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Circuits, k-Ports, Hidden Modes, and 
Stability of Interconnected k-Ports 
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Alisrrocr -This paper exclusively considers lumped k-ports and circuits 
which contain linear time-invariant elements, independent sources, and 
controlled sources. The k-ports are represented by their hybrid matrices. 
Tableau equations of circuits are used as a special case of polynomial 
matrix description. The hidden modes of a circuit are determined by 
inspection from its tableau equations in the Hermite row form. Tbe same 
form is used also to determine the exponential stability of the circuit and 
that of the k-port. Finally, necessary and sufficient conditions for ex- 
ponential stability of interconnected k-ports are given; the hidden modes 
of the interconnection are studied. The paper is self-contained. 

I. INTRODUCTION 

T HIS paper investigates the dynamics of k-ports ob- 
tained from lumped, linear, time-invariant circuits, of 

circuits resulting from k-ports driven by independent 
sources and of interconnections of two k-ports. In all these 
cases, the circuits may include R, L, C’s, ideal trans- 
formers, independent and controlled sources. As in [Bel. l] 
we describe our circuits by polynomial equations; more 
specifically we use tableau equations. 

Belevitch was the first to systematically use polynomial 
equations to derive properties of circuits. Later Rosenbrock 

[Ros. l] applied similar methods to control problems. More 
recently, Callier and Civalleri [Cal. 21 used the Polynomial 
Matrix Description (PMD) to state conditions for complete 
controllability and observability of n-ports and circuits 
based on the Hermite Normal Form and the Smith Canon- 
ical Form. 

In this paper we use tableau equations to study the 
relationship between a k-port and a circuit obtained by 
driving the k-port by independent sources. The k-ports are 
represented by appropriate hybrid matrices (see, e.g., [Chu. 
11, [Chu. 21, [Chu. 31). In Section VI we determine the 
hidden modes of the circuit by inspection from its tableau 
equations and relate the hidden modes of each individual 
circuit to those of the interconnected circuit. The tableau 
equations bookkeep the behavior of all branch voltages 
and all branch currents; therefore, the stability results 
account for the exponential stability of the circuit as a 
whole instead of that of a chosen set of output variables. 

Roughly speaking, the stability results are as follows: the 
exponential stability of the k-port is necessary for, but does 
not guarantee, the stability of the circuit driven by inde- 
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pendent sources at the ports of the k-port. The intercon- 
nected circuit is not exponentially stable if the individual 
circuits in the interconnection have unstable hidden modes. 

The first three sections give the construction of the 
k-port and the circuit, the formulation of tableau equations 
and the stability results based on them. Section IV relates 
the tableau equations to the PMD and is followed by an 
example. The concepts of hidden modes and exponential 
stability of the interconnection of two k-ports are treated 
in Sections VII and VIII. 

Notation 
Iw (C) field of real (complex) numbers; C + := {s E C: 

Re(s) 2 0}, equivalently, the closed right-half of the com- 
plex plane; c _ := { s E C : Re(s) < 0}, equivalently, the 
open left-half of the complex plane; R [ p] euclidean ring of 
polynomials in p with real coefficients; R(p) field of 
rational functions in p with real coefficients; AmXn set of 
m X n arrays of elements belonging to the set A (e.g., 
Iwmx”, R[plmxn, IW(P)~~~, . .o); rk(A) the rank of matrix 
A; s[fJ the list of zeros of the function f; p[N] the list 
of poles of the matrix function H, U as in (A W B) the 
concatenation of the lists A and B; 1, the k X k identity 
matrix. 

1. Generating the k-Port K from the Given Circuit JV 
The given circuit JY is an arbitrary interconnection of 

lumped, linear, time-invariant circuit elements including 
independent sources. It has a connected graph of b branches 
and n, nodes. 

Assumption 1.1. The circuit X is uniquely solvable. 
The uncommitted circuit Y is obtained from JY as 

follows: k l-ports are generated by soldering-iron entries 
to some nodes of JY and by pliers entries to some branches 
of JY [Chu. 4, p. 2321. A branch, whose nature is not yet 
specified, is connected to each port. These branches are 
called the uncommitted port-branches [Chu. 1, p. 2601 and 
they are assigned the voltage and current reference direc- 
tions of the port where they are connected (see Fig. 1). The 
resulting circuit is called .x?: it has k port-branches, b 
internal branches (the same as the branches of Jlr), and 
n:=n, - 1 nodes excluding datum, where nk 2 n,. 

In the circuit .Y, let i and n denote the b-vectors of 
internal branch currents and of voltages. The superscript p 
distinguishes the port-branch variables from the internal 
branch variables: i and 2) have associated reference direc- 
tions whereas iP and VP have nonassociated reference 
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Fig. 1. The uncommitted circuit X with b internal branches and k Fig. 3. The circuit X, with b internal branches, k, voltage-port 
port-branches. branches and k, current-port branches. 

Partition the port-branch variables iP and VP of the 
circuit X, as follows: VP := vl” [ 1 . . . 

v2” 
where v[ := [v+ vS2 vSJT =: v, 

Fig. 2. The k-port K. 
iP := where if := 1 i,, is2 * . . iSk 1’ =: i,. 2 

directions as far as the port-branches are concerned (see 
Fig. 1). 

