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Abstract— Finite-dimensional controller synthesis methods
are developed for load-frequency control of power systems
subject to communication time delays. The controllers proposed
for single service area systems are simple to implement. The sys-
tematic controller synthesis methods are extended to multi-area
systems under a decentralized control structure. The proposed
synthesis procedures give low-order stabilizing controllers that
also achieve integral-action so that constant reference inputs
are tracked asymptotically with zero steady-state error. The
freedom in the controller parameters can be used to improve
system performance.

I. INTRODUCTION

The objective of power system control is to maintain sta-

bility, performance, and system integrity after the occurrence

of failures or system disturbances, such as short circuits

and loss of generation or load. An important function of

automatic generation control (AGC) systems is the control

of frequency and power generation, which is called load-

frequency control (LFC). The stability of a power system (for

a given initial operating condition) is defined as its ability

to regain a state of operating equilibrium after a physical

disturbance occurs, with most system variables bounded so

that practically the entire system remains intact [12]. The

presence of time delays arising during transmission becomes

a very important consideration for power systems as in any

large-scale system. Load-frequency control is a topic that has

been studied extensively, and recent advances can be found in

e.g., [1], [13], [17], [18], [19], [10] and the references therein.

Although the problem is well-known, very few detailed

studies that propose systematic methods of finite-dimensional

controller synthesis for single-area or decentralized multi-

area systems subject to delays exist, and almost none were

developed in a transfer-function setting.

A power system is a highly nonlinear and large-scale

multi-input multi-output (MIMO) dynamical system. How-

ever, for the purpose of frequency control synthesis and

analysis in the presence of load disturbances, a simple low-

order linearized model can be used. In a modern large-

scale power system, the generation, transmission and dis-

tribution of electric energy requires rigorous robust and

optimal control methodologies, infrastructure communication

and information technology services in designing control

units and supervisory control and data acquisition system

(SCADA) centers [1]. Due to their practical advantages,

decentralized structures are used for large-scale multi-area

frequency control synthesis since it is difficult to implement
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centralized control design in a large-scale power system envi-

ronment. Low-order controller designs that provide integral-

action for steady-state accuracy are preferred for simple

implementation. In open communication systems, time de-

lays can arise during transmission from the control center

to the individual units and also from telemetry delays. In

this work, finite-dimensional stabilizing controller synthe-

sis methods are developed for single-area and multi-area

power systems that are subject to time delays. The proposed

controllers provide stability and integral-action so that step-

input references are tracked asymptotically with zero steady-

state error. Stability of delay systems has been studied

using various approaches and many delay-independent and

delay-dependent stability results are available [3], [7], [14],

[10]. Proportional-derivative (PD) and proportional-integral-

derivative (PID) controllers were proposed for several linear,

time-invariant plant classes subject to input-output delays

[16], [8]. Arbitrary delay terms in addition to input-output

delays were considered in decentralized controller structures

[9]. Infinite-dimensional integral-action controllers were de-

signed in [15] to maximize the allowable controller gain

using the robust control techniques that are available for

infinite-dimensional systems [4].

The contribution of this work is the development of syn-

thesis methods applicable to power systems subject to time

delays using novel approaches based on transfer-function

descriptions of single-area systems as well as complex multi-

area interconnections. An integral-action controller design

method is proposed in Section II for a single-area power

system subject to time delays using different types of turbine

models in the plant description (non-reheated, reheated, and

hydraulic turbines). The freedom in the controller parameters

may be used to improve system performance. A decentralized

controller using the single-area design in each channel is

used for a a multi-area control system in Section III. The

individual service areas are connected by a tie-line network.

Numerical examples are given to illustrate the controller

synthesis method using typical model parameters for load,

generator, and turbine models as given in e.g., [11], [17],

[19] and the references therein.

