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ABSTRACT

It is shown that any finite number of plants that belong to certain classes of multi-input multi-output systems with no zeros
in the region of instability can be simultaneously stabilized using linear, time-invariant integral-action controllers. These plants
may be stable or unstable and their poles are not restricted; they may also have any number of zeros in the stable region of the
complex plane. The classes of systems under consideration include plants with blocking or transmission zeros at infinity. The
common controller achieves asymptotic tracking of step-input references with zero steady-state error and has a low order
transfer-function. Systematic synthesis methods are presented, and a parametrization of all simultaneously stabilizing controllers
with integral-action is also provided.
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I. INTRODUCTION

Simultaneous stabilization of a finite family of (three or
more) plants using linear, time-invariant (LTI) controllers is
a challenging and important control problem. The issue of
simultaneous stabilization of a set of models arises in various
applications. Linearization of nonlinear process models at
various operating points may necessitate the design of a
common controller that stabilizes the linear system at any of
the operating points. Maintaining stability under sensor or
actuator failures for reliable operation also leads to a finite
number of distinct dynamic models corresponding to failure
modes to be controlled using the same controller [14]. While
the robust control problem deals with controller design in the
face of an infinite number of plant models representing per-
turbations all within a neighborhood of a nominal model, the
distinct plants considered in simultaneous control need not be
‘close’ to a nominal model.

Simultaneous stabilization is a hard open problem in
linear systems theory. Conditions for existence of simultane-
ously stabilizing controllers have been explored extensively
[15, 4]. The well established result that the simultaneous
stabilization of n plants is equivalent to strong stabilization
of (n - 1) plants leads to explicit conditions for the existence
of simultaneously stabilizing controllers for n = 2: Two plants
are simultaneously stabilizable if and only if a related system
(which can be derived from these two plants) is strongly

stabilizable, i.e., can be stabilized using a stable controller.
Based on another well-known result, strong stabilizability of
this single related system can be checked via the parity inter-
lacing property of the positive real poles and (blocking) zeros
[15, 4]. However, for simultaneous stabilizability of three
or more plants, there are no necessary and sufficient con-
ditions available in the most general case without any con-
straints on the set of plants to be simultaneously stabilized
(e.g., [2–5]). Alternative strategies such as time-varying or
sampled-data controllers have also been developed to over-
come the limitations of LTI controllers (e.g., [12]). Simulta-
neous stabilization of nonlinear single input systems has also
been investigated (e.g., [16]).

The problem considered in this work is the simultane-
ous stabilization of a finite set of LTI, multi-input multi-
output (MIMO) plants using linear, time-invariant output-
feedback controllers. Single-input single-output (SISO)
plants are also included as a special case. The results here deal
with the problem using only time-invariant controllers. The
synthesis methods result in low order controllers, which are
desirable to avoid complexity issues for computation and
implementation. An additional design goal here is the asymp-
totic tracking of constant reference inputs. Based on the well-
known internal model principle [6], asymptotic tracking is
achieved by duplicating the dynamic structure of the exog-
enous signals that the regulator has to process. Therefore, the
controllers are designed to have integral-action by adding
poles at the origin for the constant reference signal tracking
objective. We explore sufficient conditions for simultaneous
stabilizability of three or more plants, since explicit existence
conditions for the completely general case of three or more
arbitrary plants are not possible to obtain [4]. Sufficient con-
ditions, such as those explored in [5] for three plants, lead to
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identifying classes of practically relevant plants for which
simultaneous stabilization is achievable.

An interesting class of SISO plants was considered in
[1], where it was shown that minimum-phase, strictly proper
scalar plants, that all have the same high-frequency gain sign,
can be simultaneously stabilized by stable and strictly proper
controllers; this result is restricted to SISO plants only, and
the stabilizing controllers do not provide integral-action.
While all plants in [1] are strictly-proper, the design proposed
here includes finite sets of plants that contain both relative
degree one and relative degree zero plants; furthermore, it
achieves stability and integral-action for asymptotic tracking
of constant reference inputs. Also for only SISO plants, an
algorithm for simultaneous stabilization of up to four plants
in groups was given in [11]. Conditions for simultaneous
stabilization of plants with restrictions on state-space and
input-space dimensions were obtained in [7]. For stable
MIMO plants, a simultaneous controller synthesis with
integral-action was presented in [8]; the design is based on
sufficient conditions for existence of proportional–integral–
derivative (PID) controllers and applies only to stable plants.
The plants considered here need not be stable and the con-
trollers are not restricted to be PID. Existence of simultaneous
controllers for MIMO plants was explored in [13] under
much more conservative sufficient conditions on the plant
class. The plant class in [13] does not allow plants without
blocking-zeros at infinity, and it does not consider transmis-
sion zeros at infinity. Furthermore, explicit construction of
the controller parameters are not provided for the more
restricted plant class in [13]. Preliminary results on simulta-
neous controller synthesis methods that apply to MIMO/
SISO unstable plants were given in [9]; the results in the
present paper expand and improve these synthesis methods.

