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ABSTRACT
A unified view of recent results in the algebraic thowry of lnear,
time-invariant multinput-multioutput control systems is
presented, with emphasis on the wuity-feedback system (one-
degree-of-freedom design) and the more general two-input two-
output plant and compensator configuration (four-degrees-of-
frdom design). The issues of stbity, parametrization of all
sabilizing compensators, achievable input-output maps and
deopigare discussed.

L INTRODUCTION
This is a review paper presenting the algebric theory of

two linear, time-invariant (U-i), muldinput-multiouxtp (MIMO)
control sstems: the classical unity-feedback ssem S (P, C )
and the more generl system configuration S(P, C) . Due to the
general algebaic seting the results apply to lumped as well as
distrbuted, continuous-tme as well as discrete-time systems.

The unity-feedback configuration S(P, C) is studied in
Section IlL The system S (P, C ) is called H-stable if and only
if all closed-loop input-output (I/O) maps are H-sabe. 'li
H-stability condition for S(P,C ) is sated in Theorem 3.4 in
terms of coprime factorizations of P and C. The class of all
compensators that H-stabilize the plant P is parametized in
Tbeorem 3.7; compensator design using he configurtion
S (P, C ) is called one-degree-of-freedom design due to the single
free parmeter matrix Q of the Hstabzing compensor
[Hor.l]. Albough a right-coprime or a left-coprime factorzation
of the plant are commonly used in obtaining this parametriaUtion,
it is also possible to start with a bicoprime factorization and
reduce NprD-Np to NDp'I or to DlNp. The class of all
achievable maps for S (P, C ) is obtained by using the class of all
stabilizing compensators; all closed-loop I10 maps in the
H-stablized S (P, C ) are affn maps in Q.

The system configuration S(P, C) shown in Figur 3
repmsents the most general interconnection of two physical sys-
tems, a plant P and a compensator C. This system is studied in
Secton IV; the plant and the compensator each have two
(vector-)inputs and two (vector-)outputs. The measured output y
of P is used in feedback, but the output z is the actual output of
the plant (the output in the performance specifications); the point
is that z and y are not the same. The input v is considered as a
disturbance, noise or an external command applied directly to the
plant The compensator output y' , which is utilized by the plant
in feedback, can be considerd as the ideal actuator inputs; the
output z ' of C can be used for performance monitoring or fault
diagnosis. The input v of C is considered as the independent
control input like commands or initial conditions. The signals u
and u', which appear at the interconection of P and C, model
possible additive diturbanes, noise, interference and loading.

The conditions for H-stability of S(P, C) are stated in
Theorem 4.4. Intuitively, only those plants which have "instabili-
ties that the feedback-loop can remove" can be considered for
H-sabilization; txse plants are called S-admissible. The res-
tiction n the class of H-stabilizable P is due to the feedback
being applied only through the second inputs and outputs. The
class of S-admissible P is given in Theorem 4.8; the class of all
H-stabilizing compensators for -admissible plants is given in
Theorem 4.10. The 2-2 block of C is essentialy in a feedback
configuration like S (P, C ).
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In the unity-feedback configuration S (P, C ), the clas of
all C that H-stabilize P is parametized by one parameter matrix
Q; including ths parameterpatrix Q that comes from C, the set
of all C that H-stabiize P is parametized by four H-stable
matrices and hence, we call the system TXP, C) a four-degees-
of-freedom design (or four-parameter design) [Netl]. X(P, C)
can obviously be reduced to two parameter design by taking
Cll=v0and C12=O. The class of all achievable maps for
X(P, C) involves the four cmpensator parametsrsi each closed-
loop I/O map achieved by the H-sbiized SP, C) depends on
one and only one of these four parmeter matrices Q11 . Q12,
Q 21 .Q . Severl performance specifications can be imposed on
the closed-loop performne of S(P, C).

In Section V, we consider e decoupling problem; namely,
find C suclh tat, for the given P , the I/O map H, v' I- z of
Z(P, C) is diagonal. Assuming tat N12 is norSingular, it is
always possible to choose Qz1 e m(H) such ta H4, =
N12Q21 is o Di onwith this configuraion does
not involve the feedback-loop and the parameter Q of C; hence,
decoupling the I/O map H.,, is independent of the I/O maps that
are affne functions in Q. On the other hand, in the unity-
feedback configurtion S(P, C ), diagonizing-the map Hy.,

' -y would depend on the choice for Q such that
Np(Up + QDp) is diagonal, and hence, diagonalizing the map
H3i,n S (P, C ) may not be possible for certain plants.

