COPRIME FACTORIZATIONS IN STABLE LINEAR SYSTEM

Charles A. Desoer, A. Nazli Gündeş and M. Güntekin Kabuli

Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory University of California, Berkeley, CA 94720

ABSTRACT

We consider a block-diagonal linear (not necessarily time-invariant) map P with a right-coprime factorization ND^{-1} (or a left-coprime factorization $\tilde{D}^{-1}\tilde{N}$). We show that the individual blocks in P have right-coprime factorizations (left-coprime factorizations, respectively) if and only if the denominator map D (D) has a special block-triangular structure. We apply this condition to the stable linear feedback system $S(P_1, P_2)$.

L INTRODUCTION

Consider the linear (not necessarily time-invariant) feedback system 5 (r 1, r 2) and (r 1, r 2) is stable, then the map $P := \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix} : \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$ feedback system $S(P_1, P_2)$ shown in Figure 1. If the system **y**1 y2 has both a right-coprime fraction representation (N, D)and a left-coprime fraction representation (\vec{D}, \vec{N}) , where N, D, \vec{D} and \vec{N} are linear causal stable maps. This result was proven in [Vid.1] for the case where P has elements in the quotient field of an entire ring. However, the conditions for existence of individual right-coprime fraction representations and left-coprime fraction representations of the subsystems P_1 and P_2 , was left as an open question.

To show that the stability of the closed-loop does not imply that P_1 and P_2 individually have coprime factorizations, a special non-unique factorization domain was constructed in [Ana.1]; scalar p_1 and p_2 in the quotient field of this particular ring have no stable coprime factorizations

although $\begin{bmatrix} p_1 & 0 \\ 0 & p_2 \end{bmatrix}$ has a right-coprime factorization.

In this paper, we consider this problem from a general input-output approach, where the multiinput-multioutput subsystems P_1 and P_2 are represented by linear (not necessarily time-invariant) maps defined over extended spaces. Generalizing the concepts of factorizations and coprime factorizations, we obtain right- and left-coprime fraction representations of the map P when the system $S(P_1, P_2)$ is stable. The main result is Theorem 3.3, which states that: given coprime factorizations of P, individual coprime factorizations for P_1 and P_2 exist if and only if a right-coprime factorization of P has a lower block-triangular "denominator" D and a left-coprime factorization of P has an upper block-triangular "denominator" D. Note that Theorem 3.3 answers the question posed in [Vid.1]; the example constructed in [Ana.1] is only one case where the conditions of Theorem 3.3 fail. In the linear time-invariant case where P_1 and P_2 have rational function entries, the necessary and sufficient conditions in Theorem 3.3 are satisfied due to the existence of triangular (Hermite) forms [Vid.2].

IL NOTATION AND DEFINITIONS

'P1-I - 3:45

For similar notation see, for example, [Wil.1, Saf.1, Des.1].

Let $T \subset \mathbb{R}$ and let V be a normed vector space. Let $\zeta := \{F \mid F : \tau \to V\}$ be the vector space of V-valued functions on τ . For any $T \in \tau$, the projection map $\Pi_T: \zeta \to \zeta$ is defined by $\Pi_T F(t) :=$ $\int F(t)$, $t \leq T$, $t \in \mathcal{T}$ $\{\theta_{\zeta}, t > T, t \in \tau, where \ \theta_{\zeta} \text{ is the zero element in } \zeta.$ Let $\Lambda \subset \zeta$ be a normed vector space which is closed under the family of projection maps { Π_T } $T \in \tau$. For any $F \in \Lambda$, let the norm $||\Pi_{(\cdot)}F|| : \tau \to \mathbb{R}_+$ be a nondecreasing function. The extended space Λ_e is defined by $\Lambda_e := \{ F \in \zeta \mid \forall T \in \tau, \Pi_T F \in \Lambda \}.$

A map $F: \Lambda_e \to \Lambda_e$ is said to be *causal* iff for all $T \in \mathbf{T}, \quad \Pi_T \quad \text{commutes} \quad \text{with} \quad \Pi_T F; \quad \text{equivalently},$ $\Pi_T F = \Pi_T F \Pi_T.$

We define two function spaces closely related to Λ_e (the superscripts i and o refer to "input" and "output", respectively): Let Λ_e^i and Λ_e^o be extended function spaces analogous to Λ_e except that their functions take values in the normed spaces V^i and V^o , respectively; the associated projections Π_T are redefined accordingly.

Definition (Well-posed system): A feedback system is said to be well-posed iff for all possible inputs, all signals in the system are (uniquely) determined by causal maps.

Definition (Finite-gain stability): (1) A causal map $H: \Lambda_e^i \to \Lambda_e^o$ is called finite-gain (f.g.) stable iff there exists m > 0 such that $||He|| \le m ||e||$, for all $e \in \Lambda^{i}$.