Let us now 1) remove all the uncommitted port-branches 
from the circuit .x? and 2) put all its internal branches and 
internal nodes inside a black-box; the result is a k-port 
called K (see Fig. 2). Note that the port-variables iP and VP 
are the only measurable variables of the k-port K. 

Definition 2.2 [Bel. 1, p. 661: An n-port is said to be 
well-defined iff there is at least one way of choosing n 
independent sources to terminate its n ports such that the 
Dart-variables of the circuit thus formed are uniquely 

Therefore, up and if’ (if and vj’) are the port-branch 
variables of the voltage-ports (current-ports, resp.). The 
tableau equations for the circuit Xh can be written using 
the node voltages (e), the internal branch voltages and 
currents (v and i), and the port-branch variables (VP and 
ip). 

Tableau Equations for the Circuit X,, 
For tableau equations we use the form 

T( PM) = u(t) 
where d/dt is denoted by p. For the hybrid circuit X, 

I - - 

solvable for all values of the independent sources. Equiv- 
alently, an n-port is well defined iff it has at least one n 
hybrid representation. 

Fact 1.3: Assumption 1.1 implies that the k-port K is b 
well defined. 

Proof: Orle way of choosing the k independent sources k 

is to connect independent current (voltage) sources to the b 
ports of K that were created by soldering-iron entries 
(pliers-entries, resp.) on the circuit J+“. The circuit thus k .- 
obtained is zero-input equivalent to .M, which is uniquely 
solvable by Assumption 1.1. 0 

II. THE HYBRID REPRESENTATION FOR THE 
~-PORT K 

The Circuit X, 
Let k, (k, ::= k - k,) ports of the k-port K be driven by 

independent voltage (current) sources and call these ports 
the “ voltage-ports” (“current-ports”, resp.). 

Assumption 2.1: The hybrid representation corresponding 

n b b k k 
0; 0 

I 
1 A,; 0 ; A, 

-----,------.+------+-----;------ 
-A;; 1, 1 0 ; 0 ; 0 
---- ~-------------r------~------- 
-A;\ 0 i 0 i 1, j 0 
____J-_____I---_--L------J------- 

0 I M(p) I N(p) I 0 I 0 -_--J------I------L------J------- 

44 ------ 
v(t) ------ 
i(t) ------ 

- vl”w 
- v;(t) _----- 
if(t) 
if(t) 

n 

b 

b 
= 

k 
(24 

k 
to this partitioning of the k-ports of K exists. At least one 
such hybrid representation is guaranteed to exist by Fact T(p) E R[ p](26+n+2k)x(2b+n+2k) is the tableau matrix 
1.3. [Ab i A ] E Iw ’ x(b+ k, is the reduced incidence matrix 0; 

The circuit obtained by driving the k-port K by k, .%J, whlre A, ( AP) corresponds to the internal branches 
independent voltage sources and k, independent current- (port-branches, resp.). (For an example, see (5.1) below.) 
sources is called S, (see Fig. 3). X, has the same In the tableau equations (2.1), the first n are KCL 
digraph as the uncommitted circuit .z?: the uncommitted equations, the next b + k are KVL equations, and the 
port-branches of the circuit .Y are now specified as k, equations M(p)v(t)+iV(p)i(t)= u,, M,N ER[plbxb,l 
voltage-port branches and k, current-port branches in the 
circuit Zh. ‘Standard procedures guarantee that the elements of M(p) and N(p) 

are at most of degree 1. [Vla. 1, p. 1011. 
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correspond to the b internal branch equations with u, 
representing the internal independent sources. The last k are 
the branch equations of the independent sources connected 
at the ports. Note the minus sign in front of the port 
voltages due to nonassociated reference directions. 

The Tableau Matrix T(p) 
The circuit X,, and in fact any uniquely solvable circuit 

obtained by connecting independent sources to the ports of 
the k-port K, has the same digraph and.intemal branches 
as the uncommitted circuit X. Therefore, the first 2 b + n 
+ k tableau equations of the circuit X,, are identical to 
those of any other well-defined circuit obtained from the 
k-port K. Their respective tableau matrices differ only in 
the last k rows. 

Fact 2.2. Let Assumptions 1.1 and 2.1 hold. Then 
a) the tableau matrix T(p) is nonsingular; 
b) the first 2b + n + k rows of T(p) are linearly inde- 

pendent in the module (IW[p]26+“+2k, Iw[p]). [Sig. 1, ch. 61. 
Proof: a) The circuit .x?~ is uniquely solvable (As- 

sumption 2.1) and thus its tableau equations have a unique 
solution; equivalently, the polynomial det T(p) f 0. 

b) Let XJ be the particular circuit obtained by con- 
necting inde{endent current (voltage) sources to the ports 
of the k-port K that were created by soldering-iron entries 
(pliers-entries, resp.). Then the circuit Xh, is uniquely 
solvable by Assumption 1.1 since it is zero-input equivalent 
to the given circuit .K. Let Z”(p) be the tableau matrix for 
the circuit X, which differs only in the last k rows from 
the tableau m&ix T(p) of the circuit &. Since -X, is 
uniquely solvable, T,(p) is nonsingular with its 2 b + n % 2k 
rows (or any subset of its rows) linearly independent in the 
module (W[ p] 2b+n+2k, lR[p]). Then the first 2b + n + k 
rows of T(p), which are identical to those of T,(p), are 
linearly independent in the same module. 0 

Let B(P) E W4 W+n+k)XW+n+2k) denote the rectan- 
gular matrix that corresponds to the first 2b + n + k rows 
of T(p). Then k(p) is full row-rank by Fact 2.2. 