The main results of this work are the developments of
simultaneous integral-action controller synthesis methods
that apply to unstable as well as stable MIMO or SISO plants,
which have no zeros in the open right-half complex plane.
The poles of the plants are completely unrestricted; they may
be anywhere in the complex plane. There may also be any
number of (blocking or transmission) zeros in the region of
stability (open left-half plane), and there may be zeros at
infinity as follows: The plant classes considered in Section 3.1
have blocking-zeros at infinity but otherwise have no right-
half plane zeros. Theorem 1 gives a sufficient condition for
simultaneous stabilizability of such plants based on their high
frequency gain matrices. For SISO plants, this condition
becomes necessary and sufficient for existence of integral-
action controllers that achieve simultaneous stabilization.
Proposition 1 develops a synthesis method for simultane-
ously stabilizing integral-action controllers whose transfer-
functions are the same order as the number of blocking zeros
at infinity. Proposition 2 in Section 3.2 extends the synthesis
to plants that may have other transmission zeros at infinity in

addition to the blocking zeros that factor out of every entry.
The simultaneous stabilizers have integral-action and hence,
achieve asymptotic tracking (and equivalently output distur-
bance rejection) of constant reference inputs with zero
steady-state error in addition to closed-loop stability. The
synthesis approaches are illustrated with numerical examples.
Although we discuss continuous-time systems here, all
results also apply to discrete-time systems with appropriate
modifications.

Notation. The region of instability U is the extended
closed right-half plane, i.e., U R= ∞ = ∈ ≥+C C∪{ } { | ( )s e s  

∞∪} { }0 . Real and positive real numbers are denoted by R and
R+; Rp denotes real proper rational functions of s; S ⊂ Rp is
the stable subset with no poles in U. The set of matrices with
entries in S is denoted by M(S); M ∈ M(S) is called uni-
modular if M-1 ∈ M(S). The m ¥ m identity matrix is Im; we
use I when the dimension is unambiguous. The H•-norm of
M(s) ∈ M(S) is denoted by �M(s)�, i.e., the norm �·� is
defined as M M ss U: sup ( ( ))= ∈∂ σ , where σ is the maximum
singular value and ∂U is the boundary of U. We use dn to
denote the degree of the polynomial n. For simplicity, we drop
(s) in transfer matrices such as G(s) where this causes
no confusion. We use coprime factorizations over S; i.e., for
G m m∈ ×Rp , C m m∈ ×Rp , G = Y-1X denotes a left-coprime-
factorization (LCF), C = ND-1 denotes a right-coprime-
factorization (RCF), where X, Y, N, D ∈ Sm¥m, and det
Y(•) � 0, det D(•) � 0. Let rankG(s) = r � m; then z ∈ U is
a transmission-zero of G if rankX(z) < r and it is a blocking-
zero of G if X(z) = 0. We refer to poles and zeros in the region
of instability U as U-poles and U-zeros.

II. PROBLEM DESCRIPTION

Consider the standard LTI, MIMO unity-feedback
system Sys(G, C) shown in Fig. 1, where G m m∈ ×Rp , and
C m m∈ ×Rp denote the plant’s and the controller’s transfer-
functions, and rank G = m. The objective is to design a simple
simultaneously stabilizing controller C that achieves asymp-
totic tracking of step-input references with zero steady-state
error for a finite set of plants.

Let G = Y-1X be an LCF and C = ND-1 be an RCF. Let
Heu denote the (input-error) transfer-function from u to e, and

Fig. 1. Unity-Feedback System Sys(G, C).
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let Hyu denote the (input-output) transfer-function from u to y;
then Heu = (I + GC)-1 = I - GC(I + GC)-1 = I - Hyu.

Definition 1. (i) The system Sys(G, C) is stable and has
integral-action if the closed-loop transfer-function from (u, v)
to (y, w) is stable, and the (input-error) transfer-function Heu

has blocking-zeros at s = 0. (ii) The controller C is said to
stabilize G if C is proper and the system Sys(G, C) is stable.
(iii) The controller C is said to be an integral-action controller
if C stabilizes G and D(0) = 0 for any RCF C = ND-1. �

The controller C stabilizes G ∈ M(Rp) if and only if

M YD XN:= + (1)

is unimodular [15]. Suppose that the system Sys(G, C)
is stable and that step input references are applied at u(t).
The steady-state error e(t) due to all step input vectors at u(t)
goes to zero as t → • if and only if Heu(0) = 0. By Definition
1, the stable system Sys(G, C) achieves asymptotic track-
ing of constant reference inputs with zero steady-state
error if and only if it has integral-action. By (1), write
Heu = (I + GC)-1 = DM-1Y. Then by Definition 1, Sys(G, C)
has integral-action if C = ND-1 is an integral-action controller
since D(0) = 0 implies Heu(0) = (DM-1Y)(0) = 0.