IL ALGEBRAIC BACKGROUND
2.1. Notation [Lan.1, Vid.l]: H is apincipal ring Ci.e., an entire
commutative ring in which every ideal is principal). m (H) is
the set of matrices with elemets in H.J c H is the goup of
units ofH. l c H is a multiplicafive subset, 0 I, 1 e I.
G =HI/ :=n/d:n e H,d I)istheringoffractions
ofH associated with . Gs is the Jacobson radical ofG;
Gs := ( x e G: (1 +;xy)- e G, for all y e G 1.
2.2. Example (Rational functions in s) : Let U D C. be a
closed subset of C, symmetric about the real axis, and let C\ U
be nonempty; let Ue :=U u ( -. The ring of proper scalar
rational functions (with real coefficients) which are analytic in
U, denoted by Ru (s), is a principal ring. LetH be Ru (s); by
definition of J,f e J implies that f is a proper rational func-
tion, which has neither poles nor zeros in Ue . We choose 1 to be
the multiplicative subset ofRu (s) such that f e I implies that
f (c) is a nonzero constant in R; equivalently, I c Ru (s) is
the set of prper, but not strictly proper, real rtional functions
which are analytic in U. Then R (s) /I is the ring of proper
rational functions Rp(s). The Jacobson radical of Rp(s) is the
set of strictly proper rational functions R,P (s ).
23. Definitions (Coprinm factorizations in H):
() The pair (P,Dp), where Np ,Dp e M?(H), is called
right-coprime (r.c.) if there exist Up, Vp e m (H) such that
VpDp N -p; (iU) the pair (Np,Dp,) is called a right-
fraction representation (r.fx.) of P e m (G) iff Dp is square,
detDp E I and P = NpDp ; (Mii) the pair (Np,, Dp) is called a
righl-coprime-fraction representation (r.cfSr.) of P e m (G)
iff (Np, Dp) is an r.f.r. ofP and (N., Dp) is r.c. (iv) The pair
(Dp,Np), where Dp , Np e m (H), is called left-coprime
0(.e) iff ther exist Up, Vp ef m (H) such that
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NkUp+D JV = 1; (v) te pair (Dp,,Np) is cald a lft-
fraction represenuaion (Lfr.) of P e m (G) iffD-p is squae,
detD-, I and P=D,i;N,;(vi) the pair (Dp, Np) iscalled a

left-coprime-fraction representation (Lc.f.) of P E m (G)
iff (Dp, Np ) is an l.f.r. of P and (5Dp, ) slc. (vil)The tri-
ple (Npr,D,Npi), where N,4, D, N# e m(H), is called a
bicoprimne-fraction representation (bxct.) of P e m (G) if
the pair (N ,D) is right-coprime , the pair (D ,N1J) is left-
coprine, detD a and P =ND'N Note tha
P a m (G) is somedmes given asP =NpD-'NP + S,, where
*, e m(H) and (N,D,N ) is ac ime(b..)tiple. In
bis case, the b.c.f.r.is given by (Np,, D,Np, Sp)(Vil]. 0
EveryP e m(G)hasanr.cir.(Np,,Dp ),anLc.fr.-(Dp,,N,p),
and a b.c.fr. (Np., D, N40 inH.
2A. Generalized Bezout Identity for (Np,Dp) and (D,p, Np):
Let (Np, Dp) be an rc. pair and let (DPJ N.) be an Lc. pair, and.
let NpD =D- Np whereN H 'l ,0D e H" x%pp p
Dp, aW "ef aH'^°the there are maes
vp , up, UP vp a m (H)such that

[ VP P ][ P P (2 .i)

23.5 Definition (Doubly-ooprme faction repstat ): ) If
the generalized Bezrut identity (2.1) Ixl then ((Np, Dp)
(Dp,,Np )) is called a doubty-coprtne pair. Q;) IfP = NpD?- =

5;plNp , thien ((Np, Dp ), (Dfp, Np )) is cae a dob4,bFoprme-
fraction representation ofP.
2A& Generalized Bezut identities for (Np,D,N): Let

(N7p,D,Nw) be a b.c. triple, wher N, e Hnx
D ae Hun NH e Hnx ; then we have two generalized
Bezout identities: Q) For te r.c. pair (N7p,D) , there are
matrices VP, Up, ,X ,Y U,V M(H)suxht

eqVato. (2 is D -Uh fom2)

eqatio (22) isof th for

MMJr- = In+fn - (2.3)
(ii) For the Lc. pair(D,N t)theare matrices V. ,U, , X, Y,
U,V m(H)suchtha

[ D Ndp][ V4 X [' O (2.4)

eqaion (24) is of the

Mimi-, =In+, (2.5)

2.7. Proposition: Let P e m(G) Let (Np,D,Np) be a
b.c.f.L ofP; hence equaion (22)2.4) bold; ten

(N,p,D) := (NFX NY) is anrI.c.fr. ofP C2.7)

wherex,Y,x,Y e m(H)aredefim in(2.2)-(2.4).
2.8. CommenLtt (i) Using equais (212)-(2.4) we obtain a gen-
eralized Bezut identity for the doubly-coprime
((NwX, Y),(Y ,XNp):

