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ABSTRACT
A unified view of recent results in the algebraic theory of linear,
time-invariant multiinput-multioutput  control  systems is
presented, with emphasis on the unity-feedback system (one-
degree-of-freedom design) and the more general two-input two-
output plant and compensator configuration (four-degrees-of-
freedom design). The issues of stability, parametrization of all
stabilizing compensators, achievable input-output maps and
decoupling are discussed.
L INTRODUCTION

This is a review paper presenting the algebraic theory of
two linear, time-invariant (Lt-i), multiinput-multioutput (MIMO)
control systems: the classical unity-feedback system S(P,C)
and the more general system configuration Z(P, C) . Due to the
general algebraic setting, the results apply to lumped as well as
distributed, continuous-time as well as discrete-time systems.

The unity-feedback configuration S(P,C) is studied in
Section III. The system S(P, C) is called H-stable if and only
if all closed-loop input-output (I/O) maps are Fl-stable. The
H-stability condition for S(P, C) is stated in Theorem 3.4 in
terms of coprime factorizations of P and C. The class of all
compensators that H-stabilize the plant P is parametrized in
Theorem 3.7, compensator design using the configuration
S(P, C) is called one-degree-of-freedom design due to the single
free parameter matrix O of the H-stabilizing compensator
[Hor.1]. Although a right-coprime or a left-coprime factorization
of the plant are commonly used in obtaining this parametrization,
it is also possible to start with a bicoprime factorization and
reduce N D™'N, to N,D;' or 1o D,'N,. The class of all
achxevable maps for S (P C )is obtamed by using the class of all
stabilizing compensators; all closed-loop /O maps in the
H-stabilized S (P, C ) are affine maps in Q.

The system configuration Z(ﬁ,é) shown in Figure 3
represents the most general interconnection of two physical sys-
tems, a plant P and a compensator C. This system is studied in
Section IV; the plant and the compensator each have two
(vegtor-)inputs and two (vector-Joutputs. The measured output y
of P is used in feedback, but the output z is the actual output of
the plant (the output in the performance specifications); the point
is that z and y are not the same. The input v is considered as a
disturbance, noise or an external command applied directly to the
plant. The compensator output y’ , which is utilized by the plant
in feedback, can be considered as the ideal actuator inputs; the
output 2’ of C can be used for performance monitoring or fault
diagnosis. The input v’ of C is considered as the independent
control input like commands or initial conditions, The signals «
and u’, which appear at the interconnection of P and C, model
possible additive disturbances, noise, interference and loading.

The conditions for H-stability of Z(?, ) are stated in
Theorem 4.4. Intuitively, only those plants which have "instabili-
ties that the feedback-loop can remove" can be considered for
H-stabilization; these plants are called T-admissible. The res-
triction on the class of H-stabilizable P is due to the feedback
being applied only through the second inputs and outputs. The
class of T-admissible P is given in Theorem 4.8; the class of all
H-stabilizing compensators for Z-admissible plants is given in
Theorem 4.10. The 2-2 block of C is essentially in a feedback
configuration like S (P, C ).
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In the unity-feedback configuration S (P, C), the class of
all C that H-stabilize P is parametrized by one parameter matrix
Q; inclyding this parameter matrix Q that comes from C, the set
of all C that H—stabilize P is parametrized by four H-stable
matrices and hence, we call the system ):(P C) a four-degrees-
of-freedom design (or four-parameter design) [Net.1]. Z(P, C)
can obviously be reduced to two parameter design by taking
Cy =0 and C;=0. The class of all achievable maps for
(P, ¢ ) involves the four compensator parameters; each closed-
loop /O map achieved by the H-stabilized (P, C) depends on
one and only one of these four parameter matrices 05 , Q12 »
Q2 ,Q . Several performance specifications can be imposed on
the closed-loop performance of Z(P C)

In Section V, we consider the decoupling problem, namely,
ﬁndC . such that, fortheglvenP the /fOmap H,,-: v/ > z of
}:(P C) is diagonal. Assuming that N,, is nonsingular, it is
always possible to choose Qi € M (H) such that H,, =
N 1205, is diagonal. Diagonalization with this configuration does
not involve the feedback-loop and the parameter Q of C; hence,
decoupling the I/O map H,,- is independent of the I/O maps that
are affine functions in Q. On the other hand, in the unity-
feedback configuration S(P, C'), diagonalizing the map H,,- :
u' by would depend on the choice for Q such thal
N, WU, +QD ) is diagonal, and hence, diagonalizing the map
Hy,: in S, C ) may not be possible for certain plants.

