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Abstract— It is shown that any number of MIMO plants that
have no zeros in the region of instability can be simultaneously
stabilized using low order linear, time-invariant integral-action
controllers. These plants may be stable or unstable and may
have poles anywhere in the complex plane. The common
controller achieves asymptotic tracking of step-input references
with zero steady-state error and has a low order transfer-
function. Systematic synthesis methods are presented, and a
parametrization of all simultaneously stabilizing controllers
with integral-action is also provided.

I. INTRODUCTION

Simultaneous stabilization of a finite family of (three or

more) plants using linear, time-invariant (LTI) controllers is

a challenging and important control problem. The issue of

simultaneous stabilization of a set of models to be controlled

arises in linearization of nonlinear process models at various

operating points. Maintaining stability under sensor or ac-

tuator failures for reliable operation also leads to dynamic

models corresponding to failure modes to be all controlled

using a common controller [10]. The robust control problem

deals with controller design in the face of an infinite number

of plant models all within a neighborhood of a nominal

model, which represent perturbations of the nominal plant.

Simultaneous stabilization is a hard open problem in linear

systems theory. Conditions for existence of simultaneously

stabilizing controllers have been explored extensively [11],

[4]. The well established result that the simultaneous sta-

bilization of n plants is equivalent to strong stabilization

of n − 1 plants leads to explicit conditions for existence

of simultaneously stabilizing controllers for n = 2: Two

plants are simultaneously stabilizable if and only if a related

system is strongly stabilizable, i.e., can be stabilized using a

stable controller. Strong stabilizability of this single system

can be checked via the parity interlacing property of the

positive real poles and (blocking) zeros [12], [11], [4]. For

simultaneous stabilizability of three or more plants, there

are no necessary and sufficient conditions available [2], [3],

[4] in the general case. Alternative strategies such as time-

varying or sampled-data controllers have also been developed

to overcome the limitations of LTI controllers (e.g., [9]).

The problem considered in this work is the simultaneous

stabilization of a finite set of LTI, multi-input multi-output

(MIMO) plants using linear, time-invariant output-feedback

controllers. Single-input single-output (SISO) plants are also

included. The results here deal with the problem using only
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time-invariant controllers. The synthesis methods result in

low order controllers to avoid complexity issues for computa-

tion and implementation. An added design goal is asymptotic

tracking of constant reference inputs, achieved with poles du-

plicating the dynamic structure of the exogenous signals that

the regulator has to process; these integral-action controllers

obey the well-known internal model principle [5].

Exploring sufficient conditions for simultaneous stabiliz-

ability of three or more plants is important since explicit

existence conditions for the completely general case of three

or more arbitrary plants are not possible to obtain (see [4]).

Sufficient conditions lead to identifying classes of practically

relevant plants for which simultaneous stabilization is achiev-

able. For SISO plants, an especially interesting class was

considered in [1], where it was shown that scalar plants that

are all minimum-phase, strictly proper, and have the same

high-frequency gain sign can be simultaneously stabilized by

stable and strictly proper controllers. Also for SISO plants, an

algorithm for simultaneous stabilization of up to four plants

in groups was given in [8]. For MIMO plants, a simultaneous

controller synthesis with integral-action that applies only

to stable plants was presented in [6]. The goal here is

to extend simultaneous integral-action controller synthesis

that applies to unstable as well as stable MIMO or SISO

plant classes. Such simultaneous stabilizers would therefore

achieve asymptotic tracking (and equivalently output dis-

turbance rejection) of constant reference inputs with zero

steady-state error in addition to closed-loop stability.

The plant classes considered in Section III-A have

blocking-zeros at infinity but otherwise have no right-half

plane zeros. Theorem 1 gives a sufficient condition for

simultanous stabilizability of such plants based on their high

frequency gain matrices. Proposition 1 develops a synthesis

method for simultaneously stabilizing integral-action con-

trollers whose transfer-functions are the same order as the

number of blocking zeros at infinity. Section III-B extends

the synthesis to plants that may have other transmission zeros

at infinity in addition to the blocking zeros that factor out

of every entry. In all cases, the plants may be stable or

unstable, with any number of poles anywhere in the complex

plane; they may have zeros in the left half plane and infinity.

The synthesis approaches developed here are illustrated with

numerical examples. Although we discuss continuous-time

systems here, all results apply also to discrete-time systems

with appropriate modifications.