(2) A well-posed feedback system is called f.g. stable iff for all possible inputs, all signals in the system are determined by causal f.g. stable maps.

Definition (Finite-gain unimodularity): A causal f.g. stable map $M: \Lambda_e \to \Lambda_e$ is said to be f.g. unimodular iff M is bijective and $M^{-1}: \Lambda_e \to \Lambda_e$ is causal f.g. stable.

Definition (Coprime factorizations): (e.g. [Fei.1, Man.1]) Let $N: \Lambda_e^i \to \Lambda_e^o$, $D: \Lambda_e^i \to \Lambda_e^i$, $\tilde{N}: \Lambda_e^i \to \Lambda_e^o$ and $\tilde{D} : \Lambda_e^o \to \Lambda_e^o$ be causal *linear* f.g. stable maps.

(1) The pair (N, D) [(D, N)] is called right-coprime (r.c.) [left-coprime (l.c.)] iff there exist causal linear f.g. stable maps $U: \Lambda_e^o \to \Lambda_e^i$ and $V: \Lambda_e^i \to \Lambda_e^i$ $\begin{bmatrix} U : \Lambda_e^o \to \Lambda_e^i \text{ and } V : \Lambda_e^o \to \Lambda_e^o \end{bmatrix}$ such that

$$UN + VD = I_{\Lambda_{i}^{i}} \left[\tilde{D} \tilde{V} + \tilde{N} \tilde{U} = I_{\Lambda_{i}^{o}} \right], \quad (1)$$

where $I_{\Lambda_e^i}$ $[I_{\Lambda_e^o}]$ is the identity map on Λ_e^i $[\Lambda_e^o]$. (2) The pair (N, D) [(D, N)] is called a right fraction representation (r.f.r.) [left fraction representation (l.f.r.)]

of the causal linear map $P: \Lambda_e^i \to \Lambda_e^o$ iff (i) $D [\tilde{D}]$ is bijective with a causal inverse $D^{-1}: \Lambda_e^i \to \Lambda_e^i$ $[\tilde{D}^{-1}: \Lambda_e^o \to \Lambda_e^o]$, and (ii) $P = ND^{-1} [P = \tilde{D}^{-1}\tilde{N}]$.

(3) The pair (N, D) [(D, N)] is called a rightcoprime fraction representation (r.c.f.r.) [left-coprime fraction representation (l.c.f.r.)] of the causal linear map

Research sponsored by the NASA Grant NAG2-243 and the National Science Foundation Grant ECS-8500993.

 $P: \Lambda_e^i \to \Lambda_e^o \text{ iff (i) } (N, D) \text{ is r.c. } [(\tilde{D}, \tilde{N}) \text{ is l.c.}],$ and (ii) (N, D) is an r.f.r. $[(\tilde{D}, \tilde{N}) \text{ is an l.f.r.}] \text{ of } P.$ III. MAIN RESULTS

Consider the system $S(P_1, P_2)$ shown in Figure 1: $P_1: \Lambda_e^o \to \Lambda_e^i$ and $P_2: \Lambda_e^i \to \Lambda_e^o$ are causal linear maps.

$$\begin{array}{c} u_1 + e_1 \\ \hline P_1 \\ \hline p_1 \\ \hline p_2 \hline \hline p_2 \\ \hline p_2 \hline \hline p_2 \\ \hline p_2 \hline \hline p$$

Figure 1: The feedback system $S(P_1, P_2)$. Let $e := \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$, $u := \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $y := \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Let the causal *linear* map $P : e \mapsto y$ be defined by

$$P: \Lambda_e^o \times \Lambda_e^i \to \Lambda_e^i \times \Lambda_e^o , \quad P = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix} , \quad (2)$$
$$\begin{bmatrix} P_1e_1 + 0e_2 \end{bmatrix}$$

where $Pe := \begin{bmatrix} 0e_2 + P_2e_2 \end{bmatrix}$.

3.1. Fact: Let the well-posed linear system $S(P_1, P_2)$ be f.g. stable. Then the map P defined in equation (2) has an r.c.f.r. and an l.c.f.r.

3.2. Lemma: Let (N, D) be an r.c.f.r. and (\tilde{D}, \tilde{N}) be an l.c.f.r. of the linear map P; then

(i) (A, B) is also an r.c.f.r. of P if and only if there exists an f.g. unimodular map $R : \Lambda_e^i \to \Lambda_e^i$ such that A = NR, B = DR; (ii) (\tilde{B}, \tilde{A}) is also an l.c.f.r. of P if and only if there exists

(ii) (B, \overline{A}) is also an l.c.f.r. of P if and only if there exists an f.g. unimodular map $L: \Lambda_e^o \to \Lambda_e^o$ such that $\widetilde{B} = L\widetilde{D}$, $\widetilde{A} = L\widetilde{N}$.