II. ALGEBRAIC BACKGROUND

2.1. Notation [Lan.1, Vid.1}: H is a principal ring (i.e., an entire
commutative ring in which every ideal is principal). M (H ) is
the set of matrices with elements in H.J < H is the group of
units of H. I < H is amultiplicative subset,0 ¢ [ , 1 € I.
G=H/I ={nsd:n e H,d el}isthe ring of fractions
of H associated with [ . Gy is the Jacobson radical of G ;
Gs=(xe G:(1+xy)' e G, foraly ¢ G }.
2.2, Example (Rational functions in s) : Let U D €, be a
closed subset of €, symmetric about the real axis, and let C\ U
be nonempty; let U :=U 'V { o }. The ring of proper scalar
rational functions (with real coefficients) which are analytic in
U, denoted by Ry, (s), is a principal ring. Let H be Ry (s); by
definition of J, f e J implies that f is a proper rational func-
tion, which has neither poles nor zeros in U, . We choose ] to be
the multiplicative subset of Ry, (s) such that f e [ implies that
f (=) is a nonzero constant in R; equivalently, ] < Ry (s) is
the set of proper, but not strictly proper, real rational functions
which are analytic in . Then R, (s)/1 is the ring of proper
rational functions R, (s). The Jacobson radical of R, (s) is the
set of strictly proper rational functions R (s).
2.3. Definitions (Coprime factorizations in H ):
(i) The pair (N,,D,) , where N, ,D, € M(H), is called
right-coprime (r.c.) iff there exist U,, V, € M (H) such that
VoD, +U,N, = 1I; (ii)thepair( »Dy) is called a right-
fracnon represemanon (rfr. ) of P e M (G) iff D, is square,
detD, e I and P =N,D;; (iii) the pair (V,, D, )1scal]eda
nght-copnme -fraction representation (r.cfr.) of P e M@G)

iff ( .D, )1sanrfr of P and (N,,D,)isr.c. (iv) The pair
Dy N, ) , *where D, N, em (H) is called left-coprime
@.c) 1&‘ there exist U, e M@EH) such that



N,0,+D,V, = I; (v) the pair (D,,N,) is called a lgfi-
fraction representation (Lx) of P € M (G )iff D, is square,
detD, e I and P =D,'N,; (vi) the pair (0, N, ) is called a
left-coprime-fraction representation (Lefr) of P € m(G)
iff (D,,N,)isanlfr.of P and (D,,N,)islc. (vii) The tri-
ple (N,,,D,Ny), where N,,, D, Ny € M (H), is called a
bicoprime-fraction representation (bcfr.) of P € M(G) iff
the pair (N, , D) is right-coprime , the pair (D ,Ny) is left-
coprime, detD € I and P =N,D7'N,. Noe that
P e M(G)is sometimes given as P = N, D™'N, +S,,, where
S, € m(H) and (N, D,Ny) is a bicoprime (b.c.) triple. In
this case, the b.c.f1. is given by (N, D, Ny, Sp) [Vid.1]. O
Every P € M(G)hasanrcfr.(Np,D,), anlefr. (D,,N,),
and ab.c.fr. Ny, D, Ny)inH . o
2.4. Generalized Bezout Identity foi (N,,Dp) and (D, Np) ¢

Let (V,, D) be an r.c. pair and let (D, N, ) be an Lc. pair, and

let N.D, = D,N, , where N, € H™*% p e H™MX%
iy PP HgP’_ . *¥p '
D, e H™ ,N,eH’ﬁ’m;ﬂxnmerearemmim
V.U, .U, .V, € M(H)suchthat

Ve U, D, -U,
N, D, || N V, |7

2.5. Definition (Doubly-coprime fraction representation): () If
the generalized Bezout identity (2.1) holds, then (V,,D,) ,
(B,.N,)) is called a doubly-coprime pair. (i) If P =N,D," =
D,'N, , then (NV,.D,) , 0, N,)) is called a doubly-coprime-
fraction representation of P

2.6. Generalized Bezout identities for (N, ,D,Ny) : Let
(N,.D,Ny) be a bc. tiple, where N, ¢ H™*
D e H®™ N, e H"™ ; then we have two generalized
Bezout identities: (i) For the r.c. pair (N, ,D) , there are
matrices V,, , Up . X ,¥ ,U ,V € M(H)suchthat

In ©

0 I, 2.1

Ve U D U 1 0
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equation (2.2) is of the form
MM =1, . @3)

(ii) For the Lc. pair (D .N,,)lhetemmauicsv,, JUp XY,
U,V e m@EH)suchthat

D Ny Va X I, 0
[u VH-U,,Y= 0 I | 249
equation (2.4) is of the form

M’M,—l =I’l+’|¢' . (2.5)

2.7. Proposition: Let P € M(G) . Let (N,,D,Ny) be a
b.c.f.r. of P; hence, equations (2.2)-(2.4) hold; then

(N,,DP) = (NnX, Y) isanrcfr.ofP,
®,.N,) = ( ,XNy) isanlcfrofP,

where X, Y, X ,¥ e M (H) are defined in (2.2)-(2:4).
2.8. Comments: (i) Using equations (2.2)«(2.4) we obtain a gen-

2.6)
@n

eralized Bezout ~idenﬁty for the doubly-coprime pair

((Nprx ,Y),(Y ¢XNﬂ)):