Notation: Let C ,R , R+ denote complex, real, and positive

real numbers. The closed right-half complex plane is C+ =
{s ∈ C | Re(s) ≥ 0} and the extended closed right-half

complex plane is U = C+ ∪ {∞}; Rp denotes real proper

rational functions (of s); S ⊂ Rp is the stable subset with

no poles in U ; M(S) is the set of matrices with entries in

S ; Ir is the r × r identity matrix. The space H∞ is the

set of all bounded analytic functions in C+ . For h ∈ H∞ ,
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the norm is defined as ‖h‖∞ = ess sup
s∈C+

|h(s)|, where

ess sup denotes the essential supremum. A matrix-valued

function H is in M(H∞) if all its entries are in H∞ ; in

this case ‖H‖∞ = ess sup
s∈C+

σ(H(s)), where σ̄ denotes

the maximum singular value. All norms of interest here are

H∞ norms, ‖ · ‖∞ ≡ ‖ · ‖. A system with transfer-matrix

H is stable if H ∈ M(H∞). A square H ∈ M(H∞) is

unimodular if H−1 ∈ M(H∞). We drop (s) in transfer-

matrices such as G(s) when this is clear. The (k×k) diagonal

matrix, whose diagonal entries are a1, . . . , am, is denoted by

diag [a1 , a2 , · · · , ak]. We use coprime factorizations over

S ; i.e., V = D−1
v Nv ∈ Rp

k×k denotes a left-coprime-

factorization, where Nv , Dv ∈ S
k×k, detDv(∞) 6= 0.

II. SINGLE-AREA LFC DESIGN WITH TIME DELAY

Consider the load frequency control problem for a single

generator supplying power to a single service area. A lin-

earized low-order model of the plant for purposes of system

frequency analysis and control synthesis consists of three

main parts. In the block-diagram shown in Fig. 1, Gp(s) ,

Gg(s) , Gt(s) represent the transfer-functions of the load and

machine, the speed governor, and the turbine, respectively.

The speed regulation due to governor action is represented by

the constant R, called the speed droop characteristic. With

Tp , Tg , Tt as the load, governor, turbine time-constants,

and Kp a constant inversely proportional to the generator

damping coefficient, the transfer-functions are given by

Gp(s) =
Kp

Tps+ 1
, Gg(s) =

1

Tgs+ 1
. (1)

For a non-reheated turbine, Gt(s) is

Gt(s) =
1

Tts+ 1
. (2)

For a reheated turbine, with Tr and cr as constants, the

turbine transfer-function Gt(s) becomes second order:

Gt(s) =
crTrs+ 1

(Trs+ 1)(Tts+ 1)
. (3)

In the case of hydraulic turbines, Gt(s) has a zero in C+

and the governors of hydraulic units include transient droop

compensation for stable speed control performance [11]:

Gt(s) =
1− Tws

1 + 0.5Tws
, (4)

Gg(s) =
1

(Tgs+ 1)
·

(1 + Tcs)

(1 + (Rt/R)Tcs)
. (5)

In Fig. 1, let the transfer-function from w to f be called

P (s). With G(s) := Gt(s)Gg(s) , define X(s) and Y (s) as

X(s) := Gp(s)Gt(s)Gg(s) = Gp(s)G(s) , (6)

Y (s) := 1 +
1

R
Gp(s)Gt(s)Gg(s) = 1 +

1

R
X(s). (7)

Then the plant P (s) is given by

P (s) =
Gp(s)Gt(s)Gg(s)

1 + 1
R
Gp(s)Gt(s)Gg(s)

= Y (s)−1X(s) . (8)

For the three types of turbines used in generation as in (2),

(3), (4), the plant transfer-function in (8) is stable (assuming

that governor transfer-functions for hydraulic units include

transient droop compensation as needed). We design simple

controllers for the plant P (s) such that the closed-loop sys-

tem is stable under communication delays. For single-input

single-output systems, the representation of input delays and

output delays are equivalent. The block diagram of the unity-

feedback system is shown in Fig. 2, where e−hs represents

a time delay of h-seconds, and G(s) = Gt(s)Gg(s). In

Fig. 2, with L := (1 + e−hsPC), the closed-loop map H
from the inputs (u, v) to the outputs (w, f) is

H =

[
e−hsCL−1 e−hsCL−1Y −1Gp

e−hsPCL−1 −L−1Y −1Gp

]
. (9)