The following notation is used: U denotes the extended

closed right-half plane, i.e., U = C+ ∪ {∞} = { s ∈
C | Re(s) ≥ 0 } ∪ {∞}; R , R+ denote real and positive
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real numbers; Rp denotes real proper rational functions of

s; S ⊂ Rp is the stable subset with no poles in U ; M(S) is

the set of matrices with entries in S ; M ∈ M(S) is called

unimodular if M−1 ∈ M(S); Im is the m × m identity

matrix; we use I when the dimension is unambiguous. The

H∞-norm of M(s) ∈ M(S) is denoted by ‖M(s)‖ (i.e., the

norm ‖ · ‖ is defined as ‖M‖ := sups∈∂U σ̄(M(s)), where

σ̄ is the maximum singular value and ∂U is the boundary

of U). We use δn to denote the degree of the polynomial

n. For simplicity, we drop (s) in transfer matrices such

as G(s) where this causes no confusion. We use coprime

factorizations over S ; i.e., for G ∈ Rp

m×m, C ∈ Rp

m×m,

G = Y −1X denotes a left-coprime-factorization (LCF),

C = ND−1 denotes a right-coprime-factorization (RCF),

where X,Y,N,D ∈ S
m×m, detY (∞) 6= 0, detD(∞) 6= 0.

Let rankG(s) = r ≤ m; then z ∈ U is a tansmission-zero

of G if rankX(z) < r and it is a blocking-zero of G if

X(z) = 0. We refer to poles and zeros in the region of

instability U as U-poles and U-zeros.

II. PROBLEM DESCRIPTION

Consider the standard LTI, MIMO unity-feedback sys-

tem Sys(G,C) shown in Fig. 1, where G ∈ Rp

m×m,

and C ∈ Rp

m×m denote the plant’s and the controller’s

transfer-functions, and rank G = m . The objective is to

design a simple simultaneously stabilizing controller C that

achieves asymptotic tracking of step-input references with

zero steady-state error for a finite set of plants.
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Fig. 1. Unity-Feedback System Sys(G, C).

Let G = Y −1X be an LCF and C = ND−1 be an RCF,

where Y,X,D ,N ∈ S
m×m, detY (∞) 6= 0, detD(∞) 6=

0. Then C stabilizes G ∈ M(Rp) if and only if

M := Y D + X N (1)

is unimodular [11]. Let the (input-error) transfer-function

from r to e be denoted by Her and let the (input-output)

transfer-function from r to y be denoted by Hyr ; then

Her = (I +GC)−1 = I−GC(I +GC)−1 = I−Hyr . (2)

Definition 1: i) The system Sys(G,C) is stable and has

integral-action if the closed-loop transfer-function from (r, v)
to (y, w) is stable, and the (input-error) transfer-function Her

has blocking-zeros at s = 0. ii) The controller C is said to

be an integral-action controller if C stabilizes G and D(0) =
0 for any RCF C = ND−1. �

Suppose that the system Sys(G,C) is stable and that step

input references are applied at r(t). The steady-state error

e(t) due to step inputs at r(t) goes to zero as t → ∞
if and only if Her(0) = 0. By Definition 1, the stable

system Sys(G,C) achieves asymptotic tracking of constant

reference inputs with zero steady-state error if and only if

it has integral-action. By (1), write Her = (I + GC)−1 =
DM−1Y . Then by Definition 1, Sys(G,C) has integral-

action if C = ND−1 is an integral-action controller since

D(0) = 0 implies Her(0) = (DM−1Y )(0) = 0.

III. SIMULTANEOUS CONTROLLER SYNTHESIS

It is assumed throughout that plants to be simultane-

ously stabilized with integral-action controllers have no

transmission-zeros at s = 0 since this condition is necessary

for existence of integral-action controllers.

A. Plants with blocking zeros at infinity

Define finite sets G, Ĝ, and P of MIMO plants that all have

exactly r, 1, and 0 blocking-zeros at infinity, respectively.

There may be any number of plants in these sets; some

plants may be stable and some unstable. These plants have

no other (transmission and blocking) U-zeros; they may have

(transmission and blocking) zeros anywhere in the stable

region C \ U . There are no restrictions on the poles; they

may be anywhere in C. In the SISO case, the relative degree

of these plants is r, 1 and 0, respectively. What is meant by

r blocking-zeros at infinity for the MIMO case is that for

any a ∈ R+ , the plants Gj ∈ G can be expressed as

Gj = Y −1
j X = [

1

(s + a)r
G−1

j ]−1 [
1

(s + a)r
I ] ; (3)

Yj = 1
(s+a)r G−1

j ∈ M(S), and X = 1
(s+a)r I for each Gj .

Similarly, the plants Ĝj ∈ Ĝ can be expressed as

Ĝj = Ŷ −1
j X̂ = [

1

s + a
Ĝ−1

j ]−1 [
1

s + a
I ] ; (4)

for any a ∈ R+ , Ŷj = 1
s+a

Ĝ−1
j ∈ M(S), and X̂ = 1

s+a
I

for each Ĝj . We denote the plants in P as Pj ∈ P ;

since these plants have no zeros in U , including infinity, we

have P−1
j ∈ M(S). The largest set under consideration for

simultaneous stabilization is G ∪ Ĝ ∪ P . Define

Yj(∞) := (
1

sr
Gj(s)

−1 )|s→∞ ,

Ŷj(∞) := (
1

s
Ĝj(s)

−1 )|s→∞ ; (5)

Yj(∞)−1 = (srGj(s))|s→∞; Ŷj(∞)−1 = (sĜj(s))|s→∞.