V+UV,Ny UUL[ ¥ ~UuU I O
ANy T [N T 4N v, 0| = 0 1,|%®

Note the similarity between equations (2.8) and (2.1). (i) If,
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instead of N, D~'Nyy, the plant is given by P = N,, DN, +S,,,
where S, € M (1), then an r.c.fr. and an Lc.fir. are given by:

(Np, Dp)=(NpX +8,Y,Y),(D,,N,) =(Y . XNy +¥$,),
and the Bezout identities in (2.8) are replaced by:

(V +UVp Ny = UUp S,)Y + UUp (Np X +8,Y) =1,

(X Ny =TS, HUuU)+¥ V4N, VU =S, U0 ) =1p,.
29, Example: Let H be Ry(s) as in Example 2.2. Let
P € Rp(s)™™™ be represented by ifs state-space representa-
tion x = Ax+Bu, y=Cx, where (C,A.B) is
U, —stabilizable and U ¢ —detectable. Then
P=(+a)y'Cl(s +a) (sl —A)]'B, where 2 ¢ C\U,,
—a € R. The pair ((s +a)'C , (s +a)(s/ —A)) is rc., the
pair ((s +a)y'(sI = A),B) is Lc. and
detl(s +a)'(s/ -A)) € I. Therefor, (Ny.D.Ny) =
(6 +ay'C, s +a) (s —A), B) is ab.efr. of P. Choose K
e R and F € R™™ such that (A —BK) and (A — FC)
have eigenvalues in C\U, . Let Gy = (sI, —A +BK)}; let
Gr = (sIu-A+FCY then Gy , Gr € MERy(s) N
m (R, (s)) and hence, (s +aXsl, —A +BK)™ = (s +a)Gr
€ MPRys)) and (s +aXsl, —A+FCY ' = (s +a)Gr €
m (R, (s)). For this b.c.f.r., 2.2) and (2.4) become:

(s +a)Gr (s +a)Gr
-CGr ln,—ccpq

s +a)ylsl, -A) —F

Graylc | =Tmeme

s +a)(sly —A) -B|[(s+a)Gx (s+a)GgB
Gs+ay'x  In|| XGr In-KGgB =Inin:
L
‘We obtain a Bezout identity for this case from (2.8):
(1,,+KGpB  KGpF
—CGgB I, —CGrF

In~KGgB —KGgF
CGxB Iy, +CGpF|=Tmtn.:

Clearly, (CGgB,(I,,—-KGgB)) is an rc. pair and
(I n, -~ CGgF),CGgB )is anLc. pair.

L. THE UNITY-FEEDBACK SYSTEM S(P,C)
We consider the system S (P, C ) shown in Figure 1.

Figure 1. The unity-feedback system S (P, C ).
3.1. Assumptions:
(A) The plant P € G™™. Let (,.D,) be an rcfr,
©,, ﬁ:ﬁ.) be anLefr., Ny D, Npu) be a bt of P, where Ny
e H"™i p ¢ H™ D, € H""""’,ﬁ, e HMWXm,
N, e H™ D e H™ N, ¢ HAxm
(B) The compensator C € G %% Let(5,,N,)be anlcfr

and (N, D,) be an rchr. of C, where B, € H"™¥ N, e
HMXro N & HMWXRo p e HMoXMo,

Leti:=[yy,].i.=[:“,]. The map Hy; :i 1> ¥ is the
/O map of S (P, C ). Interms of P and C, Hy is given by

P(,, +CPY!
—CP (I, +CP)!

P, +CPY'C

A I +CPYIC

i3

AG.n



3.2. Analysis of S(P, C ): The system S(P, C ) can be analyzed
by using an r.c.fr, an lcfir, orab.c.fr. of P and C. We show
the analysis for a bcfir. of P and an lcfr. of C: Let
P =N,D7'Ny, C=D;'N,, where (N,.D,Ny) is bc.,
(D.,N_)is Lc. (see Figure 2); &, denotes the pseudo-state of P,
________ u

1 bl [ mm - B
ul { — — :yl !+| g‘ II y

™ : N Dc—l‘ + | NP‘ —'D-l_‘NP' T

- \ 1

Lt -' 2 '

[ T | | R UL U g J

Figure2. S(P,C)withP =N,D7'N, and C =D'N,.
S(P, C)is then described by equations (3.2)-(3.3):

o 2T e
R

Equations (3.2)-(3.3) are of the form Dyafs = Ny ait, NpsEs = 7.
If detDy; € [ , then the system is well-posed; by elementary
row and column operations on the matrices in equations (3.2)-
(3.3), it is easy to sec that (Ng3, D3, N3) is abc.fr. of Hy.