The Hermite Row Form of k( p) 
By elementary column operations (in the ring R[p]) 

performed on the rectangular matrix k(p), let us now 
1) make a change of variables from - up to UP, and 
2) reorder 

as 

UP 

’ 

UP 02” -_-- = ---- 
ip 

II I 

ilp 

ip 

iP 
Uf 

II 

--- 
ul” 
i5 

in the first 2b + n + k tableau equations in (2.1). 
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With all internal independent sources of the circuit X, 
turned-off, these equations read 

k(P) 

x --- 
if 

Uzp --- 
u1p 
is 

= 0 where x := 
e 
[I u . (2.2) 

i 

Fact 2.3: Let Assumptions 1.1 and 2.1 hold. Then the 
polynomial matrix iir( p) defined in (2.2) can be put in the 
following Hermite row-form by elementary row operations 
in the ring R[p]: 

r-51 
=0 (2.3) 

where U(p) E R[ p](2b+n)x(2b+n) is an upper triangular 
nonsingular matrix with nonzero manic polynomials in p 
of degree at most 1 on the main diagonal, A(p), B(p) E 
IW[plkxk. (The matrix on the left of (2.3) is called R(p) E 
R[ P]“~(“+~) where v := 2b + n + k.) 

Comment: From the Hermite row form, all entries of 
U(p) above the main diagonal are (possibly zero) con- 
stants. 

Proof: The square tableau matrix T(p) for the circuit 
&, in (2.1) has polynomial entries of degree at most 1 
since d/dt := p. The last k equations in (2.1) specify the 
nature of the port-branches and hence, the last k rows of 
T(p) are all zeros except in the last 2k columns. T(p) can 
be reduced to an upper triangular Hermite row form by 
elementary row operations in the ring R[p] without using 
the last k rows to bring zeros below the main diagonal in 
the first 2b + n rows. Since T(p) is nonsingular, its Hermite 
row form has nonzero diagonal entries. By elementary row 
operations performed on the first 2b + n + k rows of T(p) 
we obtain R(p), the Hermite row form of the submatrix 
ii(p) which corresponds to the first 2b + n + k rows of 
T(P). cl 

The Hybrid Matrix H for the k-Port K 
The last k equations in (2.3) namely, 

A(P)[ z]-B(P)[ ;;]=O (2.4) 

are the constraints imposed on the port-variables by the 
k-port K. 

In the circuit Xh, Ul” v, [HI = 
if 4 

are the “independent” port-variables. Since the choice of 
independent sources corresponds to a uniquely solvable 
circuit X;,, the hybrid representation is well-defined and 
the polynomial matrix A E R[ p] kxk is nonsingular. Then 
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from equation (2.3), the dependent port-variables 

ilp [ 1 4 

are represented in terms of the independent port-variables: 

==A-‘(p)B(p) (2.5) 

where H := A - ‘B E R(p) kX k is the hybrid-matrix for the 
k-port K. 

III. STABILITYOF THE CIRCUITXJ AND OF THE 
k-PORT K 

If the hybrid matrix H of some k-port is not proper (i.e., 
has a pole at cc), then some bounded inputs produce 
unbounded outputs even if H is analytic in C +. To wit, in 
the one-port ca.se, with a first-order pole at co, the output 
due to the bounded input sin( uot2) includes the term 
2c+,tcos(w,t2) which is not bounded on Iw+. Conse- 
quently, our definition for the exponential stability of a 
k-port will be a variant on the “bounded-input bounded- 
output” stabi1it.y definition. 

The stability of the k-port K, which is a black-box with 
access only to i.ts ports, does not guarantee that the circuit 
Y,, is also exponentially stable. The internal behavior of 
the circuit Xh is not available for measurement at the k 
ports of K unless all modes of the circuit X,, are both 
controllable (i.e., excitable) by the given inputs at the ports 
and appear at the ports under zero input but for some 
appropriate initial condition. 

Let 
blpl To,1 

Any zero-input response t * ae” is called a mode of the 
circuit .Y,, associated with the natural frequency X. 

Standard ordinary differential equation calculation show 
that X is a natural frequency of the circuit X, iff det T(A) 
= 0 where T(p) is the tableau matrix of .x?,,. 

Remark: Associated with a given natural frequency, say 
X, there may be several modes: 

ale”, a2ext, . . . , akeht 

where the vectors a,, al, * * *, ak E Q=(2b+n+2k) are linearly 
independent members of the nullspace of T(A). 

Definition 3.4: The circuit X, is said to be exponen- 
tially stable iff, for all initial conditions, the zero-input 
response (i.e., all branch voltages, all node voltages and all 
branch currents) goes to zero exponentially as t + cc. 
Equivalently, all natural frequencies of the circuit X, 
have negative real parts, (u(X~) c c-, where a(.%Q is the 
list of natural frequencies of the circuit X,.) 