Designate an arbitrary member Go ∈ G in the set with the

largest number r of blocking-zeros at infinity as the nominal

plant. Obviously, this plant may be one from Ĝ if r = 1 or

from P if r = 0. By (5), Yo(∞)−1 = ( sr Go(s) ) |s→∞ .

Define Fj and F̂j as

Fj := Yj(∞)Yo(∞)−1 = (G−1
j Go)(∞) ,

F̂j := Ŷj(∞)Yo(∞)−1 = (sr−1 Ĝ−1
j Go)(∞) . (6)

Lemma 1: (Necessary existence condition for simultane-

ous integral-action controllers): If all plants in G ∪ Ĝ can be

simultaneously stabilized using an integral-action controller,

then for all Gj , Ĝj ,

det Fj = det (G−1
j Go )(∞) > 0 ,

det F̂j = det ( sr−1 Ĝ−1
j Go )(∞) > 0 . (7)
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Theorem 1: (Sufficient existence condition for simultane-

ous integral-action controllers): If the constant matrices

Fj = (G−1
j Go )(∞) and F̂j = det ( sr−1 Ĝ−1

j Go )(∞) are

diagonal and positive-definite for all Gj ∈ G, Ĝj ∈ Ĝ, then

all plants in G∪Ĝ∪P can be simultaneously stabilized using

an integral-action controller. �

Corollary 1: If G ∪ Ĝ is empty or contains only one

plant, Go , then all plants P ∪ {Go } can be simultaneously

stabilized using an integral-action controller.

Remarks 1: 1) The necessary condition (7) in Lemma 1 is

only for those plants that have a blocking-zero at infinity, i.e.,

it is not required for Pj ∈ P . For example, let Go = −1
s−1 ,

P = s+1
s−1 ; (sP−1Go)(∞) = −1 6> 0; the simple integral-

action controller C = −4(s+2)
s

stabilizes both Go and P .

2) Condition (7) is not necessary for existence of simultane-

ously stabilizing controllers for the plants in G ∪ Ĝ unless

integral-action is required. For example, Go = −1
s−1 and

G1 = 1
s+4 , which violate (7), are simultaneously stabilizable

by the constant C = −2, but by Lemma 1, they are not simul-

taneously stabilizable using any integral-action controllers.

3) For SISO plants, the sufficient condition in Theorem 1 is

equivalent to Fj , F̂j being positive, i.e., the strictly-proper

plants having the same high frequency gain sign. 4) By

Corollary 1, any finite set of plants that have no U-zeros

(including infinity), with the exception of one plant with

any number of blocking-zeros at infinity, are simultaneously

stabilizable using an integral-action controller assuming no

additional conditions on these plants. �

Proposition 1 provides a synthesis procedure that explic-

itly constructs simultaneously stabilizing integral-action con-

trollers for the set G = G ∪ Ĝ ∪ P of MIMO plants. This

construction is therefore the proof of existence under the suf-

ficient condition of Theorem 1. We assume that the constant

matrices Fj = (G−1
j Go )(∞) are diagonal and positive-

definite for all Gj , and that F̂j = ( sr−1 Ĝ−1
j Go )(∞) are

positive-definite for all Ĝj . Define

Fj = diag
[
fj1 fj2 · · · fjm

]
, fj := max

1≤i≤m
fji . (8)

Proposition 1: (Simultaneous integral-action controller

synthesis): Consider the finite set G∪Ĝ∪P of MIMO plants

that have r, 1, or 0 blocking-zeros at infinity.

a) Suppose that r > 1. Choose an arbitrary plant Go ∈ G,

with Yo(∞)−1 = ( sr Go(s) ) |s→∞ . Let ϕ(s) be any monic

r-th order Hurwitz polynomial (roots in C \ U). Let

Cr = β
ϕ(s)

(s + α)r − αr
Yo(∞) . (9)

If Fj = (G−1
j Go)(∞) defined as in (6) is diagonal, positive

definite for all Gj ∈ G, define Ψj as

Ψj := s [
1

ϕ
G−1

j (s)Yo(∞)−1F−1
j − I ] . (10)

If F̂j = (sr−1 Ĝ−1
j Go)(∞) is positive definite for all Ĝj ∈

Ĝ, define Ψ̂j as

Ψ̂j := s [
[ (s + α)r − αr ]

sϕ(s)
Ĝ−1

j (s)Yo(∞)−1 − F̂j ] . (11)