3.3. Definition (H-stability): The system S (P, C ) is said to be
H-stable iffHg e m(H).

3.4. Theorem (H-stability of S(P,C) ): Consider S(P,C).
Let Assumptions 3.1 (A) and (B) hold; then (i)-(v) below are
equivalent:

@ S, C)is H-stable;

(i) Dy,:= D.D, +N_N, is H-unimodular; G4
(iii) Dy, := D,D, +N,N, is H-unimodular; (3.5
D Ny H

i) Duns=| o AT . , _

(iv) Dy3 N.N, D, is f1-unimodular; 3.6)
D -NuN,

™ Dya=| y D is H-unimodular. 3.7
pr <

35. Comments: (i) Post-multiplying Dy; in (3.6) by the
H-unimodular matrix M, defined in (2.4)-(2.5), we obtain

! 0
-1 _ - n_ P ~
DM, = [ NN, Vy-B.Uy N.N,X+DB,Y

But Dy; is H-unimodular if and only if Dy.M; is
H-unimodular; hence, condition (3.6) holds if and only if

D.Y +N.N,X is H-unimodular. (3.8
The H-unimodularity condition (3.8) is the same as (3.4) since
(NxX,Y)is anr.c.fr. of P by Proposition 2.7. Similarly, pre-
multiplying Dy4 in (3.7) by the H-unimodular matrix M,
defined (2.2)-(2.3), we conclude that (3.7) holds if and only if

XNyN,+¥YD, is H-unimodular. (3.9

Note that condition (3.9) is the same as (3.5) since (¥, X N,,) is
an lcfr. of P by Proposition 2.7. (ii) If condition (3.4)
(equivalently, (3.5)) holds, then by normalization we obtain

D.D, +N.N, =1y, ,and NN, +D,D, =1,. (3.10)

With P =N,D, 1 =D,'N, , C =D;'N, =N.D;! , equation
(3.10) is equivalent to

D, N, D, N, In o

N, D, N, D. |T| 0 I,|

N, D,

3.11)
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3.6. Definition ( H-stabilizing compensator C ): (i) C is called
an H-stabilizing compensator for P (later abbreviated as: C
H-stabilizes P)iff C € G ™™™ satisfies Assumption 3.1 (B)
and the system S (P, C ) is H-stable. (ii) The set

SP)=1{ C:C H-swabilizes P ) is called the set of all
H-stabilizing compensators for P .

3.7. Theorem (Set of all H-stabilizing compensators for P ):
LetP € M(G;)andlet P satisfy Assumption 3.1 (A); then the
set S(P) of all H-stabilizing compensators C for P is given by
equation (3.12) and equivalently, by equation (3.13) below:

Sey={cCc =, oN,)'W,+2D,): e mH) }; (3.12)
SP)={C =U,+D,0XV,N,0)" : 0 e m(H)}; (3.13)

where the matrices V,, U,, V,, U, in equations (3.12){3.13)
satisfy the generalized Bezout identity (2.1). Equations (3.12)
and (3.13) give a parametrization of all H-stabilizing compensa-
tors for P; in each case, the map @ k> C is bijective and, for the
same 0 € M (H), (3.12) and (3.13) give the same C.

3.8. Comments: (i) (All H-stabilizing compensators based on
a befr. of P ): By Proposition 2.7, (N, X,Y)is anr.cfr. and
(¥ ,X Ny)isanlcfr of P; then set §EP) of all H-stabilizing
compensators is given by:

S®)={ (V+UV, Ny -QX Ny)'(UU, +07) },  (3.14)
S®)={ WaU +YOXV +N, VT =N, XQ)'}, (3.15)

where @ € M (H ) and the matrices in equations (3.14)(3.15)
satisfy the generalized Bezout identities (2.2) and (2.4).

A generalized Bezout identity for the doubly-coprime pair
((NX,Y),(¥ ,X Ny)) is given by (2.8); comparing (2.8) and
(2.2), it is easy to sec that (3.14) is equivalent to (3.12) and (3.15)
is equivalent to (3.13). (ii) (A}l H-stabilizing compensators for
H-stable P ): If P € M(H), then the set S(P) of all
H-stabilizing compensators is given by:

S@)y={Cc=Udny-0PY'0:0 e mH)).
SP)={Cc=0Un-PQ)":0 e mH)}.

(i) (A1l H-stabilizing compensators when P ¢ M (G)): In
Theorem 3.7, if we assume that P € M (G) butnot M (Gy),
then in equations (3.12)-(3.13) (and equivalently, (3.14)-(3.15) )
we choose Q € M(H) such that dew(V, ~QN,) e [
(equivalently, det(V, -N,Q) e I).

(iv) (All P such that S(P, C ) is H-stable): Let C € M (Gy),
C =D;IN, =N,D ", be given; let D, ,N,) be Lc. and (N, D,)
be r.c. Under these conditions, the set of all P € M (G) for
which S (P, C ) is H-stable is given by:

{Pp=(. +D,Q)V. -N.Q,)" : Q, e M(H)} =
{P=(v.-Q,N,yY'\U.+0,D,): ¢, e m(H)},

where V., U,, V., U, € M (H) satisfy a generalized Bezout
identity for the doubly-coprime pair (N, D,), D,,N.)). If
C e m@G),then Q, € M (H) should be chosen so that
det(V, -N.0,) e [ (equivalently, dew(V, - Q,N,) e 1 ).
3.9. Achievable IO maps of S (P, C ): The set

APy ={ Hg : C H-stabilizes P ) is called the set of all
achievable 1/0 maps of the unity-feedback system S(P,C) .