Let the (input-output) map from u to f be denoted by Hfu =
e−hsPCL−1. Let e := u− f be the tracking error. Then the

(input-error) map Heu from u to e is given by

Heu = 1−Hfu = (1 + e−hsPC)−1 = L−1. (10)

Definition 1: a) The feedback system, shown in Fig. 2,

is stable if the closed-loop map H in (9) is in M(H∞).
b) The feedback system is stable and has integral-action if

the closed-loop map from (u, v) to (w, f) is stable, and the

(input-error) map Heu has blocking-zeros at s = 0. c) The

controller C is called a stabilizing controller if C is proper

and H ∈ M(H∞). d) The controller C is called an integral-

action controller if C is a stabilizing controller, and D(0) =
0 for any coprime factorization C = ND−1. �

Let C(s) = ND−1 be a coprime factorization of the

controller, where N, D ∈ S, D(∞) 6= 0. Then C is a

stabilizing controller if and only if M−1 ∈ H∞ , where

M := (1 +
1

R
GpG)D + e−hsGpGN = Y D + e−hsXN .

(11)

If the feedback system in Fig. 2 is stable and step input

references are applied at u(t), then the steady-state error

e(t) goes to zero as t → ∞ if and only if Heu(0) = 0.

Therefore, by Definition 1-(b), the stable system achieves

asymptotic tracking of constant reference inputs with zero

✲ ❤ ✲ Gg
✲ Gt

✲ ❤❄ ✲ Gp
✲

✛1/R

❄−

+

w

v

+

− f

Load ref.

Governor

Fig. 1. Plant with speed droop characteristic.
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✲
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❄

−

+u

v

e w

+

−−

+

f

Fig. 2. Feedback system with time delay in the loop.
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steady-state error if and only if it has integral-action. By (11),

write Heu = (I + ĜC)−1 = DM−1Y . Then by Definition

1-(d), the system has integral-action if C = ND−1 is an

integral-action controller since D(0) = 0 implies Heu(0) =
(DM−1Y )(0) = 0. The system would also have integral-

action if the plant had poles at s = 0 since Y (0) = 0
implies Heu(0) = 0 even if the controller’s D(0) 6= 0.

However, the plant P (s) in (8) is stable, and hence, has no

poles at s = 0. Therefore, the system has integral-action if

and only if C is an integral-action controller. In the general

case, if P (s) has poles at s = 0 and Y (0) = 0, then

this already ensures integral-action for the system. However,

integral-action is still designed into the controller for the

sake of robustness, following the well-known internal model

principle, with poles duplicating the dynamic structure of the

exogenous signals that the regulator has to process [5].

Theorem 1 presents a finite-dimensional controller synthe-

sis method for closed-loop stability with integral-action for

a single-area LFC control system.

Theorem 1: (Single-area stabilizing controller synthesis):

Let P (s) be as in (8). Choose any proper, stable transfer-

function Ñ(s) ∈ S such that

Ñ(0) = P (0)−1 .

Choose any α ∈ R+ . Let β ∈ R+ satisfy

β < ‖
e−hs (αs+ 1)P (s)Ñ(s)− 1

s
‖−1 . (12)

Then the integral-action controller C(s) given by

C(s) = β
(αs+ 1)

s
Ñ(s) (13)

is a stabilizing controller. �

Remarks: 1) In Theorem 1, C(s) in (13) can be chosen as

a proper PID-controller in the following realizable form [6]:

Cpid(s) = KP +
KI

s
+

KD s

τ s+ 1
, (14)

where KP , KI , KD ∈ R are the proportional, integral, and

derivative constants, respectively, and τ ∈ R+ (typically

very small), where Cpid(s) has integral-action when KI 6= 0.

To put the controller design proposed in Theorem 1 into

a PID-controller form, choose K̃P ∈ R and K̃D ∈ R

completely arbitrarily. Then let Ñ(s) be

Ñ(s) =
1

(αs+ 1)
[K̃P s+

K̃D s2

(τs+ 1)
+ P (0)−1] ;

since α, τ > 0, Ñ(s) ∈ S. With KP = βK̃P , KD = βK̃D ,

KI = βP (0)−1, the controller C(s) in (13) becomes a PID-

controller as in (14):

C(s) = β
(αs+ 1)

s
Ñ(s) = βK̃P +

βP (0)−1

s
+

βK̃Ds

τ s+ 1
.