Under these assumptions,

i) Cr is an integral-action controller that simultaneously

stabilizes all plants Gj ∈ G for α, β ∈ R+ satisfying

α > r max
Gj∈G

‖Ψj ‖ , β ≥ αr max
Gj∈G

fj . (12)

ii) Cr is an integral-action controller that simultaneously

stabilizes all plants Gj , Ĝj in G∪Ĝ for α ∈ R+ satisfying

(12) and β ∈ R+ satisfying (12) and

β > max
Ĝj∈Ĝ

‖ Ψ̂j ‖ . (13)

iii) Cr is an integral-action controller that simultaneously

stabilizes all plants Gj , Ĝj , Pj in G ∪ Ĝ ∪ P for α ∈ R+

satisfying (12), β ∈ R+ satisfying (12)-(13) and

β > max
Pj∈P

‖P−1
j Yo(∞)−1 [ (s + α)r − αr ]

ϕ(s)
‖ . (14)

b) Suppose r = 1, i.e., G = ∅ . Choose an arbitrary plant

Go ∈ Ĝ, Yo(∞)−1 = ( sGo(s) ) |s→∞ . Let ϕ(s) = (s + g)
be any monic 1-st order Hurwitz polynomial (g > 0). Let

C1 = β
(s + g)

s
Yo(∞) . (15)

If F̂j = (Ĝ−1
j Go)(∞) is positive definite for all Ĝj ∈ Ĝ,

define Ψ̂j as

Ψ̂j := s [
1

(s + g)
Ĝ−1

j (s)Yo(∞)−1 − F̂j ] . (16)

Under these assumptions,

i) C1 is an integral-action controller that simultaneously

stabilizes all plants Ĝj in Ĝ for β ∈ R+ satisfying (13).

ii) C1 is an integral-action controller that simultaneously

stabilizes all plants Ĝj , Pj in Ĝ ∪P for β ∈ R+ satisfying

(13) and

β > max
Pj∈P

‖
s

s + g
P−1

j Yo(∞)−1 ‖ . (17)

c) Suppose r = 0, i.e., G = ∅ , Ĝ = ∅ . Let K ∈ R
m×m be

any nonsingular matrix, and ϕ(s) = (s + g) be any monic

1-st order Hurwitz polynomial (g > 0). Let

C0 = β
(s + g)

s
K . (18)

Then C0 is an integral-action controller that simultaneously

stabilizes all plants Pj ∈ P for β ∈ R+ satisfying

β > max
Pj∈P

‖
s

s + g
P−1

j (s)K−1 ‖ . (19)
�

Remarks 2: The integral-action controller Cr in (9) that

simultaneously stabilizes the plants in the set G ∪ Ĝ ∪ P is

simple. The transfer-function of Cr is bi-proper and has a

stable inverse since ϕ is a strictly Hurwitz polynomial. The

poles of Cr are the roots of χ(s) = (s+α)r −αr. One root

is at s = 0 (provides integral-action); the remaining r − 1
roots are all in the open left-half plane C \ U . The zeros of

Cr can be chosen completely arbitrarily in the open left-half

complex plane since the choice of ϕ(s) is free. �
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Example 1: Consider the plants Gj ∈ G,

with r = 4: Go = ko

(s−p1)(s−p2)(s2+p2

3
)

, Gj =
kj(s+zj)

vj

(s−p1)(s−p2)(s2+p2

3
)(s−pj)

vj . Pick ko = k1 = 3, k2 = 1,

k3 = 2.5, k4 = 2; p1 = 1, p2 = 2, p3 = 3; z1 = 4,

z2 = 5, z3 = 1, z4 = 6; p1 = 5, p2 = −7, p3 = 0.5,

p4 = −4; v1 = 1, v2 = 3, v3 = 4, v4 = 1. With

Yo(∞)−1 = ko = 3, Fj = ko/kj > 0, max fj = 3,

design a fourth order controller for the five plants in G
following Proposition 1-(i). Let ϕ(s) = (s + 2)4. By (12),

we choose α = 90 > 4max{11, 20, 7.4093, 17, 13} and

β = 1.9683 × 108 = 3α4 and obtain the controller

Cr = 65610000(s+2)4

s(s+180)((s+90)2+8100) as in (9), which has

integral-action due to the pole at s = 0 and has three

other poles at {−180,−90 ± j90}. Now include the

plants Ĝj ∈ Ĝ to be simultaneously stabilized with the

plants in G: Ĝ1 = k̂1

s−p1

, Ĝ2 = k̂2

s−p2

, Ĝ3 = k̂3(s+1)
s2+p2

3

,

with k̂1 = 9, k̂2 = 2, k̂3 = 1. By (11), max{‖Ψ̂j‖} =
max{6.8711×104, 4.2087×105, 2.1271×106}, the choice of

β in the controller designed for the set G satisfies (13); hence,

Cr simultaneously stabilizes the eight plants in G ∪ Ĝ. Now

include the plants Pj ∈ P to be simultaneously stabilized

with the plants in G ∪ Ĝ: P1 =
−kj(s+zj)

vj

(s−pj)
vj , j = 1, 2,

P3 = 10(s+10)2

s2+10 . Note that P1, P2 do not have the same

high frequency gain sign as Go . Condition (14) is satisfied

for β > max{1.4594 × 105, 9.3326 × 105, 3.1182 × 103}.