By Theorem 3.7, the compensator C H-stabilizes P if and
only if C e S(®P). Substiming DN,
vV, - ON YW, + QD)) or N.D!
U, +D,QXV, —N,0)™" for C into (3.1), we obtain the set of
all achievable 1/O maps:

non



N,(V,-ON,) N, (U, +0D,)
APy ={ Hy = P\p P p\Up p}

~U, +D,QW, D,(U, +0D,)
where O € M (H). Nowe that each closed-loop map of
S (P, C)is an affinc map in the parameter matrix 0 € M (H).
Compensator design using S(P, C) is called one-degree-
of-freedom design or one-parameter design since all achievable
maps are parametrized by the single parameter matrix Q.
IV. THE FEEDBACK SYSTEM Z(P C )
ConsdermefeedbacksystemZ(P.C)shownmﬁgme&
v’ z’ v z
A [ u A I
u’ c ¥’ !.,. P y
T [

Figure 3. The feedback system (P, ©).

4.1. Assumptions:

(A) The M, +n,)x(n; + ;) plant P € M (G)is partitioned as

ﬁ=[};: Pu] e GMotm)XMithi) groep ¢ GloX

(B) The compensator & € G (Mo™+r)x(Mi"+0) 4 partitioned as
é‘={g: Céz} e GOEHMXMH) grerec ¢ GMMo,

42. Fact: (i) Let the plant P satisfy Assumption 4.1 (A); then P

has an r.cfr. (N5, Dz) and an Lefr. (Dp,Njp) which satisfy
equations (4.1)-(4.2) below:
Ny Np Dy O
® <~~.D;)=.([ Nu N, ] [ Dy D,])- @1
o by Dy Ny Ny
@ (o~,~,;)=.([ o B, ] [ Ny N, } ) @)
where (N, D )1sanr.f.r of P, and(D,,N ) is an Lfor. ofP

(i) Let the compemator ¢ satisfy Assumption 4.1 (B); then é

has an lc.fr. (D ~)andanrc.ft (Nz, Dz) which satisfy
equations (4.3)-(4.4) below:
o by D] [Nu Ny
( & ?)=:([ 0 D—c ]1[ ﬁil ﬁc ])v (4.3)
Ny Ny D'y 0
(Né‘, D:):({ ’Zl Nc ] ’[ D'21 Dc } )' (4-4)

where (D,, N, )isanlfr. of C,and (V,, D, )isanr.fr.of C. O

Any other r.cf.r. of P is given by (N;R,DzR), where
(N3, Dp) is the rcfr in (41 and Ren'I(H) is
H-ummodular S!mxlarly. any other Lc.fr. of P is given by
(IDA,UV 5). where (Dj A) is the lcfr. in (4.2) and
Le m(H)lsH—ummodular The pair (¥, D,) in (4.1) is not
necessarily r.c.; thepaxr(DP,N )m(4.2)1snotnecessanly1c

4 v
Let$:= Y, |, &= J,|. The map Hyz: i b> 7 is the

4

), ¥ J A
1/0 map of Z(P, C). lntermsofPandC Hp; is given by

Py—PuT'CPy Pyl PuT'Cy  PuT'C
TPy PT PTICy PT'C
€ ufPy  —CoPT™ Cy=-CPTICy Cif
TPy T -1y T'Cy T'c
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wherer-(l,,,+cp)andr U n, -PTIC).

42. Analysis of X(F, C) We analyze the system (P, C) by
factorizing P as N;Di' and € as DF'WNz; &, denotes the
pseudo—staxeofP X(P C)lsthendmcnbedby (4.5)-(4.6):

Dy, © 0 0 Ep ] [y
Dy Dp 0 -Illi FIT‘H'N 0 u
NiNa NN, iy Dy z, | o m| D
= = = L v
NNy NN, O D
i1 c'p c _)"J u’
A9 r
1 z
Np 0 % Y
0 ) . 2 = z’ (4.6)
Ne +ﬂt /| )
Y
(4.5)(4.6) are of the form D,,§ NLu NRQ ¥; it is easy to

see that (Ng, Dy, Ny ) is a be. wriple. IfdetDy € 1, then the

IJOmapHmsglvmbyH~~=NRD,,NL e m@G).

4.3.Deﬁmtlon(H-stab|hty) The system X(P, €) is said to be

H-stable iff Hy; € M (H).

