmatrix} d_{1,1} & 0 & 0 & \dots & 0 & 0 \\ d_{2,1} & d_{2,2} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ d_{no-1,1} & d_{no-1,2} & d_{no-1,3} & \dots & d_{no-1,no-1} & 0 \\ d_{no,1} & d_{no,2} & d_{no,3} & \dots & d_{no,no-1} & 1 \end{bmatrix}, \quad (3.1)$$

where, for $j = 1, \ldots, n_o - 1$, the pair

$$\begin{pmatrix} d_{j,j} & \\ \vdots \\ d_{no,j} \end{pmatrix}$$
 is right – coprime. (3.2)

ii) If there is a compensator which $\mathcal{R}_{\mathcal{U}}$ -stabilizes P for all $F_S \in \mathcal{F}_{Sm}$, then there is an $\mathcal{R}_{\mathcal{U}}$ -unimodular matrix $L_m \in \mathcal{R}_{\mathcal{U}}^{noxno}$ such that

$$L_m \widetilde{D}_P = \begin{bmatrix} d_{1,1} & 0 & 0 & \dots & 0 \\ d_{2,1} & 1 & 0 & \dots & 0 \\ d_{3,1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ d_{n,0,1} & 0 & 0 & \dots & 1 \end{bmatrix},$$
(3.3)

where, for $j = 2, \ldots, n_o$, the pair

$$(d_{1,1}, d_{j,1})$$
 is coprime. (3.4)

3.3 Comments: i) If there is a compensator which $\mathcal{R}_{\mathcal{U}}$ -stabilizes $P = \widetilde{D}_P^{-1} \widetilde{N}_P$ for all $F_S \in \mathcal{F}_{S1}$, then an left of P is given by $(L_1 \widetilde{D}_P, L_1 \widetilde{N}_P)$, where (3.1)-(3.2) hold. Condition (3.2) implies that each column of the denominator matrix $L_1 \widetilde{D}_P$ is full rank for all $s \in \overline{\mathcal{U}}$. The n_o -th diagonal entry of $L_1 \widetilde{D}_P$ is $d_{no,no} = 1$;

CH2642-7/89/0000-1688\$1.00© 1989 IEEE

1688

for $j = 1, \ldots, n_o - 1$, $d_{j,j} \in \mathcal{I}$. For $j = 1, \ldots, n_o$, there are $v_{j,k} \in \mathcal{R}_{\mathcal{U}}$, where $k = j, \ldots, n_o$, such that

$$\sum_{k=j}^{no} v_{j,k} d_{k,j} = v_{j,j} d_{j,j} + \sum_{k=j+1}^{no} v_{j,k} d_{k,j} = 1. \quad (3.5)$$

Note that $d_{no,no} = 1$ implies that $v_{no,no} = 1$. $\begin{bmatrix} v_{1,1} & v_{1,2} & v_{1,3} & \dots & v_{1,no-1} & v_{1,no} \end{bmatrix}$

Let
$$Y_1 := \begin{bmatrix} 0 & v_{2,2} & v_{2,3} & \dots & v_{2,n-1} & v_{2,n} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & v_{n,n-1,n,n-1} & v_{n,n-1,n,n} \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix} L_1.$$

Let $X_1 := I_{n,2} - Y_1 \widetilde{D}_P$; then,

$$Y_1 \widetilde{D}_P + X_1 (I_{no} - F_S) = I_{no} - X_1 F_S,$$
 (3.6)

where $(I_{no} - X_1 F_S) \in \mathcal{M}(\mathcal{R}_{\mathcal{U}})$ is $\mathcal{R}_{\mathcal{U}}$ -unimodular for all $F_S \in \mathcal{F}_{S1}$ since only one diagonal entry of F_S may be equal to 1. ii) If there is a compensator which $\mathcal{R}_{\mathcal{U}}$ -stabilizes $P = \widetilde{D}_P^{-1}\widetilde{N}_P$ for all $F_S \in \mathcal{F}_{Sm}$, then an left of P is given by $(L_m \widetilde{D}_P, L_m \widetilde{N}_P)$, where (3.3)-(3.4) hold. Condition (3.4) implies that for $j = 2, \ldots, n_o$, rank $\begin{bmatrix} d_{1,1} \\ d_{j,1} \end{bmatrix} = 1$ for all $s \in \widetilde{\mathcal{U}}$ (i.e., $d_{j,1}(s) \neq 0$, for all $s \in \widetilde{\mathcal{U}}$ where $d_{1,1}(s) = 0$). Note that $d_{1,1} \in \mathcal{I}$. For $j = 2, \ldots, n_o$, there are y_j , $y_{j,1} \in \mathcal{R}_{\mathcal{U}}$ such that

$$y_j d_{1,1} + y_{j,1} d_{j,1} = 1$$
. (3.7)