The choice of β in the controller designed for the set G
satisfies (14), and hence, Cr simultaneously stabilizes the

eleven plants in the set G ∪ Ĝ ∪ P . We can include any

number of plants with four, one, or no zeros at infinity and

adjust α, β for the additional plants to achieve simultaneous

stabilization with integral-action. �

B. Plants with transmission zeros at infinity

In this section we consider the set Gt of MIMO plants

with transmission-zeros at infinity that may not appear in

every entry of the transfer-matrix with the same multiplicity.

Let Gj ∈ Gt ⊂ Rp

m×m have an LCF Gj = Y −1
j X such

that rankX(∞) < m but rankX(s) = m for s ∈ C+ . Write

X =
1

(s + a)r
Xt , (20)

where a ∈ R+ , r ≥ 0 is the number of blocking-zeros

at infinity for each Gj ∈ Gt, and rankXt(∞) < m but

Xt(∞) 6= 0; i.e., Xt book-keeps the transmission-zeros at

infinity that Gj ∈ Gt may have in addition to the r blocking-

zeros at infinity. With nkℓ and dkℓ as polynomials, write

X−1
t =

[
nkℓ

dkℓ

]

k,ℓ∈{1,...,m}

; (21)

X−1
t has no poles in the closed right-half complex plane C+

(i.e., the polynomials dkℓ are Hurwitz) but may have poles

at infinity. Define the integers ρkℓ as ρkℓ := δnkℓ − δdkℓ ,

if δnkℓ > δdkℓ , ρkℓ := 0 , if δnkℓ ≤ δdkℓ , and for ℓ =
1, . . . ,m, define ρℓ and rℓ as

ρℓ := max
1≤k≤m

rkℓ , rℓ := r + ρℓ . (22)

Let a ∈ R+ ; for ℓ = 1, . . . ,m, define λℓ := 1
(s+a)ρℓ

and

Λ := diag
[
λ1 λ2 · · · λm

]

= diag
[

1
(s+a)ρ1

1
(s+a)ρ2

· · · 1
(s+a)ρm

]
. (23)

Although X−1
t may be improper, X−1

t Λ is stable since
nkℓ

dkℓ(s+a)ℓ ∈ S. Define Yj(∞) as

Yj(∞) := (X(s)Gj(s)
−1)|s→∞ = (

1

sr
Xt(s)Gj(s)

−1)|s→∞ ,

(24)

i.e., Yj(∞)−1 = ( srGj(s)X
−1
t (s) )|s→∞ . Designate an

arbitrary member Go ∈ Gt as the nominal plant. This plant

may be one from Ĝ if r = 1 or from P if r = 0. By (24),

Yo(∞)−1 =
(
sr Go(s)X

−1
t (s)

)
|s→∞ . Define Fj as

Fj := Yj(∞)Yo(∞)−1 = (X−1
t G−1

j GoXt)(∞) . (25)

Proposition 2: (Simultaneous integral-action controller

synthesis for plants with transmission-zeros at infinity):

Consider the finite set Gt of MIMO plants. Choose

an arbitrary plant Go ∈ Gt, with Yo(∞)−1 =(
sr Go(s)X

−1
t (s)

)
|s→∞ . For j = 1, . . . ,m, let ϕℓ(s) be

any monic rℓ-th order Hurwitz polynomial (with rℓ roots in

C \ U) and let gℓ ∈ R+ . Let

Ct = β X−1
t Λ diag

[
c1 c2 · · · cm

]
Yo(∞) , (26)

where, for ℓ = 1, . . . ,m,

cℓ =
ϕℓ(s)

(s + α)rℓ − αrℓ
, if rℓ > 1, cℓ =

(s + gℓ)

s
, if rℓ = 1.

(27)

If Fj = (YjY
−1
o )(∞) defined as in (6) is diagonal, positive

definite for all Gj ∈ Gt, define Ψtj as

Ψtj :=

s[(s + a)rYj(s)Yo(∞)−1Λ−1F−1
j diag

[
1

ϕℓ(s)

]m

ℓ=1

− I].

(28)

Under these assumptions, Ct is an integral-action controller

that simultaneously stabilizes all plants Gj ∈ Gt for α, β ∈
R+ satisfying

α > max
1≤ℓ≤m

rℓ max
Gj∈Gt

‖Ψtj ‖ , β ≥ max
1≤ℓ≤m

αrℓ max
Gj∈Gt

fj .