44, meoum(il-s:abmtyorw €) ): Consider (P, €). Let
4.1 (A)~(B) bold; then (i)-(iii) below are equivalent:

0 (P, &) is H-stable;

(i) Dy is H~unimodular ; (%))
(i) D,; is H-unimodular , and @.8)
D 4y is H-umnimodular , and 4.9
D.D, +N.N, is H-unimodular. 4.10)

4.5, Comments. (i) Condition (4.7) of Theorem 4.4 is equivalent
todetDy, e J; by equation (4.3),

detDy = detD ,detD 119e DD, +N.N,). (4.11)

NowdetDy e fomdonlynfeaehofunmmefacmrsm(ul)
isinJ; henoe,by(41)and(43).dew,, e J if and only if
detD ; = detDy(detD, )™ € J(eqmvalenﬂy,de:b»-detp )
and detd §; = detD(detD, )! e J (eqmvalemly, detDA"
dtD, ), and det(D,D, +N.N,) e J (equivalently,
det( DD, + NN, ) =1). Due to (4.11), condition (4.7) of is
eqmvalm to cmdmons (4.8)(4.9)(4.10). (ii) By normalization,
conditions (4.8)-(4.9)(4.10) of can be written as:

Dy=Iy, and D{y=Iy,’ and D.D, +N.N, =1, (4.12)
The last condition in equation (4.12) is in fact a right-Bezout
identity for the rc.f.r. (N,,D,) of P and a lefi-Bezout identity
for the Le.fir. (Dt,N ) of C. (iii) From equation $4 11), using
det(Z , + CP)=det(l o, + PC) , we can express detDyy also as:

detD,, = detD ydetD, detD {,detD, det(/ ,, + PC). (4.13)
Now using equations (4.1)-(4.4), we obtain detD; = detD‘

(equivalently, detD jydetD, = detDudetD ) and detD~ = detDA
(equivalently, detD udetD =detD’; detD, ); hence we obtain
detD,,, = detDy detD’ “det(D D, +N N.) (@19

Thaefom, 1fwe analyze the system Z(P C) with P factorized
as D3 lN»andC factorized as N2D7F! , by normalization, condi-
tion (m) of Theorem 4.4 is equivalent to

Dy =1y, and D’y =1y and D,D, +N N, =1,

(wl Conditions (4.8)-(4.9)-(4.10) can be interpreted as follows:
%P, Cyis H—stabxhzed if and only if 1) the only source of "ins-
tability” in the plant Pis D, (eqmvalenuy, D ) 2) and the only
source of "instability” in the compensator ¢ 1s D, (equivalently,



D )2)andthe only source of "instability” mmeoompensatorc
is D (equivalently, D, ) 3) and the feedback-loop (with P and
c )1sH—stable NotematmeH—stabxhtyofme"fwdbackloop
is equivalent to the H-stability of the unity-feedback system
S,.cy O

4.6. Definition ( H-stabilizing compensator Ermlis called
an H-stabilizing compensator for P (later abbreviated as: ¢
H-stabilizes P) lffC € m (G ) satisfies Assumption 4.1 (B)

and thesystem (P, C)is H-stable. (ii) The set

S(P)'—{ € : & H-stabilizes P }

is called the set of all H-stabilizing compensators for I3
47. Definition (Z-admissibility): Pem (G) is called
S-admissible iff P canbeH—stablhzed by some € e m(G) |
Let (Nz, D) be an rc.fr. of P ; by Theorem 4.4, Pis
Z-admissible if and only if two conditions are satisfied: 1) detDp
= detD, and 2) (V,, D,) is a right-coprime- fracuon repmenta-
tion ofP In terms ofthe lLefr. (D,,N ) ofP agam by
Theorem 4.4, P 1sZ—adm1mblexfandonly1fl)DA—detD and
2) (D, ps N ) is a left-coprime-fraction represemanon of P .
43. Theorem (Class of Z-admissible P)Le P e m@G)
sansfy Assumption 4.1 (A); then P is S-admissible if and only if
P has an rcfr. in the form given by equation (4.15) and an
Lcf.r. given by equation (4.16) below:

Ny Ny Iy 0
(Nﬁ'Dﬁ)=([V Ny N,|'|-0,Fy D,|’ @.15)
Ig, N1pU, Ny NV,
©3.Np) = ([ b, -[ﬁn ﬁp]). @.16)
where (N,, D) is an r.c.fr. and(Dp,N )1sanlcfr of P; the
pairs (N, D)and(Dp,N ), with U, V,, U,, V,, satisfy (2.1);

N”, N12’N21 € m(H)arefreepa.rametermamc&s

. Comments: (i) Suppose that (N,,D,) is an rc.fr. and
(D',,,ﬁ ) is an lcfr. of P, and that xhe generalized Bezout
identity (2.1) holds. We generate the class of all Mmssnble
plants by choosing three completely free matrices N 1 N2 NZI
e M@H)and forming the r.c. pair (N, D) in equation (4.15)
or the L.c. pair (DP. A) in equauon “4. 16). wnh this assignment
of (B, N3) and (N3, Dp), P := NyD5' = DF'N s is a S~admis-
sible plant. Note hat detD- e [ @ (equlvalemly, detDy e 1)
follows from detD, € I (equivalently, detD, e T ). (D)
Theorem 4.8 states that the class of all Z—admlss:ble plants is
parametrized by only three free matnces Nn, N Ny €
m (H). (iii) Suppose that we are givena # ¢ M (G) satisfy-
ing Assumption 4.1 (A), and that the copnme-fracuon
representations N,D,! = D,'N, of P satisfy (2.1); then Pis
Z-admissible 1fa.nd only 1fPu PyD,U,Py € M(H) and

PyD, € MH)andDB,Py € MH).