III. SIMULTANEOUS CONTROLLER
SYNTHESIS

It is assumed throughout that plants to be simultane-
ously stabilized using integral-action controllers have no
transmission-zeros at s = 0 since this condition is necessary
for the existence of integral-action controllers. For all plant
classes considered here, the transmission or blocking-zeros in
the region of stability C \ U are completely unrestricted.

3.1 Plants with blocking zeros at infinity

Let G denote a finite set of MIMO plants that all have
exactly r blocking-zeros at infinity, where r � 1, but no other
U-zeros. Let P denote a finite set of MIMO plants that have
no blocking-zeros at infinity or elsewhere in U. There may be
any number of plants in these sets; some plants may be stable
and some unstable. These plants have no other (transmission
and blocking) U-zeros; they may have any number of (trans-
mission and blocking) zeros anywhere in the stable region
C \ U . There are no restrictions on the poles; they may be
anywhere in C. In the SISO case, the relative degree of the
plants in G is r, and of those in P is 0. In the general MIMO
case, the plants Gj ∈ G that have r blocking-zeros at infinity
can be expressed as

G Y X
s a

G
s a

Ij j r j r
= =

+
⎡
⎣⎢

⎤
⎦⎥ +

⎡
⎣⎢

⎤
⎦⎥

− −
−

1 1

1
1 1

( ) ( )
; (2)

Y
s a

Gj r j=
+

∈−1 1

( )
( )M S , and X

s a
I

r
=

+
1

( )
for each Gj, for

any a ∈ R+. Since the plants Pj ∈ P have no transmission or
blocking-zeros in U (not even at infinity), their inverses are
stable, i.e., Pj

− ∈1 M( )S . Define

Y
s

G s Y s G sj r j
s

j
r

j s
( ) : ( ) ; ( ) ( ( )) .∞ = ⎛⎝⎜

⎞
⎠⎟ ∞ =−

→∞

−
→∞

1 1 1 (3)

Designate an arbitrary member Go ∈ G as the nominal
plant. By (3), Yo(•)-1 = (srGo(s))|s→•. For Gj ∈ G, define Fj as

F Y Y G Gj j o j o: ( ) ( ) ( )( ).= ∞ ∞ = ∞− −1 1 (4)

Lemma 1. (Necessary existence condition for simultaneous
integral-action controllers). Let Go be an arbitrary member of
the class G. If all plants in G can be simultaneously stabilized
using an integral-action controller, then for all Gj ∈ G,

det det( )( ) .F G Gj j o= ∞ >−1 0 (5)

Theorem 1. (Sufficient existence condition for simultane-
ous integral-action controllers). Let the constant matrices
F G Gj j o= ∞−( )( )1 be positive definite for all Gj ∈ G. Under
this assumption,

(i) all plants in G can be simultaneously stabilized using
an integral-action controller;

(ii) if r = 1, then all plants in G � P can be simultaneously
stabilized using an integral-action controller. �

The sufficient condition for the existence of simultaneous
integral-action controllers obviously holds if the class con-
tains plants with no U-zeros, with the exception of one
strictly-proper plant Go ∈ G since F G G Io o o= ∞ =−( )( )1 . We
formally state this case in the following corollary:

Corollary 1. If r = 1 and G contains at most one plant
Go ∈ G, then all plants P � {Go} can be simultaneously sta-
bilized using an integral-action controller. �

For SISO plants, the sufficient condition in Theorem 1 is
equivalent to Fj being positive, i.e., the strictly-proper plants
having the same high frequency gain sign. It follows from
Lemma 1 that this condition is necessary and sufficient for the
existence of integral-action controllers that simultaneously
stabilize all SISO plants in the class G. This important con-
clusion is also stated formally as a corollary.

1003A. N. Gündeş and A. Nanjangud: Simultaneous Stabilization and Constant Reference Tracking of LTI, MIMO Systems

© 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



Corollary 2. In the SISO case, where m = 1, all SISO plants
G ∈ Rp in G can be simultaneously stabilized using an
integral-action controller if and only if Fj > 0. �

Remarks 1. (i) The necessary condition (5) in Lemma 1 is
only for those plants that have a blocking-zero at infinity, i.e.,

it is not required for Pj ∈ P. For example, let G
s

o =
−
−
1

1
,

P
s

s
1

1

1
= +

−
and P2 = -2P1. Although (sP-1Go)(•) = -1 � 0,

and ( )( )P P1
1

2 2 0− ∞ = − /> , the simple integral-action control-

ler C
s

s
= − +4 2( )

stabilizes every plant in the set {Go, P1, P2}.

(ii) Condition (5) is not necessary for the existence
of simultaneously stabilizing controllers for the plants in G

unless integral-action is required. For example, G
s

o =
−
−
1

1

and G
s

1
1

4
=

+
, which violate (5), are simultaneously stabi-

lizable by the constant C = -2, but by Lemma 1, they are
not simultaneously stabilizable using any integral-action con-
trollers.
(iii) By Corollary 1, any finite set of plants that have
no U-zeros (including infinity), with the exception of one
plant with any number of blocking-zeros at infinity, are simul-
taneously stabilizable using an integral-action controller with
no additional conditions on these plants.