Analysis and Stability Theorems 
With u1p [ 1 iz 

as the input to the circuit X,, rewrite (2.3) in the form 

be the input to the circuit X,, and let 

if [ 1 uf 

be the output. Then the hybrid matrix H E R( p)kxk of the 
k-port K is the network function of the circuit X, from 
the given input.s to the outputs. 

The matrix on the left of (3.1) is called P(p) E R[ plyxy. 
Comment: We refer to t(p) as the tableau matrix of the 

circuit Zj, although it is obtained by elementary oper- 
ations from’the original tableau matrix of equations (2.1). 
Since the zeros of det T(p) are the natural frequencies of 
the circuit Y,,, it is important to note that det T(p) is 
equal to det T( p) times a nonzero constant and %“[det ?] 
= %“[det T]. 

Let i(e) E IW[plkxk be any g.c.1.d. (greatest common 
left divisor) of the polynomial matrices A and B of (3.1) 
[Cal. 1, p. 241, [Kal. 1, p. 3761, [Ros. 1, p. 701. Equivalently, 
there exists polynomial matrices A, B such that 

A = iA-, B=iB (3.2) 
-- 

and the pair (A, B) is left-coprime. Then the hybrid matrix 
H = A -‘B of the k-port K can also be expressed as 

H=z-‘jj (3.3) 

where 9[H] = %“[det A]. 

Definition 3. .I: The k-port K with the hybrid matrix H 
is said to be exponentially stable iff bounded inputs with 
bounded support (say on [0, T]) create zero-state responses 
which go to zero exponentially as t approaches cc. 

Definition 3.2: The network function H E R( p)kxk is 
said to be exponentially stable iff 9[H] C 6 _. 

Comment: In most control applications the following 
definition is adopted: the transfer function (network func- 
tion) H is exponentially stable iff H is proper and @[HI 
c c _. (For input/output properties of exponentially sta- 
ble transfer functions so defined, see [Cal. 1, p. 1271.) 

Definition 3..3: h E Q: is called a natural frequency of the 
circuit X,, iff, for some initial condition, the zero-input 
response of the circuit X, is of the form x [ 1 UP = aeh’ where a E C(2b+n+2k). 

ip the output port-variables. Using Laplace transforms it is 

With these notations in mind, we have the 
Theorem 3.5. The k-port K specified by the hybrid 

matrix H is exponentially stable iff the hybrid matrix 
(network function) H is exponentially stable. 

Proof: The k-port K is a black-box which allows 
access only to the port-variables up, iP of the circuit Xh; 
thus the modes. of the k-port K are those modes of the 
circuit Xj .which are available for measurement at the k 
ports. Therefore, the k-port K is characterized by the 
network function H from the given inputs at the ports to 
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easily shown that for bounded inputs with bounded support 
(say on [0, T]), the resulting outputs go to zero exponen- 
tially as t + cc iff this network function H is exponentially 
stable; equivalently, iff 9[H] = %“[det z] c C. (Note that 
the inputs are identically zero for t > 7’). 0 

Theorem 3.6. Let Assumptions 1.1 and 2.1 hold. Then 
the circuit &, with tableau equations (3.1) is exponen- 
tially stable iff the characteristic polynomial x(p) := 
det t(p) has no zeros in C +; equivalently a) det U( p) has 
no zeros in C + (i.e., all diagonal entries of U(p) are 
strictly Hurwitz), and b) given any g.c.1.d. L of (A, B), 
det i( p) has no zeros in Q: + and c) the k-port K is 
exponentially stable (equivalently, 9[H] c C _ ). 

Proof: a(Yh), the list of all natural frequencies of the 
circuit X,, is given by u(.%?~)= %“[x] = I[det f]. With 
A = J?& and from (3.1) we obtain 

x(p)=detf(p)=detU(p)detA(p) 

=detU(p)deti(p)det$p). (3.4 
Hence, 

d[x]=J%[detU]1111[deti]111S?‘[detA7. (3.5) 

Furthermore, 

Sa[H] = 9[A-‘B] = d[det A7 (3.6) -- 
since A, B are left-coprime. The conclusion follows from 
(3.5) and (3.6). 0 

Definition 3.7: A mode of the circuit Xh is said to be a 
hidden mode iff it is not a mode of the k-port K; equiv- 
alently, it is not controllable by the inputs 

ul” 1 1 is - - 
and/or not observable at the output port-variables 

- - 

[(-J 1 l/J -;- = k . [I[] N,(p) u2” - TG YW 
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(4.2) 

Equations (4.1)-(4.2) define the Polynomial Matrix De- 
scription (PMD) 9 = [D, N,, N,,O] of the circuit X, [Cal. 
1, sec. 3.21, [Kai. 1, sec. 6.2.31, [Ros. 1, sec. 2.21. In 
equations (4.1)-(4.2), 

a> D(P) E WPI~~“~ N,(P) E R[PI”“~, W(P) E 
WplkX”; 

b) D(a) is nonsingular; 
c) u(e): R++Rk, I(*): R+-+lR”, y(a): R++Rk are 

called the input, pseudostate, and output of the PMD; 
d) if we want to avoid Q-functions, u( *) must be piece- 

wise sufficiently differentiable [Cal. 1, p. 931. 
Call H(s) E IW(S)~~~ the transfer function of the PMD. 