4.10. Theorem (Set of all H-stabilizing compensators for Py
Let 7 € M(G) be T-admissible with P € M(Gs); let
(Np,Dp)beanrcfr. and(DP,N )be an lc.f.r. of P, and let the
generall;ed Bezout identity (2.1) hold. Under these condmons.
the set S(P) of all H-stabilizing compensators € for P is given
by equation (4.17) and equivalently, by equation (4.18) below:

A A - [T’ Q1N roy 0120,
Sk)={C= 0 V,-ON,| |0y U, +0D, ). @m
A A n On (37 In’ 0 -
S#)={C=|p,0, 0,4,0||-¥,0n 7,-N,0| 1 41®

where 01y, @12, @21. @ € M (H). Equations (4.17) and (4.18)
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give a parametrization of all H-stabilizing compensators for 1"\
each of these equations,¢ defmm a bijection from @44, @13, 021, @
e MH) w0 € e SP). For the _same, (11, 12,21, 0),
equations (4.17)-(4.18) give the same € e S(P)
4.11. Comments: (i) If H is the ring of proper stable rational
functions R, (s) as in Example 2.2, then the E-admissibility of
3 implies that every U —pole of Py, Py, Poy is a U —pole of P
=N, D;!, with at most the same McMillan degree [Vid.1, Net.1).
Slmﬂarly, for € 1o be an H-stabilizing compensator for P, the
U —poles of Cy, Cy3, Cy must be "contained” in the U —poles
of C =D;'N,, and C must be chosen so that the feedback-loop
is H-stable. (i) The class of all H—stabilizing compensators is
parametrized by four matrices, Q;, @2, @21, @ € M (H); the
matrix Q parametrizes the class of all C that H-stabilizes the
loop S (P, C). Design with the unity-feedback system S (P, C)
is one-degree-of-freedom design because only one parameter
matrix is avaxlable for design. In contrast, for the more genera.l
system Z(P C ), there are four-degrees-of-freedom because C has
four completely free matrices in / , which can be chosen to meet
performance specifications. In Section V, we use the parameter
Q,; to diagonalize the mput-output mapH v bz,
4, 12 Achievable 1/0 maps of E(P C) The set
A) ={ Hpz : ¢ H-stabilizes P ] is called the set of all
achievable l/O maps of the system Z(P C)

Substituting for C from the expression in equations (4.17)
and (4.18) into the closed-loop I/O map Hy2, we obiain the set of
all achievable 1/O maps for Z(F, &): A®) = { Hpp=

Ru-NpONy NipD, NypQs NuN,
D Ny N, D, N,Qx N,N,
QuNa  QuN, O0u Qub,
-N.Ny  -N.N, D,Qy D,N,

011,012 Q0. Q € MH) }, where D, := (V, -N,0), D,

= (V, - QN) N, -(U +DpQ), N, =, +QD) Each
closed-loop map achxeved by E(P C) depends on only one of
four free parameters Q1y, Q12 @21, @ € M (H); in fact, each
of these maps is an affine function of one parameter only.

If Py, =0and Py =1,,, then v can be viewed as an addi-
tive disturbance at the output y; the disturbance- to-ouxput map
Hy, :v b3y is given by (V, -N, Q)N = ~-N,Q)D,,
which depends on the parameter @ € M (H ) On the other
hand, the extemal-input to output maps H,,» = N1,Q9; and H,,- =
N, Q7 depend on a different parameter Q,;. Consequently, out-
put shaping and disturbance rejection can be achieved simultane-
ously, since H,,- and H,,- are decoupled from H,, .

V.ACHIEVABLE DIAGONAL MAPS

We now consider the problem of achieving a diagonal 1/O
map for a Z-admissible plant P more precisely, we reqmre the
closed-loop map H,,-: v/ > z from the external-input v’ to the
output z of the H—stablhzed P, ) tobe diagonal. We obtain
the class of all achievable diagonal maps H,,.

Suppose that P € M (G ), saisfying Assumption 4.1 (A),
is a Z-admissible plant. We assume that and ;" = n; = 1,; con-
sequently, P1; € G™*¥ is square since there are n; inputs v’
and n; outputs z. Furthermore, we assume that Ny, € H XM
is nonsingular (i.e., detN , £ 0).