Let $Y_m :=$

Let $X_m := I_{no} - Y_m \widetilde{D}_P$; then

ų

$$Y_m \ \widetilde{D}_P + X_m (I_{no} - F_S) = I_{no} - X_m F_S,$$
 (3.8)

where $(I_{no} - X_m F_S) \in \mathcal{M}(\mathcal{R}_u)$ is \mathcal{R}_u -unimodular for all $F_S \in \mathcal{F}_{Sm}$ since $\prod_{i=1}^{no} f_i = 0$.

4. COMPENSATOR DESIGN

Let $P \in \mathbb{R}_{p}(s)^{noxni}$ have rank $= n_{o}$ and have no \mathcal{U} -poles that coincide with \mathcal{U} -zeros. Then there exist $\mathcal{R}_{\mathcal{U}}$ -unimodular matrices $L \in \mathcal{R}_{\mathcal{U}}^{noxno}$, $R \in \mathcal{R}_{\mathcal{U}}^{nixni}$ such that (the Smith-form of P is)

$$P = L \Lambda \Psi^{-1} R = L \tilde{\Psi}^{-1} \Lambda R, \qquad (4.1)$$

where $\Lambda = \left[\operatorname{diag}[\lambda_1 \dots \lambda_{no}] \vdots 0_{no\times(ni-no)} \right]$, $\tilde{\Psi} = \operatorname{diag}[\psi_1 \dots \psi_{no}]$, and $\Psi = \operatorname{diag}\left[\tilde{\Psi}, I_{(ni-no)}\right]$; for $j = 1, \dots, n_o$, the pair (λ_j, ψ_j) is coprime; for $j = 1, \dots, n_o - 1$, λ_j divides λ_{j+1} and ψ_{j+1} divides ψ_j . Now rank $P = n_o$ implies that $\lambda_{no} \neq 0$. Furthermore, P has no \mathcal{U} -poles coinciding with \mathcal{U} -zeros if and only if

$$(\lambda_{no}, \psi_1)$$
 is a coprime pair; (4.2)

equivalently, there exist α , $\beta \in \mathcal{R}_{\mathcal{U}}$ such that, for all $q \in \mathcal{R}_{\mathcal{U}}$,

$$\hat{\alpha} \lambda_{no} + \hat{\beta} \psi_1 := (\alpha + q \psi_1) \lambda_{no} + (\beta - q \lambda_{no}) \psi_1 = 1. \quad (4.3)$$

An refr (N_P, D_P) and an lefr $(\widetilde{D}_P, \widetilde{N}_P)$ of P is given by: $(N_P, D_P) := (L\Lambda, R^{-1}\Psi), (\widetilde{D}_P, \widetilde{N}_P) := (\widetilde{\Psi}L^{-1}, \Lambda R).$ Let $U := \begin{bmatrix} \operatorname{diag} \begin{bmatrix} \hat{\alpha}\lambda_{no}/\lambda_1 & \hat{\alpha}\lambda_{no}/\lambda_2 & \dots & \hat{\alpha}\lambda_{no}/\lambda_{no-1} & \hat{\alpha} \end{bmatrix} \end{bmatrix}$, $\tilde{V} := \operatorname{diag} \begin{bmatrix} \hat{\beta} & \hat{\beta}\psi_1/\psi_2 & \dots & \hat{\beta}\psi_1/\psi_{no-1} & \hat{\beta}\psi_1/\psi_{no} \end{bmatrix}$, $V := \operatorname{diag} \begin{bmatrix} \tilde{V} & I_{(ni-no)} \end{bmatrix}$. A right-Bezout identity $V_P D_P + U_P N_P = I_{ni}$ for the rcfr $(N_P, D_P) = (L\Lambda, R^{-1}\Psi)$ is given by $U_P := UL^{-1}, V_P := VR$. Note that $N_P U_P = L\Lambda UL^{-1} = \hat{\alpha}\lambda_{no} I_{no}$. **4.1 Corollary:** Under the assumptions of Theorem 3.2 and assuming that rank $P = n_o$ and that (4.2) holds, we have the following necessary conditions: i) If there is a compensator which \mathcal{R}_U -stabilizes P for all $F_S \in \mathcal{F}_{S1}$, then by (3.1)-(3.2), the smallest invariant factor ψ_{no} of \widetilde{D}_P is 1 (det $\widetilde{D}_P \sim \prod_{j=1}^{n-1} \psi_j$). ii) If there is a compensator which \mathcal{R}_U -stabilizes P for all $F_S \in \mathcal{F}_{S1}$, then by (3.3)-(3.4), the invariant factors ψ_2, \dots, ψ_{no} of \widetilde{D}_P are all 1 except for the largest one ψ_1 (det $\widetilde{D}_P \sim \psi_1$).