Proposition 1 provides a synthesis procedure that explicitly
constructs simultaneously stabilizing integral-action control-
lers for the set G (and for the set G � P when r = 1) of MIMO
plants. This construction is the proof of existence under the
sufficient condition of Theorem 1. We assume that the con-
stant matrices F G Gj j o= ∞−( )( )1 are positive definite for all
Gj ∈ G.

Proposition 1 (Simultaneous integral-action controller
synthesis). Let G be a finite set of MIMO plants
that have r blocking-zeros at infinity, but no other
U-zeros. Let P be a finite set of MIMO plants that have no
U-zeros.
(i) Suppose that r � 1. Choose an arbitrary plant Go ∈ G,
with Yo(•)-1 = (srGo(s))|s→•. Let g ∈ R+. Let j(s) be any
monic (r - 1)-th order Hurwitz polynomial (i.e., the roots
of j(s) are all in C \ U ); if r = 1, then j(s) = 1. If all
F G Gj j o= ∞−( )( )1 defined as in (4) are (symmetric) positive
definite for all Gj ∈ G, define Yj as

Ψ j j o js
s g s

G s Y F:
( ) ( )

( ) ( ) .=
+

∞ −⎡
⎣⎢

⎤
⎦⎥

− −1 1 1

ϕ
(6)

If r > 1, define Fj as

Φ j j o

j

s I
s

s g s
G s Y

g

s g s
G

:
( ) ( )

( ) ( )

( ) ( )

= +
+

∞⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

+

− −
−

−

α ϕ

α ϕ

1 1

1

11 1( ) ( ) .s Y Io ∞ −⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥
⎥

−

(7)

Let

C
s g s

s s g s
Yr

r
r r r o= +

+ + + −
∞−

− − −αβ ϕ
β β β

1
1 1 1

( ) ( )

( )[( ) ]
( ). (8)

Under these assumptions,
(a) Cr is an integral-action controller that simultaneously sta-
bilizes all plants Gj ∈ G for a, b ∈ R+ satisfying

α >
∈

max ,
G

j
j G

Ψ (9)

β > −
∈

( ) max .r
G

j
j

1
G
Φ (10)

(b) If r = 1, then Cr in (8) becomes

C
s g

s
Yo1 =

+ ∞α ( )
( ). (11)

Then C1 is an integral-action controller that simultaneously
stabilizes all plants Gj ∈ G for a ∈ R+ satisfying (9); C1 is an
integral-action controller that simultaneously stabilizes all
plants Gj, Pj in G � P for a ∈ R+ satisfying (9) and

α >
+

∞
∈

− −max ( ) ( ) .
P

j o
j

s

s g
P s Y

P

1 1
(12)

(ii) Suppose that r = 0, i.e., G = /0. Let K∈ Rm¥m be any
nonsingular matrix, and g ∈ R+. Let

C
s g

s
K0 =

+α ( )
. (13)

Then C0 is an integral-action controller that simultaneously
stabilizes all plants Pj ∈ P for a ∈ R+ satisfying

α >
+∈

− −max ( ) .
P

j
j

s

s g
P s K

P

1 1
(14)

�

Remarks 2. The controller Cr in (8) that simultaneously
stabilizes the plants in the set G, and the controller C1 in (11)
that simultaneously stabilizes the plants in the set G � P
when r = 1, are simple and low order integral-action
controllers, with r poles in each non-zero entry of the
controller transfer matrix. The transfer-function (matrix) of
Cr is bi-proper and has a stable inverse since g > 0 and j(s)
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is a strictly Hurwitz polynomial. The r poles of Cr that
appear in every non-zero entry are the roots of d(s) :=
(s + g)[(s + b)r-1 - br-1] + br-1s. Clearly, one pole is at s = 0
(provides integral-action); the remaining (r - 1) poles are all
in the open left-half plane C \ U . The zeros of Cr can be
chosen completely arbitrarily in the open left-half complex
plane since the choice of g > 0 and j(s) is free.

Example 1. Consider the following plants Gj ∈ G,

with r = 4: G
k

s p s p s p
o

o=
− − +( )( )( )1 2

2
3
2

, G j =

k s z

s p s p s p s h
j j

v

j
v

j

j

+
− − + −

( )

( )( )( )( )1 2
2

3
2

. Suppose that ko = k1 = 3,

k2 = 1, k3 = 2.5, k4 = 2; p1 = 1, p2 = 2, p3 = 3; z1 = 4,
z2 = 5, z3 = 1, z4 = 6; h1 = 5, h2 = -7, h3 = 0.5, h4 = -4;
v1 = 1, v2 = 3, v3 = 4, v4 = 1. With Yo(•)-1 = ko = 3,
Fj = ko/kj > 0, design a fourth order controller for the five
plants in G following Proposition 1a. Let g = 3 and
j(s) = (s + 2)3. By (9), we choose a = 25 > max{12, 21,
23.915, 21.60, 21} and b = 120 > 3 max{22, 37.4037,
20.2744, 31.7641, 22.7445} and obtain the controller

C
s s

s s s s
r =

× + +
+ + +

144 10 3 2

152 6 210 4 12170

5 3

2

( )( )

( . )( . )
as in (8), which has

integral-action due to the pole at s = 0; Cr has three other
poles in the open left-half plane. The plant with the highest
order in the set G is G3 (with an order of 8); the order of the
designed controller is only r = 4.