Then H(s) = N,(s)D-‘(s)N,(s) and the Laplace trans- 
form of the zero-state response is F(s) = H(s)ir(s). 

Decoupling zeros of the PMD: [Cal. 1, sec. 3.21, [Ros. 1, 
p. 641: 

Let -t(e) E Iw[p]yxy be any g.c.1.d. of (D, NI). Equiv- 
alently, there are polynomial matrices b and N, such that 

D=ih and N,=iN, (4.3) 
and (b,, N,) is left-coprime. 

Definition 4.1: A point zi E Q: is called an input-decou- 
pling zero (i-d zero) of the PMD 9 described by (4.1)-(4.2) 
iff given any g.c.1.d. i(e) of (D, N,), deti(z;) = 0 [Cal. 1, 
p. 1011. 

Rank Test 4.2 [Cal. 1, p. 101, ex. 371, [Ros. 1, ch. 21: 
zi E C is an i-d zero of the PMD ZS described by (4.1)-(4.2) 
iff rk[D(z,) i N,(zi)] < v. 

It can be shown that every i-d zero of the PMD 9 is 
associated with an uncontrollable mode of the circuit X, 
[Cal. 1, p. 1011. 

Comment: We shall see later that 1) the list of “hidden 
Let R(e) E IW[P]“~” be any greatest common right di- 

modes” of the circuit ZJ is %“[det U]lJ %“[det L]. If z E @ 
visor (g.c.r.d) of (Nr, D). Equivalently, there are poly- 

is in this list and det A(z) # 0, then no input with bounded 
nomial matrices Nr, D such that 

support, (say on [0, T]), can create a response at the output D=bR N,=N,R (44 
port-variables which contains the term err for all t > T. and the pair (N,, b) is right-coprime. 

2) If there are no hidden modes, or if all the hidden Definition 4.3: A point z0 E C is called an output-decou- 
modes are exponentially stable, then the exponential stabil- pling zero (o-d zero) of the PMD 9 described by (4.1)-(4.2) 
ity of the k-port K is equivalent to the exponential stability iff given any g.c.r.d. R( .) of (N,, D), det R(z,) = 0 [Cal. 1, 
of the circuit Xh. p. 1041, [Ros. 1, p. 651. 

Rank Test 4.4 [Cal. 1, p. 104, ex 261, [Ros. 1, ch. 21: 
IV. THE POLYNOMIAL MATRIX DESCRIPTION z E C is an o-d zero of the PMD 9 described by (4.1)-(4.2) 

(PMD) OF THE CIRCUIT Xh iff 
Let us rewrite equation (3.1) for the circuit .x?~ in the 

following form: * 
rk i 1 -?‘f!! < y N,(zcJ * 

Fact 4.5: z0 E Q= is an o-d zero of the PMD .z!B described 
(4.1) by (4.1)-(4.2) iff det V(z,) = 0. 

Proof: Using the rank test 4.4, z0 is an o-d zero iff u w 
rk 0 1 I A ------ (za)<v e rkU(z,)<v-k 

*Note that what is called D(p) in this context was previously called 
0 1, 

f(P). and the conclusion follows. 0 
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Comment: Fa.ct 4.5 implies that det R( *) in (4.4) and and 
det V( .) differ by a nonzero constant. b) the network function H is exponentially stable 

It can be sholwn that every o-d zero of the PMD 9 is (equivalently, B[H] c d _ ). 
associated with an unobservable mode.of the circuit X& 

Let L( 0) be any g.c.1.d. of (h, N,). Equivalently there 
Comment: For exponential stability of the PMD, most 

are polynomial Imatrices B and N, such that 
control applications would require in addition that the 
PMD .9 is well formed (equivalently, D-l, N,.D-‘, D-‘N,, 

b=LB, N, = LN, (4.5) H are proper) [Cal. 1, p. 1281. 

and the pair (Zi, *,) is left-coprime. Then we obtain the 
Proof: Use the same reasoning as in the proof of 

Theorem 3.6 with 
network functio:n as 

-- 
H = N,D-‘N, = N,D-‘N/ (4.6) 

x(p) = detD(p) 
-- -- 

where (N,, D) is right-coprime and (D, N,) is left-coprime; 
=detL(p).detB(p).detR(p) ’ 

consequently i@l:H] = %“[det 01. 
and 

Comment: Consider L(a), L(m), and L(e) defined in 
~~[x]=~[detL]u~[[detR]111d[detD]. 

(4.3), (4.5), and (3.2) respectively. By Definition 4.1, the The list of decoupling zeros is Z?‘[det L]U Z?“[det R], and 

complete list of the i-d zeros of the PMD 9 is given by B[H] = %“[det 01. 0 

Z?“[det L( e)] whereas the list %“[det L] gives all of the i-d Comment: A mode of the circuit Xj, is a hidden mode 
zeros that are not o-d zeros since (N,, b) is right-coprime. iff it is associated with an i-d zero or an o-d zero of the 

(See Proposition 6.1 for determining those i-d zeros that PMD 9. Therefore, the list of the natural frequencies of 

are also o-d zeros.) From the rank test 4.2 and (4.1) it the circuit Xh associated with the hidden modes of J$ is 

follows that if det L(zi) = 0 then zi is an i-d zero of the S[detR]111E[detL]=9’[detU]111J[detL]. 
PMD 9 and that if zi is an i-d zero then (det U(zi). 
det L(z,)) = 0. Therefore, L(.) and L(e) differ only by a V. EXAMPLE 

unimodular factor and the i-d zeros that are not o-d zeros Consider the linear time-invariant active circuit X 
are given by d[det L ] as well. shown in Fig. 4. 