(29)

�

Remarks 3: 1) (Parametrization of all simultaneously sta-

bilizing integral-action controllers): The integral-action con-

trollers shown in Propositions 1 and 2, which simultaneously

stabilize the plants in G ∪ Ĝ ∪ P or Gt are low order

controllers. Although the synthesis methods offer flexibility

in the choice of parameters, the fact that the order is low

restricts achievable design objectives. Once the existence

of simultaneous integral-action controllers is established

through the proposed controllers, a parametrization of other

simultaneous integral-action stabilizers with arbitrary order

can be obtained as follows: Under the assumptions of Propo-

sition 1, suppose that Cr is the integral-action controller in

(9) or in (15) if r = 1. Let Go ∈ G be any member of
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the set chosen as the nominal plant. Then all integral-action

controllers simultaneously stabilizing the plants Gj ∈ G are

C = (Cr+
1

(s + a)r
G−1

o QCr)(I−
1

(s + a)r
QCr)

−1 , (30)

where Q ∈ M(S) is such that

[ I +
1

(s + a)r
(I + CrGj)

−1Cr(GjG
−1
o − I)Q ]

is unimodular for all Gj ∈ G . (31)

For example, Q ∈ M(S) can be chosen such that ‖Q‖ <
‖(I + CrGj)

−1Cr(GjG
−1
o − I)‖−1 to satisfy this uni-

modularity condition in (31). The controllers in (30) also

stabilize all Ĝj ∈ Ĝ if Q ∈ M(S) satisfies (31) and

[I+ 1
(s+a) (I+CrĜj)

−1Cr(ĜjG
−1
o −I)Q ] is unimodular for

all Ĝj ∈ Ĝ. The simultaneously stabilizing controllers in (30)

have integral-action if and only if Q(0) = 0. Although the

controller in (9) has r-th order transfer-function, the order of

the controllers in (30) are unrestricted. The parametrization

in (30) can be used to select controllers to achieve other

design objectives that may not be achievable with the order

restriction of Cr . Similarly, under the assumptions of Propo-

sition 2, suppose that Ct is the integral-action controller

in (26). Let Go ∈ Gt be any member of the set chosen

as the nominal plant. Then all integral-action controllers

simultaneously stabilizing the plants Gj ∈ Gt are given by

C = (Ct + YoQ diag
[
c1 · · · cm

]
Yo(∞) )

· (I − YoGoQ diag
[
c1 · · · cm

]
Yo(∞) )−1 , (32)

where Q ∈ M(S) is such that [ I +
diag

[
c1 · · · cm

]
Yo(∞)(I+GjCt)

−1Gj(XYo−YjX)Q ]
is unimodular for all Gj ∈ Gt. For example, Q ∈ M(S) can

be chosen such that ‖Q‖ < ‖diag
[
c1 · · · cm

]
Yo(∞)(I+

GjCt)
−1Gj(XYo − YjX)‖−1 to satisfy this unimodularity

condition. The simultaneously stabilizing controllers in (32)

have integral-action if and only if Q(0) = 0.

2) (Robustness of the simultaneously stabilizing controllers):

By standard robustness arguments, the simultaneously

stabilizing controllers Cr or Ct in Propositions 1, 2, achieve

robust simultaneous stability under ‘sufficiently small’ plant

uncertainty for the plant classes considered. For the set G,

the controller Cr in (9) robustly simultaneously stabilizes

the additively perturbed plants Gj +∆j for all ∆j ∈ S
m×m

such that ‖∆j ‖ < ‖Cr(I +GjCr)
−1‖−1. For multiplicative

perturbations, Cr robustly simultaneously stabilizes the

plants Gj (I +∆j) under all pre-multiplicative perturbations

∆j ∈ S
m×m such that ‖∆j ‖ < ‖CrGj(I + CrGj)

−1‖−1.

Similarly, C robustly simultaneously stabilizes the plants

(I + ∆j)Gj under all post-multiplicative perturbations

∆j ∈ S
m×m such that ‖∆j ‖ < ‖GjCr(I + GjCr)

−1‖−1.

Some of the free controller parameter choices in the synthesis

may be used to maximize the allowable perturbation

magnitudes. Similar robust stability conclusions apply to

the plant class Ĝ or P with the controllers C1 or C0. For

the plant set Gt, the controller Ct in (26) of Proposition 2

robustly simultaneously stabilizes the perturbed plants where

the uncertainties satisfy similar bounds. �

Example 2: Consider the linear model of the VZ-

4 doak, a vertical take-off and landing aircraft [7]:

Gj =

[
s+zj

(s+0.8223)(s2−0.6401s+0.5326) 0
−1.08
s−pj

1
s−pj

]
, zj > 0 . The

states of the system are forward velocity, downward velocity,

pitch rate and pitch angle. The outputs are pitch angle and

altitude rates; the inputs are elevator angle and thrust. The

nominal parameters are zo = 0.137, po = −0.137 for the

nominal plant Go . The poles for each Gj are at pj and

0.3201 ± j0.6559. These plants have no U-zeros except at

infinity, and therefore they can be written as Gj = Y −1
j X ,

where Y −1
j =

[
(s+0.8223)(s2−0.6401s+0.5326)

(s+zj)(s+a)2 0

0
−(s−pj)
(s+a)

]−1

,

X =

[
1

(s+a)2 0
1.08

(s+a)
1

(s+a)

]
, for any a > 0. Following

Proposition 2, we design a simultaneously stabilizing

controller Ct as in (26), with Yo(∞) = Yj(∞) =

[
1 0
0 −1

]
,

and Fj = I . With r = 1, X = 1
(s+a)