3.2 Plants with transmission zeros at infinity

In this section, we consider the set Gt of MIMO plants
with transmission-zeros at infinity that may not appear in
every entry of the transfer-matrix with the same multiplicity.
Let G Rj

t
p
m m∈ ⊂ ×G have an LCF G Y Xj j= −1 such that

rankX(•) < m but rankX(s) = m for all other s ∈ C+. Write

X
s a

X
r t=

+
1

( )
, (15)

where a ∈ R+, r � 0 is the number of blocking-zeros at
infinity for each Gj ∈ Gt, and rankXt(•) < m but Xt(•) � 0;
i.e., Xt book-keeps the transmission-zeros at infinity that
Gj ∈ Gt may have in addition to the r blocking-zeros at
infinity. With nk� and dk� as polynomials, write

X
n s

d s
t

k

k k m

−

∈

= ⎡
⎣⎢

⎤
⎦⎥

1

1

�

� � …

( )

( )
.

, { , , }
(16)

Since each Gj has no U-zeros other than at infinity, Xt
−1 has no

poles in the closed right-half complex plane C+ (i.e., the
polynomials dk� are Hurwitz) but may have poles at infinity.
Define the integers rk� as

ρ δ δ δ δ ρ δ δk k k k k k k kn d n d n d� � � � � � � �: , ; : , ,= − > = ≤if if0

(17)

and for � = 1, . . . , m, define r� and r� as

ρ ρ
ρ ρ
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� �

�
: max , :

,

,
.= =

+ + >
+ =

⎧
⎨
⎩≤ ≤1

0

1 0k m
k r

r r

r

if

if (18)

Let a ∈ R+; for � = 1, . . . , m, define λ ρ
�

�: ( )= +s a and

Λ :

( ) ( ) ( ) .

= [ ]
= + + +⎡⎣ ⎤⎦

diag

diag

λ λ λ
ρ ρ ρ

1 2

1 2

�
�

m

s a s a s a m (19)

Although Xt
−1 may be improper, Xt

− −1 1Λ is stable since
n

d s a
Sk

k

�

�
�( )+
∈ρ

. Define Yj(•) as

Y X s G s
s

X s G sj j s r t j
s

( ) : ( ( ) ( ) ) ( ) ( ) ,∞ = = ⎛⎝⎜
⎞
⎠⎟

−
→∞

−

→∞

1 11
(20)

i.e., Y s G s X sj
r

j t s
( ) ( ( ) ( ))∞ =− −

→∞
1 1 . Designate an arbi-

trary member Go ∈ Gt as the nominal plant. By (20),

Y s G s X so
r

o t s
( ) ( ) ( )∞ = ( )− −

→∞
1 1 . Define Fj as

F Y Y X G G Xj j o t j o t: ( ) ( ) ( )( ).= ∞ ∞ = ∞− − −1 1 1
(21)

We assume that the constant matrices Fj are positive definite
for all Gj ∈ Gt.

Proposition 2 (Simultaneous integral-action controller syn-
thesis for plants with transmission-zeros at infinity). Consider
the finite set Gt of MIMO plants. Choose any arbitrary plant
Go ∈ Gt, with Y s G s X so

r
o t s

( ) ( ) ( )∞ = ( )− −
→∞

1 1 . For � = 1, . . . ,
m, let j�(s) be any monic (r� - 1)-th order Hurwitz polynomial
(i.e., j�(s) has (r� - 1) roots in C\U); j�(s) = 1 if r� = 1. For
� = 1, . . . , m, define j� and c� as

φ
ϕ ρ

ρ�
� �

�
( ) :

( ) ( ),

,
,s

s g s r

r
=

+ + >
+ =

⎧
⎨
⎩

if

if

0

1 0 (22)

χ β β�
� �( ) : ( ) .s s r r= + −− −1 1

(23)

If Fj = Yj(•)Yo(•)-1 defined as in (21) are positive definite for
all Gj ∈ Gt, define Ytj, and Ftj as

Ψtj j o

m

r

r

s Y Y
s

s a

s a

: ( )
( )

( )

( ) (
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⎣⎢

⎤
⎦⎥

⎛

⎝⎜

+
+

−

=

−

1

1

1
diag

diag

φ� �

�

� rr

m

jF+
=

⎡
⎣⎢

⎤
⎦⎥

−
⎞

⎠⎟ρ�
�

)
,

1

(24)
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Φ Ψtj j tj j o

r

s s s a F s I Y Y

s a

s

( ) : ( )( ) ( )

( )

(

= + + + ∞
⎡

⎣
⎢
⎢

+

− −

−

α
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1

diag
�

� ))
.