Stability of the PMD 2 Generate two l-ports by soldering port-branches, as 
shown in Fig. 5, to obtain the uncommitted circuit X. 

Let the PMDl 9 described by (4.1)-(4.2) have the net- -- 
work function H = N,D-‘N, and let (4.3)-(4.6) hold. Un- 

The circuit X has k = 2 port-branches, b = 11 internal 
branches and n = 6 nodes, and the k-port K of section 1 

der these conditions, we have the reduces here to a 2-port (see Fig. 6). 
Theorem 4.6. The circuit Xj which has the PMD 9 Designate port I (port II) as a voltage-port (current-port, 

described by (4.1H4.2) is exponentially stable iff the resp.). Then the circuit X,, corresponds to the uncom- 
characteristic polynomial x(p) := det D(p) has all its zeros 
in C-; 

mitted circuit X where port-branch 1 (port-branch 2) is an 
equivalently, independent voltage (current, resp.) source. We write the 

a) the PMD 9 has no i-d or o-d zeros in C + tableau equations as in (1.1) (see (5.1)). 

I II I I I-- 
l I I I-I I I 

2 i s I 11 
I I IO I-1. 

I I -II l-l 
--- k---- --+-- - -~--‘+..+ 

I 1 I I I 
.I 
.I 1 ll i 
I I I 

-I I I 
-I I I & 

I I 
I I 
IQIG 

-II I I I I I 
-I 

II 
I 

-I I 1 I 1 
-‘I I -_------- 

I 
I I 0 

A+------J-L 

------L-s I ---- 2?L---G’S 0 

b I-I 
1 II I 2 I I 
I P 1 5-l I I 

-- -;----- 
P I -I I I 

0 I 
J+------+o~i 

-- Q I & IO OQ 

-c,- 
62 
e3 
4 
=5 

26- 
“I 
“2 
“3 
“4 
“5 
“6 
“7 
“a 
“9 
“IO 
$1. 
!I 
‘2 
i3 
i4 
i5 
i6 
i7 
43 
is 
40 
ill- 

Sv,P 
-v2p 

i,P 
-i2P 

(5.1) 
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Here v := 2b + n + k = 30 and the tableau matrix Z’(p) 
E R[ p]32x32. Next we put the first v rows of T(p) in the 
Hermite row form described in Section II and obtain the 
tableau equations for the circuit Xh in the form of (4.1) 
(see (5.2)). Fig. 6. The k-port K for the example. 

- 
‘-I 

I I I 
I I -I 

I 
I ’ 

II 
I -I 

I 
I I 

I I 
I 

I 

0 

I 
I 

-I 
I 

-I 1 
-II 

I 
I 
I 
I 

-I I 
I 

I I -I -1; 
I 

I II 
I I 

2 

-5 

-I 

I 

P-i 
I l-l 

P-t 
I -Pm 

1 I 
I 

I 

I 
I 

I 

ll 
I 
I 
I 
I ?I! 

’ I 
I ‘-I 
I 1 -I 
I -I’ 

p-IfpI 
I P- 
I> 

el 
e2 
e3 
e4 
e5 

-- :: 
“2 
“3 
“4 
w5 
“6 
“? 
“9 
“9 
“IO 

.v,u 
!I 
!2 
‘3 
i4 
i5 
i6 
i7 
i9 
i9 
i10 

.ill 
i,P 
“z! 

. . 

I 
;*T 

I 

VIP [I ip (5.2) 

The last 2 equations in (5.2) give the 2-port equations of 
the 2-port K: 

p--q [y-(1 [y;]=o. 
A B 

(5.3) 

From (5.3) we obtain the hybrid matrix H E Ran*: 

-1 0 
H=A-‘B= [ 1 0 1. (5 04) 

P+l 

The characteristic polynomial x(p) of the circuit .& is 
obtained from the matrix R(p) E W[ plvx” in the left-hand 
side (5.2) as 

x(p)=detR(p)=detU(p)detA(p) 

= (P-t)(P-f)(P-l)(P-l)(P+l). (5.5) 

Thus the list of natural frequencies for the circuit X;, is 
u(X~)= ($,+,l,l, -1). Since u(X~) is not a subset of c-, 
the circuit X, is not exponentially stable but the k-port K 
is exponentially stable since 9[ H ] = ( - 1) c c _. Here, 
hi = l/2, X2 =1/5, X3 =l, X4 =l are the natural frequen- 
cies of the circuit X, that correspond to hidden modes. In 
fact the polynomial matrices A and B are not left-coprime, 
i.e., 