4.2 Proposition (\mathcal{R}_{u} -stabilizing compensator design): Let $P \in \mathbb{R}_{p}(s)^{no\times ni}$; let rank $P = n_{o}$ and let (4.2) hold. Let (N_{P}, D_{P}) be any refr and $(\widetilde{D}_{P}, \widetilde{N}_{P})$ be any left of P. i) Suppose that there is an \mathcal{R}_{u} -unimodular matrix $L_{1} \in \mathcal{R}_{u}^{no\times no}$ such that (3.1)-(3.2) hold. Then $C = \widetilde{D}_{C}^{-1}\widetilde{N}_{C} = (VR + UL^{-1}Y_{1}\widetilde{N}_{P})^{-1}UL^{-1}X_{1}$ is a compensator which \mathcal{R}_{u} -stabilizes P for all $F_{S} \in \mathcal{F}_{S1}$, where $q \in \mathcal{R}_{u}$ is such that

$$\det(I_{no} - (\alpha + q\psi_1)\lambda_{no}X_1(\infty)) = \det(I_{no} - \hat{\alpha}\lambda_{no}X_1(\infty)) \neq 0;$$
(4.4)
ii) Suppose that there exists an $\mathcal{R}_{\mathcal{U}}$ -unimodular matrix $L_m \in \mathcal{R}_{\mathcal{U}}^{noxno}$ such that (3.3)-(3.4) hold. Then $C = \widetilde{D_C}^{-1}\widetilde{N_C} = (VR + UL^{-1}Y_m \widetilde{N_P})^{-1}UL^{-1}X_m$ is a compensator which

 $\mathcal{R}_{\mathcal{U}}$ -stabilizes P for all $F_S \in \mathcal{F}_{Sm}$, where $q \in \mathcal{R}_{\mathcal{U}}$ is such that

$$\det(I_{no} - (\alpha + q\psi_1)\lambda_{no}X_m(\infty)) = \det(I_{no} - \hat{\alpha}\lambda_{no}X_m(\infty)) \neq 0.\square$$
(4.5)

 L_m Note that (4.4) and (4.5) hold automatically if $q \in \mathcal{R}_{\mathcal{U}}$ is such that $q(\infty) = -\alpha(\infty)/\psi_1(\infty)$. If $P \in \mathcal{M}(\mathbb{R}_{sp}(s))$, then $\lambda_{no} \in \mathbb{R}_{sp}(s) \cap \mathcal{R}_{\mathcal{U}}$; in this case, (4.4) and (4.5) hold for all $q \in \mathcal{R}_{\mathcal{U}}$. 5. CONCLUSIONS

We considered the closed-loop stability of the unity-feedback system under two classes of sensor connection failures. The actuator-failure case is similar and omitted for brevity. If there exist compensators that $\mathcal{R}_{\mathcal{U}}$ -stabilize the given plant for all failures in these classes, then the denominator matrices of coprime factorizations of the plant must satisfy certain conditions. We found a set of compensators that $\mathcal{R}_{\mathcal{U}}$ -stabilize a class of MIMO plants under sensor failures.

[Des.1] C. A. Desoer, A. N. Gündeş, "Stability under sensor or actuator failures," *Proc. Conference on Decision and Control*, pp. 2148-2149, 1988.

[Fuj.1] M. Fujita, E. Shimemura, "Integrity against arbitrary feedback-loop failure in linear multivariable control systems," *Proc. 10th IFAC World Congress*, 1987.

[Vid.1] M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, 1985.

[Vid.2] M. Vidyasagar, N. Viswanadham, "Algebraic design techniques for reliable stabilization," *IEEE Trans. Automatic Control*, AC-27, pp. 1085-1095, 1982.