⎡
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−
⎤

⎦
⎥
⎥=� 1

m
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(25)

Let

C X
s

s s g s
Yt t

r

r

m

o=
+ +

⎡
⎣⎢

⎤
⎦⎥

∞− −
−

−
=

α β ϕ
β χ

1 1
1

1
1

Λ diag
�

�

�

� �

( )

( ) ( )
( ). (26)

Under these assumptions, Ct is an integral-action controller
that simultaneously stabilizes all plants Gj ∈ Gt for a, b ∈ R+

satisfying

α >
∈

max ( ) ,
G

tj
j

t
s

G
Ψ (27)

β > −
≤ ≤ ∈
max( ) max ( ) .
1

1
�

�
m G

tjr s
j

tG
Φ (28)

Remarks 3. (i) (Parametrization of all simultaneously sta-
bilizing integral-action controllers). The integral-action con-
trollers shown in Propositions 1 and 2, which simultaneously
stabilize the plants in G (or G � P when r = 1), or Gt are low
order controllers (with r poles in each non-zero entry of the
controller transfer matrix Cr and r� poles in each non-zero
entry of the controller transfer matrix Ct). Although the syn-
thesis methods offer flexibility in the choice of parameters,
the fact that the order is low restricts achievable design objec-
tives. Once the existence of simultaneous integral-action con-
trollers is established through the proposed controllers, a
parametrization of other simultaneous integral-action stabi-
lizers without order restrictions can be obtained as follows:
Under the assumptions of Proposition 1, suppose that Cr is the
integral-action controller in (8) or in (11) if r = 1. Let Go ∈ G
be any member of the set chosen as the nominal plant. Then
all integral-action controllers simultaneously stabilizing the
plants G Y Xj j= ∈−1 G are

C C
s a

G QC I
s a

QCr r o r r r= +
+

⎛
⎝⎜

⎞
⎠⎟

−
+

⎛
⎝⎜

⎞
⎠⎟

−
−

1 11

1

( ) ( )
, (29)

where Q ∈ M(S) is such that

I
s a

I C G C G G I Q
r r j r j o+

+
+ −⎡

⎣⎢
⎤
⎦⎥

− −1 1 1

( )
( ) ( )

is unimodular for alll G j ∈G.

(30)

As a sufficient condition to satisfy this unimodularity
condition in (30), Q ∈ M(S) can be chosen such that

Q I C G C G G Ir j r j o< + −− − −
( ) ( ) .1 1 1

The simultaneously stabilizing controllers in (29) have
integral-action if and only if Q(0) = 0. Although the controller
in (8) has transfer-function matrix with r-th order entries,
the order of the controllers in (29) are unrestricted. The
parametrization in (29) can be used to select controllers
to achieve other design objectives that may not be achiev-
able with the order restriction of Cr. Similarly, under
the assumptions of Proposition 2, suppose that Ct is the
integral-action controller in (26). Let Go ∈ Gt be any member
of the set chosen as the nominal plant. Then all integral-
action controllers simultaneously stabilizing the plants
G Y Xj j

t= ∈−1 G are given by

C C Y Q
s

s s
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I X

t o

r

r

m

o= +
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=
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m

odiag
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−
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1
1

1

( )

( )
( ) ,

(31)

where Q ∈ M(S) is such that

I
s

s s
Y I G C

G

r

r

m

o j t+
+

⎡
⎣⎢

⎤
⎦⎥

∞ +
⎡

⎣
⎢
⎢

−

−
=

−diag
β φ

β χ

�

�

�

� �

1

1
1

1( )

( )
( )( )

jj o jXY Y X Q( )− ⎤
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is unimodular

(32)

for all Gj ∈ Gt. To satisfy this unimodularity condition in (32),
Q ∈ M(S) can be chosen such that

Q
s

s s
Y I G C G XY

r

r

m

o j t j<
+

⎡
⎣⎢

⎤
⎦⎥

∞ +
−

−
=

−diag
β φ

β χ

�

�

�

� �

1

1
1

1( )

( )
( )( ) ( oo jY X−

−

) .

1

The simultaneously stabilizing controllers in (31) have
integral-action if and only if Q(0) = 0.
(ii) (Robustness of the simultaneously stabilizing
controllers). By standard robustness arguments, the
simultaneously stabilizing controllers Cr or Ct in Propositions
1 and 2, achieve robust simultaneous stability under
‘sufficiently small’ plant uncertainty for the plant classes
considered. For the set G, the controller Cr in (8) robustly
simultaneously stabilizes the additively perturbed plants
Gj + Dj for all Dj ∈ Sm¥m such that �Dj� < �Cr(I + GjCr)-1�-1. For
multiplicative perturbations, Cr robustly simultaneously
stabilizes the plants Gj(I + Dj) under all pre-multiplicative
perturbations Dj ∈ Sm¥m such that �Dj� < �CrGj(I + CrGj)-1�-1.
Similarly, C robustly simultaneously stabilizes the plants
(I + Dj)Gj under all post-multiplicative perturbations
Dj ∈ Sm¥m such that �Dj� < �GjCr(I + GjCr)-1�-1. Some of the
free controller parameter choices in the synthesis may be used
to maximize the allowable perturbation magnitudes. Similar
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robust stability conclusions apply to the plant class P with the
controllers C1 or C0. For the plant set Gt, the controller Ct in
(26) of Proposition 2 robustly simultaneously stabilizes the
perturbed plants where the uncertainties satisfy similar
bounds.