A= [p,1 ;I[; p;I]:=ij- 

as in (3.2), and since det i = p -1, the g.c.1.d. J! is not 
unimodular. Thus X4 = 1 is an i-d zero of the PMD for the 
circuit Xh. Since det U = (p - $)( p - f)( p -l), ZJ is not 
unimodular and Xi =1/2, X2 =1/5, h, =l are the o-d 
zeros of the PMD for the circuit .Y,. Note that using the 
rank test 4.2 we see that Xi = l/2 is an i-d zero in addition 
to being an o-d zero. The only controllable and observable 
mode of the circuit is X, = - 1 since det A= p + 1. 
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VI. PHYSICALINTERPRETATIONOFTHEMODESOF 
THECIRCUITX~ ANDOFTHE k-PORTK 

Consider the PMD equations (4.1)-(4.2) for the circuit 
X,. We now determine the hidden modes of the circuit 
from (4.1) by inspection and give a physical interpretation 
for each natural frequency. 

The uncontrollable and unobservable hidden modes of the 
circuit Yh 

Proposition 61.1: Consider (4.1). If the ith diagonal entry 
of the upper triangular matrix U is the manic first degree 
polynomial (p - Xi) and if the ith rows of the matrices 
W(A,) and #‘(A,) are both zero, then associated with the 
natural frequency hi, there is an uncontrollable and unob- 
servable mode. 

Proof: By assumption, det U(X,) = 0 * det D(A,) = 
detT(h,) = 0 and Xi is a natural frequency of the circuit 
Xj. By the rank test 4.4, A, is an o-d zero since U drops 
rank at Xi. By the rank test 4.2, ,X1 is an i-d zero since the 
ith rows of U( h,), W(X,), and W(A,) are zero. Therefore, 
X, is both an o-d zero and an i-d zero and the conclusion 
follows. 0 

In the example of Section V, X, = l/2 corresponds to an 
uncontrollable and unobservable mode since row 19 of 
equation (5.2) is 

(p-1/2)i,=O. 

The controllable but unobservable hidden modes of the 
circuit X, 

Proposition 6.2: Consider (4.1). If the jth diagonal entry 
of the upper triangular matrix U is ( p - h2) and if 
rk[D(h,) i N&:X,)] = v, then associated with the natural 
frequency h 2 there is an unobservable mode that is control- 
lable. 

Proof: By assumption, det U( X2) = 0; hence X 2 is a 
natural frequency of the circuit X,. By the rank test 4.4, 
h, is an o-d zero, but since rk[D(A,) i iV,(X,)] = v, h, is 
not an i-d zero and the conclusion follows. 0 

In the example of Section V, X 2 = l/5 and X 3 = 1 corre- 
spond to unobservable but controllable modes. From rows 
21 and 30 of equation (5.2) 

i,,-g,pv,P=O and (p+l)v,P=if=i, 

1 
= i4=p-1/5fiis. 

From row 28, (p -l)i,, +(l- p)if’ = - v1p = - v,. Note 
that X 4 = 1 = X 3 is a multiple natural frequency: X, is an 
i-d zero but X, is an o-d zero. 

Construction 

The Observable but Uncontrollable Hidden Modes of the 
Circuit .& 

For OL = 1,2, let the linear, time-invariant circuits MU be 
uniquely solvable and have no independent sources. Let 
Assumption 1.1 hold for the circuits Jv;;, and let Jvl, have 
b, branches and n,- nodes. 

The uncommitted circuits Y0 with b, internal branches, 
Proposition 6.3: Consider (4.1). Let det A( X,) = 0. Then n, nodes, and k port-branches are obtained from the given 

associated withL the natural frequency h, there is an uncon- circuits J$ as X was obtained from JY in Section I. 
trollable mode that is observable iff rk[ A( X,) i B( X,)] < k. Continue the procedure of Section I to obtain the k-ports 

Proof: The assumption implies that det D(X,) = , K, from the circuits X,. From Fact 1.3, the k-ports K, 
det t( h4) = 0 and that X, is a natural frequency of the and K, are well-defined. 

circuit Xj. Since b[det i] is the complete list of the i-d 
zeros that are not o-d zeros, X, is associated with an 
uncontrollable but observable mode iff det [ i (X 4)] = 0, 
where L is as in (3.2). But det[L(A,)]=O = rk[A(X,) i 
B( X,)] < k and the conclusion follows. 0 

Comment: If, in addition, det U(A,) = 0, h, is a re- 
peated natural frequency and associated with h, there is 
another mode that is unobservable. 

In the example of section V, X, = 1 corresponds to an 
uncontrollable but observable mode. From row 29 of equa- 
tion (5.2) 

(p-l)if= -(p-l)@. 

(The first rows of both A and B only have (p -l).) 

The Observable and controllable modes of the Circuit Xh 
Proposition 6.4: Consider (4.1) and (3.4)-(3.5). If 

det A< X,) = 0 then associated with the natural frequency 
h, there is a mode that is both observable and controllable. 
Hence, this mode is a mode of the k-port K. 

Proof: By assumption X, E u( X,,) = %“[x]. By the 
rank tests, D(U 

rk[D(X,) i N,(x,)] = v and rk --TX-j = v. [ 1 r 5 

Therefore, A5 is not a decoupling zero. 0 
Comment: If X, is a repeated natural frequency, then 

associated with A,, there may also be another mode that is 
hiddenifdetU(A,)=Oand/orifdeti(h,)=O. 