Comment: With suitable interpretations, conclusion 3.2.(i) above holds for *nonlinear* maps [see e.g. Ham.1, Des.2].

3.3. Theorem (i) Let (A, B) be an r.c.f.r. of $P = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix}$; then P_1 and P_2 have r.c.f.r.s (N_{11}, D_{11}) and (N_{22}, D_{22}) , respectively, if and only if there exists an f.g. unimodular map R such that

$$BR = \begin{bmatrix} D_{11} & 0 \\ D_{21} & D_{22} \end{bmatrix} , \qquad (3)$$

where $D_{11}: \Lambda_e^i \to \Lambda_e^i$ and $D_{22}: \Lambda_e^o \to \Lambda_e^o$, and $\begin{bmatrix} N_{11} & N_{12} \end{bmatrix}$

$$AR \rightleftharpoons \begin{bmatrix} N_{21} & N_{22} \end{bmatrix} \cdot$$

(ii) Let (\tilde{B}, \tilde{A}) be an l.c.f.r. of $P = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix}$; then P_1 and P_2 have l.c.f.r.s $(\tilde{D}_{11}, \tilde{N}_{11})$ and $(\tilde{D}_{22}, \tilde{N}_{22})$, respectively, if and only if there exists an f.g. unimodular map L such that

$$L\vec{B} = \begin{bmatrix} \vec{D}_{11} & \vec{D}_{12} \\ 0 & \vec{D}_{22} \end{bmatrix}, \qquad (4)$$

where $\tilde{D}_{11}: \Lambda_e^o \to \Lambda_e^o$ and $\tilde{D}_{22}: \Lambda_e^{\overline{i}} \to \Lambda_e^{\overline{i}}$, and $L\widetilde{A} =: \begin{bmatrix} \widetilde{N}_{11} & \widetilde{N}_{12} \\ \overline{N}_{21} & \overline{N}_{22} \end{bmatrix}$.

Comments: (1) Equation (3) is a structure test on the

"denominator" map: *P* must have an r.c.f.r. (N, D) where *D* is of the specific lower block-triangular form. In order to find the individual r.c.f.r.s of the subsystems from the given r.c.f.r. (A, B) of *P*, we only need to determine D_{11} and D_{22} ; D_{21} is not necessary for the calculation. Similar comments apply for the upper block-triangular form in equation (4). (2) Theorem 3.3 can be restated for *n* subsystems when $P = diag(P_1 \cdots P_n)$ has an r.c.f.r. or an l.c.f.r. (3) If condition (i) of Theorem 3.3 holds, then *P* has the structure in Figure 2.

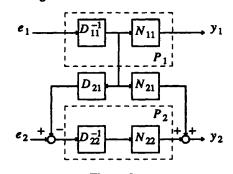


Figure 2

Since $N_{21} = N_{22}D_{22}^{-1}D_{21}$, *P* is in fact *decoupled* into two subsystems P_1 and P_2 . In other words, the blocks D_{21} and N_{21} can be removed for a simpler r.c.f.r. of *P*. (4) By Fact 3.1, the map *P* in any well-posed f.g. stable linear system has an r.c.f.r. (l.c.f.r.). The individual subsystems also have r.c.f.r.s (l.c.f.r.s) if and only if the condition stated in Theorem 3.3 is satisfied.

REFERENCES

- [Ana.1] V. Anantharam, "On Stabilization and the Existence of Coprime Factorizations," IEEE Trans. AC, vol. AC-30 no. 10, pp. 1030-1031, Oct. 1985.
- [Des.1] C. A. Desoer, M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press, 1975.
- [Des.2] C. A. Desoer, M. G. Kabuli, "Feedback Stabilization of a Class of Nonlinear Plants Using a Factorization Approach," submitted to the 27th IEEE CDC, Austin, Dec. 1988.
- [Fei.1] A. Feintuch, R. Saeks, System Theory: A Hilbert Space Approach, Academic Press, 1982.
- [Ham.1] J. Hammer, "Non-Linear Systems, Stabilization, and Coprimeness," Int. J. of Control, vol. 42, no. 1, pp. 1-20, 1985.
- [Man.1] V. Manousiouthakis, "On Time-Varying Control," Proc. of ACC Minneapolis, pp. 2050-2053, 1987.
- [Saf.1] M. G. Safonov, Stability and Robustness of Multivariable Feedback Systems, MIT Press, 1980.
- [Vid.1] M. Vidyasagar, H. Schneider, B. A. Francis, "Algebraic and Topological Aspects of Feedback Stabilization," *IEEE Trans. AC*, vol. AC-27 no. 4, pp. 880-894, Aug. 1982.
- [Vid.2] M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, 1985.
- [Wil.1] J. C. Willems, The Analysis of Feedback Systems, MIT Press, 1971.