The constants K̃D or K̃P can be chosen as zero to achieve

PI or pure integral controllers. 2) The freedom in the design

parameters of C(s) in (13) comes from the choice of the

stable transfer-function Ñ(s). This freedom is important

in order to achieve better performance. Therefore, Ñ(s)
may be chosen higher order than two as restricted in PID-

controllers to satisfy the performance requirements. The

simplest choice of Ñ(s) for integral-action is Ñ(s) =
(αs + 1)−1P (0)−1, resulting in a pure integral controller

C(s) = βP (0)−1 1
s

; or Ñ(s) = P (0)−1, resulting in a

PI-controller C(s) = βP (0)−1 (αs+1)
s

. The integral-action

controller C(s) in (13) is strictly-proper whenever Ñ(s) is

strictly-proper; otherwise, C(s) is bi-proper. 3) By standard

robustness arguments, the stabilizing controller C(s) in (13)

of Theorem 1 achieves robust stability under ‘sufficiently

small’ plant uncertainty. The controller C in (13) robustly

stabilizes the additively perturbed plant P +∆p for all ∆p ∈
S such that ‖∆p ‖ < ‖e−hsC(1+e−hsPC)−1‖−1. For mul-

tiplicative perturbations, C robustly simultaneously stabilizes

the plants P (1 + ∆p) under all multiplicative perturbations

∆p ∈ S such that ‖∆p ‖ < ‖e−hsPC(1 + e−hsPC)−1‖−1.

Some of the free controller parameter choices in the synthesis

may be used to maximize the allowable perturbations. �

Proof of Theorem 1: The plant P (s) = Y −1X given

in (8) is stable; therefore, Y −1 ∈ S. Write the controller

C(s) in (13) as C(s) = ND−1, where N = βÑ(s),
D = s

αs+1 . By (11), C(s) is a stabilizing controller if and

only if M−1 = (Y D + e−hsXN)−1 ∈ H∞ , where M =

Y s
αs+1 + e−hsXβÑ(s) = (s+β)

(αs+1)Y [1 + β s
(s+β)Θ(s)], where

Θ(s) := e−hs(αs+1)P (s)Ñ(s)−1
s

. Since Ñ(0) = P (0)−1 by

design, at s = 0, the numerator of Θ(s) is ( e−hs(αs +
1)P (s)Ñ(s) − 1 )(0) = 0 and hence, Θ(s) ∈ H∞ . Now if

β > 0 satisfies (12), then ‖ β s
(s+β)Θ(s) ‖ ≤ β ‖Θ(s) ‖ <

1. It follows from the small gain theorem that this is a

sufficient condition to have [1+ β s
(s+β)Θ(s)]−1 ∈ H∞ . Since

(αs+1)
(s+β) Y

−1 ∈ S, we have M−1 ∈ H∞ and hence, the

proposed C(s) in (13) is a stabilizing controller. �

In the following examples, we apply the controller design

in Theorem 1 to plants with non-reheated, reheated, and

hydraulic turbines as in (2), (3), (4), respectively. The plant

parameters are typical values as in e.g., [11], [17], [18], [19].

Example 1: a) Consider the plant P (s) in (8), with a non-

reheated turbine, where the load, governor, turbine, droop

model parameters are given as

Kp = 1 , Tp = 10 , Tg = 0.2 , Tt = 7 , R = 0.05 . (15)

Then from (6)-(7) and (8), X(s) = 1
(10s+1)(7s+1)(0.2s+1) ,

Y (s) = 14s3+73.4s2+17.2s+21
(10s+1)(7s+1)(0.2s+1) . The plant P (s) = Y −1X is

stable, with poles at {−5.0586,−0.0921 ± j0.5367}. For a

very simple second order controller design, let α = 1 and

Ñ(s) =
(10s+ P (0)−1)

(τs+ 1)
=

(10s+ 21)