[V+UVXrN s UUj[ X'V +Ntv,Uc = j < (2.8)
Note the similaty between equations (2.8) and (2.1). ii) If,

inse oN,D-N, te Splantisgiven byP = NpD-'N +S,,
whe sp5,i m (H), then an r.c.fr. and an Lc.fr. are given by:

(Np, Dp)-(NpX +SpY, Y)(Dp,NN):=(Y,XNp + Y Sp),
and the Bezout identities in (2.8) are replaced by:

(V + UVprN - UU Sp)Y + UUpr(N,rX +SPY) = In.
(-X Npt - Y Spf<X Up ) +F (IV + Npr VP, Sp Up,U Ino,
23. Example: Let H be Ru(s) as in Example 22. Let
P e Rp (s )n"M be represented by its te-spce representa-
don £ = Ax +Bu, y = Cx, where (C ,A ,B) is
Ue -Stabi able and Ue-deeable. The
P = (s+af)-C[(s +a 4(s1-A)]-'B, where -a eC U
-a e R pair((s+a)7C,(s+a (s -A)) is r.c., the
pair ((s +a)'(sI-A),B) is Lc. and
det[(s+a)t(sI-A)] 1. Thefore, (Np7D, N) =
((s+a)'C,(s+a)'(s-A),B)isab.cfs.ofP. ChooseK
a Rn" andiF a R xsuch that (A -BK) and (A -FC)
have eigenvaluesin Cl Uet Let G1c := (sIn-A4BKf' let
GF := (SIn -A +FCf1; then GR , GF e M(Ru(s)) fl
m(R91(o) and hee, (s +aXsfn -A +BK)-f = (s +a)Gr

m(Ru( )) and (s +aXsIn -A +FC-' = (s +a)GF E
m (R s)). For this b.c.f.r., (2.2) and (2.4) become:

[(s +a)GF (s+aYJGrF (s +af1(snI-A)A-1
-CGp Jn - CGFFJ (s + a)f'C i =I|+n;

(s +a')-.(sIn -A) -.B1[ (s+a)Gg (s4a)GrB]
(5 s+a)-fK Ij[ KG, Jni-KGKBj 18+f-

We oltain a Bezout identity for this case frm (2.8):

[,I,, KGFB KGF ][,-KGrB 0G1F
-CG,FB Ir - CGFF CG,B IO + CGrF I14+j

Ceay, (CGrB,(Ix-KGgB)) is an rc. pair and
(n. - CGpF), CGFB ) is an Lc. pair.

M.TE UNITY-FEEDBACK SYSM S (P, C)
We consider the systemS (P, C )shown in Figure 1.:~~~~~

Figure 1. ¶fle unity-feedbak system S(P, C).
31. A pt
(A) l plant P G Leniit (N, D,) be an rc£-.,
(D,, N ) be an Lc.fs., (N D, pN) be a b.c.fs. ofP,1wereNP"H4,D e H "-,Dp ei H^ObNno Xno

NP a H?1#.D e H"n%N a H n

(B) fle compensator c G&KII. Let (D-c,N0 ) be anl.c.f.
and (Nc,Dc) be an r.c.fr. of C,whreD Ha N a

Hm^n,N, a Hn"" ,D, H&

LOm YS( yPC)ntr ups map H :CHyis iven
I/O map ofS (P, C In terms ofP and C, H,, iS given by

P(I,, +CP)' P(1ni + CPY
Hjw CP(nCP)-' V(I+CP)-'C (3.1)
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3.2. Analysis of S(P, C ): The sysm S (P, C ) can be analyzed
by using an r.cfr., an l.c.f.r., or a b.c.f.r. ofP and C. We show
the analysis for a b.c.f.r. of P and an Lc.f.r. of C: Le
P -N,D-NP, C =D;'N , where (N.,D,N ) is b.c.,

N, ) is Lc. (see Figure 2); gX dentes the pseudo-state ofP.

+_ C N PffD
C N

Figure2. S(P, C) withP =NprD-YNp, andC=CDNC.
S (P, C ) is then described by equations (3.2)-(3.3):

[gNLpt * Dc ] [Y ] [ ° * ] (3.2)

[ ° (3.3)
Equations (3.2)-(3.3) are of the form DH3E3 = NL3i, Nt3E = j.
If detDH3 e I , n te system is wel-posed; by elementary
row and colulmn opertions on the matrices in equations (3.2)-
(3.3), it is easy to see that (NR3 DH3, NL3)is a b.c.f.r. of H,.
3.3. Definition (H-stability): ¶fl system S(P, C) is said to be
H-stableiffHk e m(H).
34. Theorem (Hstability of S(P,C)): Consider S(P, C).
Let Assumptions 3.1 (A) and (B) hold; then (i)W(-) below are
equivalent:
(0) S(P, C ) is H-stable;
(ui) DH2:= D,DP +NC,NP is H-unimoduar,
(iii) DH2 := 5pDc + lVpNc iS H-WodUhr

(3.4)
(3.5)

> D -N D
(iV) DH3 - NNp ics H-wmdur, (3.6)