Example 2. Consider the linear model of the VZ-4 doak, a
vertical take-off and landing aircraft [10]:

G

s z

s s s

s p s p

j

j

j j

=

+
+ − +

−
− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤
( . )( . . )

.

0 8223 0 6401 0 5326
0

1 08 1

2

⎦⎦

⎥
⎥
⎥
⎥

>, .z j 0

The states of the system are forward velocity, downward
velocity, pitch rate and pitch angle. The outputs are pitch
angle and altitude rates; the inputs are elevator angle and
thrust. The parameters for the nominal plant Go are zo = 0.137,
po = -0.137. The set of poles for each Gj is {pj, -0.8223,
0.3201 � j0.6559}. These plants have no U-zeros except at
infinity (i.e., zj > 0), and therefore they can be written as
G Y Xj j= −1 , where

Y

s s s

s z s a

s p

s

j
j

j

− =

+ − +
+ +

− −
+

1

2

2

0 8223 0 6401 0 5326
0
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( )

( aa

X
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,
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.

( ) ( )

,
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=
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for any a > 0. Following Proposition 2, we design a
simultaneously stabilizing controller Ct as in (26), with

Y Yo j( ) ( )∞ = ∞ =
−

⎡
⎣⎢

⎤
⎦⎥

1 0

0 1
, and Fj = I. With r = 1, we have

X
s a

s a
s a

Xt=
+

+
⎡
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⎢
⎢

⎤
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⎥
⎥
⎥
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+
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1
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1 08 1

1

( )
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.
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as in (15); then,

X
s a

s a
s at

− =
+

− +
⎡
⎣⎢

⎤
⎦⎥

= +
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
0

1 08 1

1
0

0 1

( )

. ( )
, ( ) ,Λ

where r1 = 1, r2 = 0, r1 = 2, r2 = r = 1. If we choose
j1(s) = (s + 2), j2(s) = 1, g = 3, then f1(s) = (s + 2)(s + 3),
f2(s) = (s + 3), c1(s) = s, c2(s) = 0. If the plants Gj all

have zj = z0 = 0.317, then �Ytj� = max{4.9548, |3 + pj|}, and
�Yto� = 4.9548. Suppose that Gt contains finitely many plants
Gj ∈ Gt, where -15 < pj < 7, and 0 < zj < 7. Then we can
choose a = 12 satisfying (27), and b = 18 satisfying (28).
By (26), an integral-action controller stabilizing any number
of plants Gj ∈ Gt is given by

C

s s

s s

s s

s s

s

s

t =

+ +
+

− × + +
+

− +

⎡

12

18 2 3

21
0

1 08 18 2 3

21

3

( )( )

( )

. ( )( )

( )

( )

⎣⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

The order of each entry in the integral-action controller Ct

does not exceed r� � 2. The poles of Ct are all in the open
left-half plane C\U except for the one at s = 0 due to the
integral-action requirement.

IV. CONCLUSIONS

This work identified some important classes of any
finite number of plants that can be simultaneously stabilized
using the same simple controller. The plant classes considered
here have restrictions only on their zeros in the region of
instability, while the poles are completely unconstrained.
These restrictions are due to the difficulties involving simul-
taneous stabilization of three or more plants with low order
tracking controllers. Systematic synthesis procedures are pro-
posed for each plant class, where the controller parameters
and the design choices are explicitly defined. The proposed
designs allow freedom in the parameters, which should be
used to satisfy additional performance criteria that the design
may require.

While asymptotic tracking of constant reference inputs
is achieved by the integral term in the designed controllers,
performance objectives beyond tracking (equivalently, dis-
turbance rejection) were not considered within the scope of
this paper. The goal of this study was to establish simulta-
neous stabilizability using low order controllers, and it
was shown that these controllers achieve robust stability
under sufficiently small additive and multiplicative plant
uncertainty.

V. APPENDIX

5.1 PROOFS

Proof of Lemma 1. If all plants Gj ∈ G as in (2) can be
simultaneously stabilized by an integral-action controller,
then by Definition 1, there exists C = ND-1 such that D(0) = 0
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satisfying (1); i.e., Mo = XN + YoD and Mj = XN + YjD
are unimodular for all Gj ∈ G. Since D(0) = 0,
we have Mo(0) = X(0)N(0) = Mj(0), which implies
det ( ) ( ) detM M Ij o0 0 1 01− = = > . By (2), X(•) = 0 implies
Mo(•) = Yo(•)D(•), Mj(•) = Yj(•)D(•). Since M Mj o

−1 is
unimodular, det( ( ) ( ))M s M sj o

−1 must have the same sign
at all s ∈ U (including s = 0 and s = •). Therefore,
det(Mj(•)Mo(•)-1) = det(Yj(•)Yo(•)-1) = det Fj > 0.