(0.04s+ 1)
. (16)

Suppose that there is no time delay, i.e., h = 0; then β
satisfies (12) if β < 0.1824. The controller in (13) becomes

C(s) =
β (s+ 1)(10s+ 21)

s (0.04s+ 1)
. (17)

b) For the case of a reheated turbine, in addition to the

parameters in (15), Tr = 0.3, cr = 0.3. From (6),
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(7), (8), X(s) = (0.09s+1)
(10s+1)(0.3s+1)(7s+1)(0.2s+1) , Y (s) =

4.2s4+36.02s3+78.56s2+19.3s+21
(10s+1)(0.3s+1)(7s+1)(0.2s+1) . The plant P (s) = Y −1X is

stable, with poles at {−4.9281,−3.5236,−0.0622±j0.533}.

Let α = 1 and choose Ñ in (16). With no time delay, h = 0,

β satisfies (12) if β < 0.1183.

c) For the case of a hydraulic turbine, in addition to

(15), let Tw = 1, Tc = 5, Rt = 0.38. From (6),

(7), (8), X(s) = (5s+1)(1−s)
(10s+1)(0.5s+1)(38s+1)(0.2s+1) , Y (s) =

38s4+270.8s3+313.7s2+128.7s+21
(10s+1)(0.5s+1)(38s+1)(0.2s+1) . The plant P (s) = Y −1X

is stable, with poles at {−5.8011,−0.7223,−0.3015 ±
j0.2025}. Let α = 1 and choose Ñ in (16). With no time

delay, h = 0, β < 0.3538 satisfies (12). When an h-second

time delay occurs, β satisfies (12) if β < ‖ s−1[ e−hs(s +

1)P (s) (10s+21)
(0.04s+1)−1 ] ‖−1. The maximum β that satisfies (12)

for h-seconds of time delay, where 0 ≤ h ≤ 2.5, is shown in

Fig. 3. For all three turbine examples, we can choose β = 0.1
or β = 0.05 for a delay of h < 2.5 sec.

With no time delay (h = 0), the closed-loop step-responses

of the output f(t) due to a constant input at u(t) are shown

for β = 0.1 and β = 0.05 satisfying (12) for non-reheated,

reheated, and hydraulic turbine examples in Figures 4, 6, 8,

respectively. The same controller given in (17) is used for

all three different turbine types. Due to the integral-action

in the controller, the steady-state error is zero as expected.

Smaller β values correspond to more sluggish response. The

performance can be improved exploring the freedom in Ñ ,

α, and by changing β. The step-responses for a delay of

h = 0.5 are shown for the same β choices for the three

types of turbine examples in Figures 5, 7, and 9.
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Fig. 3. Maximum β v.s. time delay h for for three types of turbines.
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Fig. 4. Step response of non-reheated turbine with no time delay.
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Step Response of non−reheated turbine with delay=0.5s
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Fig. 5. Step response of non-reheated turbine with time delay h = 0.5.
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Fig. 6. Step response of reheated turbine with no time delay.
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Step Response of reheated turbine with delay=0.5s
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Fig. 7. Step response of reheated turbine with time delay h = 0.5.
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Fig. 8. Step response of hydraulic turbine with no time delay.
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Fig. 9. Step response of hydraulic turbine with time delay h = 0.5.

III. MULTI-AREA DECENTRALIZED LFC DESIGN

Consider the multi-area load frequency control problem,

where each area has the same structure as shown in Fig. 10.

The tie-line power flows among the k areas is represented by

the constant matrix Vt ∈ R
k×k , which may or may not be

non-singular. Let s−1Vt = D−1
v (s)Nv(s) be a left-coprime-

factorization, where Nv , Dv ∈ S
k×k, detDv(∞) 6= 0. If

rankVt = r < k , then there exist non-singular matrices

FL, FR ∈ R
k×k such that (18) holds, and for any a ∈ R+ ,

Dv , Nv are as in (19):

Vt = FL

[
Ir 0
0 0

]
FR , (18)

Dv =

[ s

s+ a
Ir 0

0 Ik−r

]
F−1
L , Nv =

[ 1

s+ a
Ir 0

0 0

]
FR .