(v) DH4 : fN is H-nimodular. (3.6)

33. Comnents: (i) Post-multiplying DH3 in (3.6) by te
H-unimodular matrix M'-1 defined in (2.4)-(2.5), we obtain

DHaM)=[&CNprV>- DcUp, NcNprX +DcY]
But D!3 is H-unimodular if and only if DH3AfM-1 is
H-unimcdular, hence, condition (3.6) holds if and orly if

DcY +NcNprX is H-unimodur. (3.8)
Tr H-unimodulaity condition (3.8) is the same as (3.4) since
(Np,X, Y) is an r.c.f.r. of P by Prposition 2.7. Similarly, pre-
multiplYing DH4 in (3.7) by the H-unimodular matrix Mr
defined (2.2)-(2.3), we conclude that (3.7) holds if and only if

X NslNV +Y Dc is H-unimodular. (3.9)
Note hat condition (3.9) is the same as (35) since (Y,X Np ) is
an Lc.f.r. of P by Proposition 2.7. (ii) If condition (3.4)
(equivalently, (3.5)) holds, then by nornalization we obtain

DcDp+Ncp =lni ,and NPNc +D+Dc=In,. (3.10)
With P = NpDLi- =LpN , C =CHc -Nc D) ,equation
(3. 10) is equivalent to

- c-LNp Dp][ Np Dc - [ IIno (3.11)

3. Deflnition ( H-stabilizing comntor C ): (i) C is called
an hs-abilizing compensator for P (aer abtreviated as: C
H-stabilizes P) iff C e G'n satsfis Asmption 3.1 (B)
and the system S (P, c ) is H-stable. (U) The set
S(P)=( C: C H-stabiizes P ) is called the set of all
H-ablizng compensators for P.
3.7. Theorem (Set of all Hstabiling compenstors for P):
LetP e m (G)andletP satisfy Aswnpton3.1 (A); thenthe
set S(P) of all H-sablizing compensators C forP is given by
equation (3.12) and equivalenly, by equation (3.13) below:

S(P)= C =(Vp-QNp)-'(Up+QDp):Q e m(H)}; (3.12)

S(P) = f C = (Up+DpQXpV-NpQF' : Q e m (H) ]; (3.13)
where the matrices Vp, Up. Vp, ,Up in equations (3.12)-(3.13)
satisfy the generaized Bezout identity (2.1). Equations (3.12)
and (3.13) give a paramnerization of all H-staiizing compensa-
tors for P; in each case, the map Q l- C is bijective and, for the
sameQ e m (H), (3.12) and (3.13) give the same C.
3.& Comments: (i) (All H-stabilizing compensators based on
a bxlr. ofP ): By Proposition 2.7 (N X, Y) isan r.c.f.r. and
(Y, X Nd) is an l.c.f.r. of P; then set RP ) of all H-stabilizing
compensators is given by:

S(P) {(V+UV.prN,-QXNTp1)-(UUU +QY) }, (3.14)

S(P)=d (UP1U+YQXYV+Nj V, 1U-N,XQ )-t}, (3.15)
where Q e m (H) and the matrices in equations (3.14)-(3.15)
satisfy the generalized Bezout identities (2.2) and (2.4).

A generalized Bezout identity for the doubly-coprime pair
((NprX, Y), (Y ,X Np) ) is given by (2.8); comparing (2.8) and
(2.2), it is easy to see that (3.14) is equivalent to (3.12) and (3. 15)
is equivalent to (3.13). (u) (All H-stabiiing compensators for
H-stable P ): If P e M(H), then the set S(P) of all
H-stbiling compensators is given by:

S(P) C=(In- QP)-'Q:Q M(H)J.
S(P)=C = Q in-PQ)-':Q a m (H)

(iii) (All H-stabilzing compensators when P a m (G) ): In
Theorem 3.7, if we assume that P a m (G ) but notm (G. ) ,

then in equations (3.12)-(3,13) (and equivalently, (3.14)-(3.15) )
we choose Q e m(H) such that det(Vp -QN,p) a I
(equivalently, det(Vp -NpQ a= I).
(iv) (AD P stich that S (P, C)is H-sable): Le C e m(Gsa )
C = DC IVC = NcDC-', be given; let (Dc,,W,) be LC. and QVC, DC?
be r.c. Under these conditions, the set of all P e m (G) for
which S (P, C) is H-stable is given by:
{ P = (Uc +D p)Vc - Nc Qp~)- I Qp ra m (H)) =
P =(V-Qp]Nc)'(Uc +QpD,) :QpQ f m(H)3,

where Vc, Us, Vc, Uc a m (H) satisfy a generalized Bezout
identity for fte doubly-coprinme pa ((N, DC), (D, Nc )). If
c a m(G) , then Q ar m(H) should be chosen so that
det(Vc -NcQp) e I (equivalently, det(Vc - QpNC) a I)
3.9. Achievable 110 maps ofS (P, C ): The set
A(P):= I H C H-stabizes P I is caled the set of all
achievable 1/0 maps of the unity-feedback system S (P, C ) .