Proof of Proposition 1. (i) Let Cr be as in (8); then
C M Sr

− ∈1 ( ) since g > 0 and j(s) is Hurwitz. Define

χ β β χ β( ) : [( ) ], : ( ) .s s d s g sr r r= + − = + +− − −1 1 1
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1
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where N = ab-1I, D Cr
r= − −αβ 1 1. By (1), Cr stabilizes each

Gj ∈ G as in (2) if and only if
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Therefore, Mj is unimodular for each Gj ∈ G and hence, the
controller Cr in (8) stabilizes each Gj ∈ G.
(b) For r = 1, Yj in (6) becomes Ψ j =

j o js
s g

G s Y F=
+

∞ −⎡
⎣⎢

⎤
⎦⎥
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( )
( ) ( ) , and the controller Cr in

(8) becomes C1 as in (11). Since C1
1− ∈M( )S , C1

also stabilizes each Pj ∈ P if and only if
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hence, �M j is unimodular for each Pj ∈ P.
(ii) The controller C0 in (13) is the same as C1 in (11)
with Yo(•) replaced by an arbitrary constant nonsingular
matrix K; C0 stabilizes each Pj ∈ P if and only if
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s g
P Kjα( )+

<− −1 1 1 and hence, �M j

is unimodular for each Pj ∈ P.

Proof of Proposition 2. Let Ct be as in (26); then an RCF
Ct = ND-1 is given by
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For a satisfying (27), Ψ Ψtj j tjs F s I s( ) ( ) ( )+ ≤ <−α
α

1 1
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therefore, Wj is unimodular. Note that Wj(•) = Fj. With
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If r� = 1, then
χ
β
�

�s s r( )+
=−1

0. If r� > 1, then

χ
β

β β
β β

� �

�

� �
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s
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r
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⎣⎢
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−
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1

1

1 , and it follows that

Φ Φtj r

m

r tj

s

s s

r
diag

χ
β β

�

�

�

� �

( )

( )
max

( )

+
⎡
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⎤
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≤ − <−
=

1
1

1
1 for b

satisfying (28). Therefore, Mj is unimodular for each Gj ∈ Gt

and hence, the controller Ct in (26) stabilizes each Gj ∈ Gt.
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1009A. N. Gündeş and A. Nanjangud: Simultaneous Stabilization and Constant Reference Tracking of LTI, MIMO Systems

© 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



A. Lindquist (Eds.) Modelling, identification and robust
control, Elsevier, Amsterdam, pp. 431–443 (1986).

2. Blondel, V., G. Campion, and M. Gevers, “A sufficient
condition for simultaneous stabilization,” IEEE Trans.
Autom. Control, Vol. 38, pp. 1264–1266 (1993).

3. Blondel, V., M. Gevers, R. Mortini, and R. Rupp, “Simul-
taneous stabilization of three or more plants: Conditions
on the positive real axis do not suffice,” SIAM J. Control
Optim., Vol. 32, No. 2, pp. 572–590 (1994).

4. Blondel, V. D., Simultaneous Stabilization of Linear
Systems, Springer Verlag, Heidelberg (1994).

5. Fonte, C., M. Zasadzinski, C. Bernier-Kazanksev, and M.
Daouach, “On simultanous stabilization of three or
more plants,” IEEE Trans. Autom. Control, Vol. 46, pp.
1101–1107 (2001).

6. Francis, B. A. and W. A. Wonham, “The internal model
principle for linear multivariable regulators,” Appl. Math.
Optim., Vol. 2, No. 2, pp. 170–195 (1975).

7. Galindo, R., “Simultaneous stabilization of full state
information linear time-invariant systems,” Asian J.
Control, Vol. 14, No. 5, pp. 1382–1386 (2012).
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A. N. Gündeş received Ph.D. degree in EECS from Univer-
sity of California, Berkeley, USA, (1988). She is Professor
of Electrical and Computer Engineering, a member of
Mechanical and Aerospace Engineering Graduate Program
and a member of Graduate Group in Applied Mathematics at
University of California, Davis.

A. Nanjangud received Bachelor of Engi-
neering degree in Mechanical Engineering
from B.I.E.T., Davangere, India (2005),
Master of Technology degree in Aerospace
Enginnering from I.I.T., Bombay, India
(2007), and M.S. degree in Electrical and
Computer Engineering from University of

California, Davis, USA (2012). He is currently working
towards Ph.D. degree in Mechanical and Aerospace Engin-
neering at UC Davis.

1010 Asian Journal of Control, Vol. 15, No. 4, pp. 1001–1010, July 2013

© 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society