[ 1
(s+a) 0

1.08 1

]
= 1

(s+a)Xt

as in (20); then, X−1
t =

[
(s + a) 0

−1.08(s + a) 1

]
,

Λ =

[ 1
(s+a) 0

0 1

]
, where ρ1 = 1, ρ2 = 0, r1 = 2,

r2 = 0. By (28),

Ψtj = s[(s + a)

[
(s+0.8223)(s2−0.6401s+0.5326)

(s+zj)(s+a)2 0

0
−(s−pj)
(s+a)

]

·

[
(s + a) 0

0 −1

][
1

(s2+10s+24) 0

0 1
(s+5)

]
− I ], ‖Ψtj‖ =

max{‖ s[ (s+0.8223)(s2−0.6401s+0.5326)−ϕ1(s+zj) ]
ϕ1(s+zj)

‖,

‖ s[ s−pj−ϕ2]
ϕ2

‖}. By (26), Ct = β

[
1 0

−1.08 1

] [
c1 0
0 −c2

]
=

β

[
ϕ1

s(s+2α) 0
−1.08ϕ1

s(s+2α)
−(s+g2)

s

]
. Choose ϕ1 = (s2 + 10s + 24),

g2 = 5, which gives c1 = (s2+10s+24)
s(s+2α) , c2 = (s+5)

s
. For the

nominal plant Go , we have ‖Ψto‖ = max{9.9548, 4.8630}.

By (29), α > 19.9096 and β ≥ α2. If we choose

α = 30, β = α2, then the controller becomes

Ct = 900

[
(s2+10s+24)

s(s+60) 0
−1.08(s2+10s+24)

s(s+60)
−(s+5)

s

]
. The low order

integral-action controller Ct simultaneously stabilizes all

Gj ∈ Gt for all zj , pj such that 2‖Ψtj‖ < α = 30. �

IV. CONCLUSIONS

This work identified some important classes of any finite

number of plants that can be simultaneously stabilized using

a common low order controller. The plant classes considered

here have restrictions on their zeros in the region of insta-

bility, while the poles are completely unconstrained. These

restrictions are due to the difficulties involving simultaneous

stabilization of three or more plants with order-restricted
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tracking controllers. Systematic synthesis procedures are pro-

posed for each plant class, where the controller parameters

and the design choices are explicitly defined. The proposed

designs allow freedom in the parameters, which should be

used to satisfy additional performance criteria that the design

may require. In each of the illustrative examples we selected

a set of parameters out of infinitely many satisfying the

conditions of Propositions 1, 2.

While asymptotic tracking of constant reference inputs is

achieved due to the integral term, performance objectives be-

yond tracking (and equivalently disturbance rejection) were

not considered within the scope of this note. The goal of

this study was to establish simultaneous stabilizability using

low order controllers, and it was shown that these controllers

achieve robust stability under sufficiently small additive and

multiplicative plant uncertainty.

APPENDIX: PROOFS

Proof of Proposition 1: a) Let Cr be as in

(9); then C−1
r ∈ M(S). i) Define χ(s) :=

[(s + α)r − αr]. By (1), Cr stabilizes each Gj ∈ G
as in (3) if and only if Mj = X + YjC

−1
r =

1
(s+a)r I + Yj(s)Yo(∞)−1 χ(s)

β ϕ(s) = (βF−1
j Wj(s)

−1 +
(s+a)rχ(s)

ϕ(s) Yj(s)Yo(∞)−1F−1
j Wj(s)

−1)
Wj(s)

β(s+a)r Fj =

(I + s[ (s+a)r

ϕ(s) Yj(s)Yo(∞)−1F−1
j − I]χ(s)

s
Wj(s)

−1) ·
Wj(s)

β(s+a)r Fj = (I +Ψχ(s)
s

Wj(s)
−1)

Wj(s)
β(s+a)r Fj is unimodular,

where Wj(s) := (χ(s)I + βF−1
j ), and Wj(s)

−1 ∈ M(S)
since fji > 0 and β ≥ αr

fj . Since β ≥ αrfji ,

we have ‖ χ(s)

s[χ(s)+f−1

ji β]
‖ ≤ ‖ χ(s)

s (s+α)r ‖ = r
α

implies

‖χ(s)
s

Wj(s)
−1‖ = ‖diag

[
(s+α)r−αr

s[(s+α)r−αr+f−1

ji β]

]m

i=1

‖ ≤ r
α

.