We define two diagonal (nonsingular) matrices A7 and Ag

as follows: (i) Let Ay, € H be a greatest-common-divisor
(g.c.d.) of the elements of the k-th row of Ny, . Let



Ar; € H be a greatest-common-divisor (g.c.d.) of the elements
of the k-th row of Ny, . Let

Ay =diag [Byy, - G-
Np=ApNy,. (52)

By construction, detA; # 0. The diagonal elements Az; of Ay
areumqueexceptforfactorsm] (if) By assumption, detN |5 =
detALdetNui 0; hence, detN,2$ 0. Write the l]-th entry of

’A[Jylf

N as— where (m;;, d;;) is a coprime pair in / ; note that

d;;
éOnr:cemedcmmmmorofeachemrylsafactorofdewn
(1e detN 13 = ,;a;; for some a;; € H). LetAgj ¢ H bea
least-common-multiple (Lem.) of {dy;, -+ ,dgyj} (e, a
Lem. of the denominators of the elememsinthe J-th column of
N ). Let
Ag =diag {Agy, *** .Apn 1i 53)

detAg # O since d;; % 0. 'l‘heemnesA‘B- of Ag are unique
except for facto:st Note that if Ni7 € M@H) , then
Ag =1,,. Now forsome b; € H ,Ag; = d;;b; ; therefore the

ey mi;
ij-th element of N} Ag is d,_-'{A“f =m;b; ¢ H ,andhence,
i

NjAg € m#H). 54

Inuitively, if H is Ry (s) as in Example 2.2, then we interpret
the diagonal matrices Ay and Ag as follows: Ay, extracts the
U, —zeros that are common to all elements in the k-th row of
Niz Ap "book-keeps" the U,—zeros of Py; = NppD,” that
appear in each entry of some row of N,. Clearly, P, may have
other U, —zeros that cannot be extracted by Ar; theseue—zcms
are the U, —zeros of dewu (equivalently, the U, —poles of N .
Now the diagonal matrix Ay makes NijAg H-stable, i.c., can-
cels these Up—poles. Let s € U, be a zero of Ag (hence a
U, —ze10 Of detN 1,); the multiplicity of s e U, mdetAR may
exceed its multiplicity in detN ;. If detN,z e HM¥ a5
zerosats € U, then detAp has armostn™ zerosats € Ug;
so Ap has at most as many U, —zeros as (detV ) .

5.1 Deﬁrutlon (Achlevable dlagonalH +): The set

A,, #) = H, : € H-stabilizes P and the map H,, is diago-
nal and nonsingular } is called the set of all achievable diago-
nal nonsingular mapsH,,»:v' > z .

5.2. Theorem (Class of all achievable diagonal H,,. ): Let
P € M(G) be t-admissible, and let P ¢ M (Gy): let
Niz € H™" be nonsingular. Under these conditions,
A Py ={ ALARQZI :0y € MH) is diagonal and
nonsmgular} where A7 and Ag are the diagonal, nonsingular
matrices defined by equations (5.1) and (5.3).

5.3. Comments: (i) The map H,,’ = AQAR 0y, (where Oy €
M (H ) ) is an achievable map of Z(P, C) if and only if the com-
pensator parameter Q 7, is chosen as

0 =N5ArQu 5.5
where 05, € H ™™™ is diagonal and nonsingular. By equation
(54), Q2 € M(H). Therefore, to achieve diaggnalization,
from the set S(P) of all H—stablhzmg compensators ¢, we must
choose Cay =D '@y =(V, ~ QN '@y s

Cyu=(V,-0ON, Y W 3AR 0o » (5.6)
where the matrix 05, € H™™" is diagonal and nonsingular.
In (5.6), @ € H™X™ is a freec parameter and is nor used in
diagonalizing the /O map H,,. (i) If H is Ry(s) as in
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Example 2.2, then the "cost” of diagonalizing the map H,,- is that
the number of U,—zeros are increased. Since Ay is a factor of
Ny, , Hy,, must have zeros at the U, —zeros of Ay ; the multipli-
city of a Ug—zero of H,,- may be larger than its multiplicity in
detN 1, due to AR If Ay represents all Ug~zeros of Pyy
(equivalently, if N7 e M (H)) and if 05, is chosen so that it
has no U,~zeros, then the U, —-zeros of the diagonal H,,- have
ﬂlcsamemulnphcltyasmdewnsmceAR =1 ,. The parame-
ter O, is now restricted to be N7 Ag Q51 and hence, can no
longer be assigned arbitrarily; the only freedom left is the diago-
nal nonsingular matrix 05, € M (H). (i) Although we chose
to diagonalize the map H,. we could also diagonalize
H,,‘:v'}-))' , the map from the same extemal-input v’ to the
output y of P (y is the output used in the feedback-loop). In that
case, assuming that n, = n; and that N, € H™* is nonsingu-
lar, we define Agp Alp,N from N, aswedxdabovetoob(am
A, AkanlezﬁomN;z,mesetofallacmevabknonsmgular

maps H,, is then A,,.(P), where A = { ALPAR,,Q,,
10 € m(H)lsdxagonalandmnsm } . The compensa-
tor parameter Q5 should be chosen as N ARszl (iv) In the
unity-feedback system S(P,C), dmgonahzmg the map H,,- :
by wgulddependonthechoioeforQﬂmhthat
N,(U, +QD,) is diagonal, and hence, diagonalizing the map
H,,-in § (P, C) may not be possible for certain plants. If P e
mH), P is square and nonsingular, then the compensator
(I n; = QP)™'Q achieves the diagonalization requirement if @ €
mH) is chosen as @ = P-1AR (), where P = Ay P. (The
matrices A7, and Ag are similarly defined for P instead of N ;).
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