(19)

When Vt is non-singular, r = k; then

Dv =
s

s+ a
Ik , Nv =

1

s+ a
Vt ; FL = Ik , FR = Vt .

(20)

In the decentralized system of Fig. 10, Φ represents a

constant matrix to be designed so that the closed-loop system

is stable. Let the i-th area plant Pi(s) = Y −1
i (s)Xi(s) be

as in (8). Let Gp = diag [ Gp1 , Gp2 , · · · , Gpk ] , G =
diag [ G1 , G2 , · · · , Gk ], R = diag [ R1 , R2 , · · · , Rk ].
With Xi(s) = Gpi(s)Gi(s), Yi(s) = 1 + 1

Ri

Xi(s) as in

(6)-(7), let

X = diag [ X1 , X2 , · · · , Xk ] = GpG , (21)

Y = diag [ Y1 , Y2 , · · · , Yk ] = Ik +R−1X . (22)

Then the plant is

P (s) = diag [ P1(s) , P2(s) , · · · , Pk(s) ] . (23)

The constants Bi for areas i ∈ {1, . . . , k} are called

frequency bias factors, and

B = diag [ B1 , B2 , · · · , Bk ] . (24)

Each area has its own stabilizing integral-action controller

Ci(s) = Ni(s)D
−1
i (s) and hence, the decentralized con-

troller has a diagonal transfer-matrix given by

C(s) = diag [C1(s) , C2(s) , · · · , Ck(s) ] = ND−1, (25)

N = diag [ N1 , N2 , · · · , Nk ], D =
diag [ D1 , D2 , · · · , Dk ]. The time delay hi for

each area may be different. Let

E = diag
[
e−h1s , e−h2s , · · · , e−hks

]
. (26)

Let each of the controllers Ci = NiD
−1
i = ND−1 for the

individual areas be designed as in (13), and let

Mi = YiDi + e−hsXiNiBi , (27)

M = diag [ M1 , M2 , · · · , Mk ] = Y D + EXNB .

In the multi-area system of Fig. 10, let the input and output

vectors be u = [u1 . . . uk]
T

, v = [v1 . . . vk]
T
, w =

[w1 . . . wk]
T

, f = [f1 . . . fk]
T

. Let ξ := w − R−1f .

Define Ψ ∈ M(H∞) as

Ψ =

[
Y D + EXNB [EN(I −BGp)−DR−1Gp ]Φ

−NvX Dv +NvGpΦ

]
.

(28)

The system in Fig. 10 is described as

Ψ

[
ξ
x

]
=

[
EN (ENB +DR−1)Gp

0 −NvGp

] [
u
v

]
, (29)

[
w
f

]
=

[
Y −R−1Gp

X −Gp

] [
ξ
x

]
+

[
0 −R−1Gp

0 −Gp

] [
u
v

]
. (30)

Then the closed-loop system with k areas as shown in Fig. 10

is stable if and only if Ψ−1 ∈ M(H∞), where Ψ is given by

(28). Define Γ := EN(I −BGp)−DR−1Gp , and re-write

Ψ =

[
M ΓΦ

−NvX Dv +NvGpΦ

]

=

[
M 0

−NvX I

] [
I M−1ΓΦ
0 Dv +NvGpΦ+NvXM−1ΓΦ

]
. (31)

By (31), Ψ in (28) is unimodular if and only if

Ψ̃ = Dv +NvGpΦ+NvXM−1ΓΦ

= Dv +NvGp(D +GEN)M−1Φ (32)

is unimodular.