By Theorem 3.7, the compensator C H-stabilizes P if and
only if C a S(P). Substituting DjC Nc =
(V1 -Qt4'(Up +QDP) or NcD[' -

(U,, Dp,QXV,p -N,pQ)-l for C into (3.1), we obtain the set of
al achievable V/0 maps:
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A([-(Up + DpQ)Np Dp(Up +QD)
where Q e m (H). Note that each closed-loop map of
S(P,C)isanaffimr mapintheparametermatrixQ e m(H).

Compensator design using S(P, C ) is caled one-degree-
of-freedom design or one-parameter design since alllchievable
maps are parametrzed by the single parameter matrix Q.

A ^IV. TITE FEEDBACK SYSTEM Z(P, C)
Consider the feedback system E(P, C) shown in Figure 3.

V' zy v z

+

Fue 3. The feedback system EP, C).
4.1. Asumpdons:
(A) The (Tl0 +n)X(i+ ni)plantP e m(G) ispafitio as

P= [P2P4 G(who+ )X(li e),rep EfGoxm.
(B)ThcompensatorC e G (o'+n)x(ni'8+nQ))ispardtionedias

C=[C21 Cu] G C e G

4± Fact: () Let the -ant P satsf Assumption 4.1 (A) then P
has an r.cfr. (N;, D4) and an Lcfr. (Dwpi[)wich satisfy
equations (4.1H44) below:

Nil N1 DI0]
CI) (Np,D;)( N21 Np j D2, Dp ), (4.1)

_ _ DlDI, 12' Nil N12'
Oj) (D , Np).0( J'[ N2 g, ) . (4.2)

where (N., Dp) is an r.fr of P, and (Dp, Np ) is an Lf. of P.
(ii) Let the compensatr C satisfy Assumption 4.1 (B); then C
has an l.cf.r. (Dt.Nc) and an r.cf.r (Nct, DCt) which satisfy
equations (4.3)-(4.4) below:

D11D 12 ~N Il NI
(De~~~~.Nc)= ( O D 21 c6) 43

N',, N 12 D'Pll O
(Ne- De-) (N'21 N, Do21 De ) (4.4)

where(D,, N, is an Lfr. of C, and (NC, D) isan rfr. of C. 0

Any other r.cf.r. of P is given by (NpR,D,R), whre
(Np, Dp) is fte r.c.f.r in (4.1) and R e m (H) is
H-unimodular. Similarly, any other Lc.f.r. of P is given by
(LOp. Li;), where (Dp, N;p) is the l.c.f.r. in (4.2) and
L e m (H) is H-umodular. Tepair(Np,Dp) in (4.1)is not
necesarily r.c.; the pair(DN,N) in (4.2) is notnessarlyl.c.

/Omap ofZ:(P, C). IntersofP a c, Hp is given by
-PII-P 2-'CP2 PlF 127rlC21 P127-ld'

TP21 r PThC21 PrY
-c2TP21 -C12P¶r1 C11-C12Pr'C21 C12T'
-r'ICP21 r-'-Ii,, r'C21 r'iC

wtrreT=~(Irn+CP )MdT-(I, _-PC).
41. Anayi of '(AC): We alyze the system Z(P,C) by
famcizing P as N99j' and C as Dr Nt; denotes t
pssaWe ofP. Y(P, C) is thn described by (45)-(4.6):

DI, 0w ° 0Zz ; w ^Dp O
-4 Y u2 141 . = §(

(4.$-(4.6) are of UtheformDHE=7?L4=$5itisea.toI 4-5
see that (NR,DH,NL) is ... J.fdetD, e I, then
UOmapHV21 isgivenbYH;;=ftl%'1XL 0 P cG)
4.3 Defniio (H-tbilt ): csyse 'P,c) is sadtobe
HstaleifH^ e m(H).

4.4 Theorem (H-abilit of S(P. 8)): Consider Z:(Th 8). Let
Asm0iNs4.1 (A)-(B) hold; then (Uil) belw are eqiv
Ci) S(P,C)isHsbe;
fid) 1% is H-unimodular; (4.67)
(sie) D1NiS H- Nimodubar.rand (4.8)

Do, is H-unimodular, md

DD, 4P N, is H-nimoduLa.
(4.9)

(4.10)
4.5.' Commentv C) Condition (4.7) ofTherem4A is equivalent
todetDg 6 J; by eation (4.3),

detD5 =detD 1det ,det(L0Dp +NNp ) (4.11)

NowdetD% e J if and only if each of ft te factors in (4.11)
is in J; hene, by (4.1) and (4.3), detDH e J if and only if
detD1I1 = detD,r( de,p Y' e J (equivalently, de;Dp = detD,4)
and detW5, = detD( detD, )-f1 J (equivalendy, detD
detD) and det(D0D, +11Np,) e J (equivalently,
de(Dt D,,+NNNp ) =1 ). Due to (4.11), condii(4.7) of is
equivalent to cdins (4.8)-(4.9)-(4.10). (U) By nmlin on,
condifions (4.8)-(4.9)-(4.10) of can be written as:

DI, =1 and D 'I =I , anfdD0Dp +,eNp =I m. (4.12)
The last contion in equation (4.12) is in fac a rght-Bezout
identity for the r.cfr. (Np, D1) of P and a left-Bezout identity
for the Lc.fr. (D0,N,) of C. (ii) From equation 4.11), using
det(I,, +CP) detrXl +PC).wecanexpres detD, also as:

detD1 =detDIdetDdeW IdetQ det(I,, ,PC). (4.13)
Now using equatios (4.1)-(4A), we obtain de-tD = detDp
(equivalgely, detDIjdtDy = detDldetDp) and detDt = detDt
(equivalently, detW 'IdetD0 = det '1IdetDJ); hence we obain

det1m = deWIIdetD',,det( .ID-NsSpN4 (4.14)

refore, if we analyze Ue systm U(P, 8) with P factorized
as D/N; .4 'C factoized as N14De-7 , by normalizatio condi-
tion (Hii) ofTheorem 4.4 is equivalent to

51, =I wa D'II1- and D D NN-I
no ni~j P C +,pN =~In.

(ivt Conditions (4.8)-(4.9)-(4.10) can be interpreted as followt
E(P, C) is H-stabilized if and only if 1) the only source of "ins-
tability" in Ut plant P is D. (equivalently, Dp ) 2) and the only
soure of "instability" in the compensator C is Dc (equivalently,
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Dp ) 2) and the only source of "instabWity" in the compe r C
is D0 (equivalently, DC ) 3) and tIe feedback-loop (with P and
c ) is H-stble. Note that t H-stabity of the "feedback-loop"
is equivalent to the H-stabWty of the unity-feedback system
S(P,C). 0 ,, A

4A. Definition ( Hstbilizing compensator C): (i) C is called
an H-stabilizing comensao=r for P (later abbreviated as: C
H-stabize P) iff C e m(G) satisfies Asswnption 4.1 (B)
and the system S(P, C) is H-stable. (ii) The set

§(P) C: c H-sXtabilizes P )

is calWdthe set ofaU H-stabilizing compensatorsforP.
4.7. Definition (Sdmissibility): P e m (G) is called
I-admissibleiffP can be H-stabzed by someC e m (G ).

Let (N;, D;) be an r.f.r. of P ; by Theorem 4.4, P is
S-admissible if and only if two conditions are satisfied: 1) detD;
detDp and 2) (Np, D.) is a right-coprime-fraction representa-

tion of P . In terms of the l.c.f.r. (D;,N;) of P, again by
Theorem 4A4 P is F--admissible if and only if 1) 5;- = detD and
2) (D,, Np ) is a left-coprime-fraction representation ofP.
4.8. Theorem (Class of S-admissible P ): Let P E m(G)
satisfy Assumptkn 4.1 (A); then P is S-admissible if and only if
P has an rc.fr. in the form given by equation (4.15) and an
lc.f.r. given by equation (4.16) below:

[N11 Nl] [fi °
(N;, D;) = ( -V,,21N-p ,,&21 ), (4.15)

_.-V .-Nlao 12UP, [?' NII 2vp,
(D;,N;))=( O J , 11 J ), (4.16)

where (Np, Dp) is an rcf.r. and (Dp, Np) is an Lc.f.r. of P; the

p'irs (N,p, Dp) and (Dp, Np ), with Up, Vp, Usp, Vp, satisfy (2.1);
N11, N12, N21 e m (H) aref parameter matrices.
4.9. Comments: (i) Suppose that (NP,DP) is an r.c.fr. and
(Dp, Np ) is an I.c.f.r. of P , and that the generalzed Bezout
identity (2.1) holds. We generate the class of all -admissible
plats by choosing three completely free matrices Nll N129 N21
e m (H) and forming the r.c. pair (N;,D;) in equation (4.15)
or the L.c. pair (5;, Np;) in equation (4.16); with this assignment
of (DP, NP;) and (N;, D;), P := NPD-5I'= is a -admis-
sible plant Note that detp e (equivalently, detDp e I)
follows from drtDp e I (equivalently, detDp e I). (ii)
Theorem 4.8 states that the class of all B-admissible plants is
parametized by ony three free matices N11, N12, N21 E
m(H). (iii) Suppose that we are given a P e m(G) sadsfy-
ing Assumption 4.1 (A), and that the coprime-fration
representations NpDp1 = 15A11Wp of P satisfy (2.1); then P is
S-admissible if and only ifP11- P 12P Up,P21 e m(H) and
P 12Dp r m(H)andspP21 e m(H).
4.10. Theorem (Set of all H-stabilizing compensators for P):
le P m(G) be S-admissible with P e M (Gs); let
(Np, Dp) be an r.c.f.r. and (5p, Np ) be an l.c.f.r. ofP, and let the
generlized Bezout identity (2.1) hold. Under thse conditioks,
the set S(P) of all H-stabilizing compensators C for P is given
by equation (4.17) and equivalently, by equation (4.18) below:

A A A rITOP w a12NP -lQii 2125p,
S(P) =C=OVc= VP, Q. p] [Q21 UP +QDJ] } (4.17)

SW) = [D~Q21 Up,+Dp2Q [-NptQ Vp-NpQ] }418)
whreQjj,Q12,Q212Q E m (H). Equations (4.17) and (4.18)

give a parametization of all H--st ing compensators for P;
each of thse equations defines a bijection from Q 11 Q 12, Q21, Q
e m(H) to C eS(PH). For te saMe,(q1,3Q12Q21.Q),
equations (4.17)-(4.18) give the same C e S(P).
4.11. Comments: (i) IfH is the ring of proper stable rational
functions Ru (s) as in Example 2.2, then the S-admissibility of
P implies that every U -pole of P1, P 12,P21 is a U-pole of P
=NpD;, with at nost the same McMillan degree [Vid.1, NeLl].
Simily, for C to be an H-stabilizing compensaor for P, the
U-poles of C11, C12, C21 must be "contained" in the U -poles
of C = DC and C must be chosen so that the feedback-loop
is H-stable. (UH) The cla of all H-stabizing compensators is
parametrized by four matrices, QI1, Q12, Q21, Q e m (H); the
matrix Q parametizes the class of al C ta H-sbizes the
loop S (P, C ). Design withthe unty-feedbacksystem S (P, C )
is one-degree-of-freedom design because only one parameter
matrix is available for design. In contrast, for the more general
system F(P, C ), there arefour-degrees-of-freedon because C has
four completely fre matrc in H, which cm be chosen to meet
perfomance seifications. In Section V, we use the parameter
221 to diagonalize the input-output mapH,,: V H z.
4.12. Achievable 110 maps ofSP, C):The set
A(P):=(H-: C H-stabilizes P is called the set of a#l
achievable I/O maps of the system £<P, C).

Substituting for C from the expression in equations (4.17)
and (4.18) into the closed-loop I/) map Hy, we obtin the set of
al achievable lOmaps for l(P, C): A(P)= f H; =

N 1-N 12QN21 N1Dc N 12Q 21 NI 2Nc
DcIP21 NpDc pQ221 NpNc
Q12N21 -Q 1Np Q 1i Q12Dp
-Nc 21 -JNe p DpQ21 Dpge

Q I 1,Qm12 Q21Q Q e m (H) ),where Dc := (V,p-NpQ), DC
(Vp --QNp), Nc := (Up + Dp Q),Nc := (Up+ 25). Eah

closed-loop map achieved by S(P, C) depends on only one of
four free paraMetersQ1, Q 12,Q21,Q e m (H); infact eah
of the maps is an affine funion of one parameter only.

If P11 =O and P2, = In,,9ten v can be viewed as an addi-
tive distrbance at the output y; the disturbance-to-output map
Hr : v H y is given by (IV -NpQ )N21 = (V,p - NpQ )Dp,
which depends on the parameter Q e m (H). On the other
hand, the exteral-input to output maps Hv, = N12Q21 and H, =
NpQ22 depend on a different parameter Q21. Consequently, out-
put shaping and disturbance rejection can be achieved simultane-
ously, since H,, and Hy,, are decoupled from Hy.

V. ACHiEVABLE DIAGONAL MAPS
We now consider the problem of achieving a diagonal I/O

map for a S-admissible plant P; more precisely, we require the
closed-loop map H,,' : v f-* z from the external-input v' to the
output z of the H-stabilized 2(P, C ) to be diagonal. We obtain
the class of all achievable diagonal maps H.,.

Suppose that P e m (G), satisfying Assumption 4.1 (A).
is a S-admissible plant We assume that and r%' = ni = TI,; con-
sequenty, P12 e Gnx' is square since there are ni inputs vi
and ni outputs z. Furthrenore, we assume that N12 e H n

is nonsingular (i.e., detN12 t 0).
We define two diagonal (nonsingular) matrices AL and AR

as follows: (i) Let ALk E H be a greatest-common-divisor
(g.c.d.) of the elements of the k -th row ofN 12* Let
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aLA e H be a gaest-common-divisor (g.c.d.) of the elmen
of the ktb row ofN12 . L

AL .-diag [ ALI , * *- ,>A ]4I. (5.1)
N AL.A,f (5.2)

By constctimo detL it 0. The diagonal ekments A of A,L
are unque except for factors inJ. (u) By assmpton, detN12 =
detA2detN12t 0; hence, deN12t3 0. Write the ui-th entry of