Therefore, ‖Ψχ(s)
s

Wj(s)
−1‖ ≤ r

α
‖Ψ‖ < 1 for α,

β satisfying (12); hence, Mj is unimodular for

each Gj ∈ G. ii) By (i), the controller Cr in (9)

stabilizes each Gj ∈ G for α, β as in (12). In

addition, Cr also stabilizes each Ĝj ∈ Ĝ if and only

if M̂j = X̂ + ŶjC
−1
r = 1

(s+a)I + Ŷj(s)Yo(∞)−1 χ(s)
β ϕ(s) =

(β Ŵ−1
j + χ(s)

ϕ(s) (s + a)Ŷj(s)Yo(∞)−1Ŵ−1
j )

Ŵj

β(s+a) =

(I + s[ χ(s)]
sϕ(s) (s + a)Ŷj(s)Yo(∞)−1 − F̂j ]Ŵ

−1
j )

Ŵj

β(s+a) =

(I +Ψ̂Ŵ−1
j )

Ŵj

β(s+a) is unimodular, where Ŵj := (sF̂j +βI)

and Ŵ−1
j ∈ M(S) since β > 0 and F̂j is positive

definite. Since ‖Ŵ−1
j ‖ = ‖(sF̂j + βI)−1‖ = 1

β
, we have

‖Ψ̂jŴj(s)
−1‖ ≤ 1

β
‖Ψ̂‖ < 1 for β satisfying (13); hence,

M̂j is unimodular for Ĝj ∈ Ĝ. iii) By (i)-(ii), the controller

Cr in (9) stabilizes each Gj ∈ G and Ĝj ∈ Ĝ for α, β as in

(12)-(13). In addition, Cr also stabilizes each Pj ∈ P if and

only if M̃ j = I +P−1
j C−1

r = I +P−1
j Yo(∞)−1 [(s+α)r−αr]

βϕ(s)
is unimodular. For β satisfying (14), we have

‖P−1
j Yo(∞)−1 χ(s)

β ϕ(s)‖ < 1 and hence, M̃ j is unimodular

for each Pj ∈ P . b) The controller C1 in (15) is the same

as Cr in (9) for r = 1. Similarly, Ψ̂j in (16) is the same as

(11). The proof follows similar steps as in the proof (ii)-(iii)

of part (a) above. c) The controller C0 in (18) is the same

as C1 in (15) with Yo(∞) replaced by an arbitrary constant

nonsingular matrix K. �

Proof of Proposition 2: Let Ct be as in (26); then an

RCF Ct = ND−1 is given by N = β X−1
t Λ ∈ M(S),

D = Yo(∞)−1diag
[

c−1
1 c−1

2 · · · c−1
m

]
∈ M(S).

Define χℓ(s) := [(s + α)rℓ − αrℓ ]. By (1), Ct

stabilizes each Gj ∈ Gt if and only if Mj =
βXX−1

t Λ + YjYo(∞)−1diag
[
c−1
1 c−1

2 · · · c−1
m

]
=

β
(s+a)r Λ + YjYo(∞)−1diag

[
χℓ(s)
ϕℓ(s)

]m

ℓ=1
=

(βF−1
j W−1

j + (s + a)rYjYo(∞)−1 ·

diag
[

χℓ(s)
ϕℓ(s)

]m

ℓ=1
Λ−1F−1

j Wj(s)
−1)

Wj

(s+a)r FjΛ =

(I + [(s + a)rYjYo(∞)−1diag
[

χℓ(s)
ϕℓ(s)

]m

ℓ=1
Λ−1F−1

j −

diag [χℓ(s)]
m
ℓ=1]Wj(s)−1)

Wj(s)
(s+a)r FjΛ = (I +

s[(s + a)rYj(s)Yo(∞)−1diag
[

1
ϕℓ(s)

]m

ℓ=1
Λ−1F−1

j −

I]diag
[

χℓ(s)
s

]m

ℓ=1
Wj(s)

−1)
Wj(s)
(s+a)r FjΛ = (I +

Ψtjdiag
[

χℓ(s)
s

]m

ℓ=1
Wj(s)

−1)
Wj(s)
(s+a)r FjΛ is unimodular,

where Wj(s) := (diag [(s + α)rℓ − αrℓ ]
m
ℓ=1 + βF−1

j ) =
diag [χℓ(s) + β/fjℓ ]

m

ℓ=1, and Wj(s)
−1 ∈ M(S) since

fjℓ > 0 and β ≥ max
1≤ℓ≤m

αrℓ fj . Since β ≥ αrℓ fjℓ ,

we have ‖ χℓ(s)

s[χℓ+f−1

jℓ
β]
‖ ≤ ‖ χℓ(s)

s(s+α)rℓ
‖ = rℓ

α
implies

‖χℓ(s)
s

W−1
j ‖ = ‖diag

[
χℓ(s)

s[χℓ(s)+f−1

jℓ
β]

]m

ℓ=1

‖ ≤ max
1≤ℓ≤m

rℓ

α
.

Therefore, ‖Ψtjdiag
[
s−1[(s + α)rℓ − αrℓ ]

]m

ℓ=1
W−1

j ‖ ≤

max
1≤ℓ≤m

rℓ

α
‖Ψtj‖ < 1 for α, β satisfying (29) and hence,

Mj is unimodular for each Gj ∈ Gt. �
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