Theorem 2: (Multi-area stabilizing controller synthesis):

Let Ci(s) be designed as in (13) to stabilize each individual

subsystem. as in (8). Define Wr ∈ M(H∞) as

Wr = [Ir 0]FRGp(D +GEN)M−1

[
Ir
0

]
. (33)

Let ϕ ∈ R+ satisfy

ϕ < ‖
1

s
(Wr(s)Wr(0)

−1 − Ir) ‖
−1 . (34)

Let Φr = ϕWr(0)
−1 and let Φ in (31) be chosen as

Φ :=

[
Φr 0
0 Ik−r

]
F−1
L . (35)

Then the decentralized system in Fig. 10 is stable. �

Proof of Theorem 2: Since Ci stabilizes Pi , each

M−1
i ∈ H∞ implies that M−1 ∈ M(H∞). The multi-area

system is stable if and only if Ψ is unimodular, equivalently,

Ψ̃ in (32) unimodular. By (19) and (35), write Ψ̃ as
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Ψ̃ =

[ s

s+ a
Ir 0

0 Ik−r

]
F−1
L

+

[ 1

s+ a
Ir 0

0 0

]
FRGp(D +GEN)M−1

[
Φr 0
0 Ik−r

]
F−1
L

=

[ s

s+ a
+

1

s+ a
WrΦr

1

s+ a
W2

0 Ik−r

]
F−1
L ,

where W2 = [Ir 0]FRGp(D + GEN)M−1

[
0

Ik−r

]
. Since

FL is unimodular, Ψ̃ is unimodular if and only if

s

s+ a
Ir +

1

s+ a
WrΦr =

s

s+ a
Ir +

ϕ

s+ a
WrWr(0)

−1

=
(s+ ϕ)

(s+ a)

[
Ir +

ϕs

(s+ ϕ)

1

s
(WrWr(0)

−1 − Ir)

]
(36)

is unimodular. Therefore, (36) is unimodular since ϕ satisfies

(34), and hence, the closed-loop system is stable. �

Example 2: Consider a two-area power system, where the

plant model for each individual area contains any of the

three turbines as in Example 1. Let the tie-line network

matrix be Vt = γ

[
1 −1
−1 1

]
. Note that Vt is singular,

and r = 1 < k. Then s−1Vt = D−1
v Nv , where, for any

a ∈ R+ , Dv =

[ s

s+ a
0

1 1

]
, Nv =

[ γ

s+ a

−γ

s+ a
0 0

]
,

FL =

[
1 0
−1 1

]
, FR =

[
γ −γ
0 1

]
. Suppose that γ = 0.5

and the frequency bias factors are B1 = B2 = 0.4. Let each

of the controllers Ci = NiD
−1
i for the individual areas be

designed as in (17) and let β = 0.05. For a time-delay of

h1 = h2 = 0.5, M−1
1 = (Y1D1 + e−h1sX1N1B1)

−1 ∈
H∞ , M−1

2 = (Y2D2 + e−h2sX2N2B2)
−1 ∈ H∞ . The

multi-area system is stable if and only if Ψ−1 ∈ H∞

2×2,

where Ψ is given by (28). By (33), Wr = γ Gp1(D1 +
e−h1sN1G1)M

−1
1 . Since the controllers Ci are designed as

in (13) have integral-action, D1(0) = D2(0) = 0. Therefore,

Mi(0) = Xi(0)Ni(0)Bi(0) implies Wr(0) = γ B−1
1 = 1.25.

By Theorem 2, the system is stable by choosing Φr = 0.8ϕ
for any ϕ > 0 satisfying (34). �

IV. CONCLUSIONS

A finite-dimensional controller synthesis method is pro-

posed for load-frequency control of single-area power sys-

tems with time delays in communication channels. The

controllers are simple, and they provide integral-action. The

synthesis method allows freedom in the choice of controller

parameters, which can be used to achieve better performance.

Numerical examples are provided for low-order linearized

plant models containing non-reheated, reheated, and hy-

draulic turbines. The design for each area is extended in

a decentralized setting to a multi-area system interconnected

with a tie-line network.

✲ ❤✲C1(s)
✻

✲e−h1s ✲ ❤✲ G1
✲ ❤❄✲ Gp1 ✲

❄

B1
✞☎✛

❄❤
+

+
✛

✛
✛...✛

2
to area ...

k

✻

1

s
I

✻

Φ

✛

✻✻
· · ·

✻

f2 f3 · · · fk

Tie− line
network

Vt

✛1/R1

−

❄

−

+u1

v1

w1

+

−−

+

f1

area 1

y1

x

Fig. 10. Multi-area system, with area 1 shown.
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