Nj2 as--, where (mij, dij) is acoprime pairinH; note that

dj t 0 since the denominator of each entry is a factor of detN12
(i.e., detN,t2=daj7 for someaaja H). L ARj e H bea
least-common-multiple (.c.m.) of Idlj, * , d,j) (i.e., a
Lcmin of the dewminators of the elements in the j-th column of
^L e)Lt

AR:=diag[AfRj ,A.X1; (5.3)

detAR I* 0 since d4jt 0. Th entriAe of AR ar unique
except for facors in J. Note that if Njv E m(H) , then
AR = I . Nowfor some b,j a H ,A*j = 4d bij ; thereforet

ij -th element ofNA'AR is n-A j =mijbij a H ,amdhence,

N12R Eam(H). (5.4)

ntuitiv§ely, ifH is R, (s) as in Example 2.2, then weinpre
the diagonal matrices A and AR as folbws: Au exacts the
Ue -zeros that are common to all elements in the k-tb row of
N12; AL "book-keeps" the Ue-zeros of P12 = N12D; ta
appea in each entry of some row of N12. Clearly, P12 may have
other Ule-zeros that cannot be exwred by L; dtwse 14-zeros
are fte U -zems of detN12 (equvalently, the l-Poles ofNj)2
Now te diagonal matix AR makes N12AR H-stable, i.e., can-
cels these. Uie-les. Let s e Ue be a zer ofAR (hence a

Ue-zero of detN2); the multiplicitYof s a Ue indetAR may
exceed its muliplicity in detW2. If deW12 a H x has n

zerosats a Ue,thendetARhasatmostn zerosats U;
so AR has atmost as many Ue-zeros as (detNjMYIn.
S.l. Definition (Achievable diagonal H,, ): The set
Aw,4(P) {H,,: c H-stabiizes P and themapH. is diago-
nal and ronsingular I is caled the set of all achievabk diago-
na nonsingularmaps H,,,: v' I-* z.

5.2. Theorem (Class of all achievable diagonal Ha,, ): Let
P e m(G) be S-admissible, and let P a m (Gs); let

NKz EWH" be nonsinguar. Under tes conditions,
A"(P)=( 4QA 21 :Q21 E m((H) iS diagonal and
nonsingular) where AL andAR are te diagonal, nonsingular
matrices defined by equations (5.1) and (5.3). A

5.3. Conments: (i) The map H kARQ1 (whe Q21 E

m (H) ) is an achievable map ofS(P, C) if and only if the com-
pensatorparameterQ21 is chosen as

Q21 =N2AR Q21; (5.5)

where Q21 a Hxn^t is diagonal and nonsinguar. By equation
(5.4), Q21 a5 M (H). T-herefore, to aCheve diagonalization,
from the set S(P) of all H-abilizing compensators C, we must
chose C21= c 21 = (Vp -QNp)1Q21 as

C21 (Vp -QNp )dNA'AR Q21r (5.2
where tXe matrix a HnixIu is diagonal and nonsingular.
In (5.6), Q aiHnixno is a free parameter and is not used in
diagonalizing the IVO map H,. (it) If H is Ru(s) as in

Example 22, then the "c" of diagonalizing the map H,,, is that
the nmber of U1-zeros are inasd. Since 4 is a fcr of
N12, H., must have zeros at th Ue-zems of4; the multpli-
city of a Ue -zero of H,,, may be Lager ta its muipc in
detN1 due to AR JIf AL reprents all Ue-zeros of P,2
(equivalently, if NjT a m(H))afmQ2ilschoen sothatit
has no Ue4-zews, then the Ue-zems of the diagonal H' haave
the same mulfiplicity as in detN42 since AR n,. The pame-
ter Q21 is now restricted to be Nf2A d and he can no
longer be asigned arbitraily, the only freedom left is the diago-
nalnnngularmatrixQ 2, a m (H). liii) Alhoughwecho
to ditnalizet map H.,, we could also diag aze
H,,: v' F-y , the map from the same external-inpt V' to the
output y ofP (y is the output used in the feedback-loop). In tat
case, a ing that n0 ni ad thaN , is
lar we def ARP 4Np romN as wedid above toobn
4, AR and N12 fropi NV the set of al achievable s ar
maps H * is trn. A.,,(P), wher A,A,YV (P~~~,,I) = I 4 ARpQA21
Q2 a m() is diagonal and nsin9ar }T compensa-

tor pareter Q21 slxuld be chosen as N'1AgQQ21. (1) In the
unity-feebac system S (P, C), dagonaizing the map H..,:
at 'k*y would depend on the choice for Q suh that
Np(Up+ QDp) is diagonaL and hen, diag izing the map
H,, in S(P, C )mayn t be possible for ceain plats. UP
m (H), P is square and nosingular, then the cmpenator
(I,, -QPfrQ achieves thediagoalization eqmn tifQ e

m(H)ischosnasQ =p-A Q,4wherP =A,PAce
matrices AL and AR are similay defined forP inslead of N12).
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