In the example of Section V, X, = - 1 corresponds to a 
controllable and observable mode: from row 30 of equa- 
tion (5.2) 

Comment: The impulse response of the k-port K con- 
tains a term of the form p(t)e”t for some X (with p(t) E 
R[ t]) = X E 9[ H 1. The zero-input response of the circuit 
X, may contain terms of the form p’(t)e”’ such terms are 
created by initial conditions inside the k-port K that 
cannot be set up by appropriate port excitations. 

VII. INTERCONNECTIONOFTWO~-PORTS 
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~~~~~ 

Fig. 7. The interconnected circuit 4. 

Next partition the k ports such that k, ports of the 
k-port K, (K2) are voltage-ports (current-ports) and the 
rest are current-ports (voltage-ports, resp.) and assume 
that the corresponding hybrid representations exist. There- 
fore the circuits Xhl, and Xh, obtained similarly as the 
circuit .& are uniquely solvable. Observe that if we use a 
hybrid representation for the k-port K, with the k, volt- 
age-ports and the k, := k - k, current-ports chosen above, 
then for the k-port K, we use the (dual) hybrid representa- 
tion with the k, current-ports and the k, voltage-ports 
chosen above. 

Connect the k, voltage-ports (k2 current-ports) of the 
k-port K, to the k, current ports (k2 voltage-ports, resp.) 
of the k-port K,. Call the resulting circuit the intercon- 
nected circuit 4 (see Fig. 7).3 

Let xi (x2) denote the 2b, + n, (2b, + n2) intemal- 
branch variables and 

denote the 2k port-branch variables of the circuit 3y;1, 

(Yh,, resp.). Then represents the internal-branch vari- 
ables and 

are the driving-port variables of the circuit 4. The. inde- 
pendent-source drive of the interconnection is 

and u2:= 

the driving-point input ,of the interconnected 

circuit .& 

VIII. TABLEAU EQUATIONS, PMD, AND STABILITY 
OF THE CIRCUIT q 

For each of the circuits X,,, and GX?,,~, we write tableau 
equations as in (2.1) and put each of the tableau equations 
into the Hermite row-form (2.3). These tableau equations 
lead us to the PMD’s for the circuits Xh, and 3yh, 
similar to the PMD 9 of (4.1)-(4.2). 

3 These connection rules guarantee that the interconnection is well-posed. 

The PMD for the circuit Sh, 
From the tableau equations for the circuit Z,,, we 

obtain its PMD 9i = [Dl, N,l, N,,O] 

Dl( P) x5- 
- edt) 

N,(P) 
(8.1) 

(8.2) 

where &(p) E ~[PI”~~“~, Nile WpPXk, N,(P) E 
R[ p]kX”l, VI := 2b, + ni + k. Since the circuit Xh, is 
uniquely solvable, det Dl( p) = det U,( p)det A,(p) f 0. 

From 

A’i yl=q Jl 
we obtain the hybrid matrix Hi := A,‘B, E R( P)“~ k where 
A, is nonsingular since the hybrid representation exists by 
assumption. The transfer function (network function) from 

to 

is 

HI = Nr, D; ‘N,, = A; ‘Bl. (8.3) 

The PMD for the Circuit X& 
Similarly for X,,, we have the PMD .9* = [ D2, N,,, N,,, 0] 

D,(P) [2(P) Gjs 

(8.4) 
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where D,(p)~:R[p]“2~“2, N,z(p)~R[p]Y2Xk, NJ~)E [D,,N,j,N,i,O]ofthecircuit q: 
R[ pjkX”2, v2 ::= 2b, + n2 + k. Since the circuit X, is 
uniquely solvable, det D2( p) = det U,( p)det B2( p) f 6. As 
for the k-port K, we have H, := B;?Q2, and 2b,+n, 

H2 = N,D,- ‘N,, = B,- ‘A 2. (8.6) 
2b, + n2 

k 
The PMD of th!e Circuit q. k 

First we concatenate the PMD equations (8.1)-(8.2) and 
(8.4)-(8.5), and reorder variables to obtain D,(P) 

--A---d-----L--- 
0 10; A,; 0 

---j----j---.-+--- 
0 ; 0 ; 0 ; B2 

- I 
D,(p) 

Xl 
------ 

x2 ------ 
if 

i I 02” 1 -----_ 

= 

Xl 
------ 

x2 ------ 
ilp 

i I 02” 1 ------ 
v1p 

-( i -i$ 2 

k k - I w, ’ 0 
---L--- 

0 I Fk2 
---L--- 

B 0 1 I 

(8.10) 

---+--- 

0 I A2 

N,,( P> 
’ u(t) 

K;( P> 

(8.11) 

where N,.(p) E lR[p](Y1+Y2)Xk, N,(p) E R[p]kX(Y1+Y2), ~1 
+ v2 = (2b, + n1 + k)+(2b, + n2 + k). 

where 

N,,(P) 4) 
Equations (8.10) are the tableau equations of the circuit 

4 modulo elementary operations. The characteristic poly- 
nomial of the circuit 4 is xi(p) = det D,( p). 

Fact 8.2 (Well-posedness condition): Let the circuits 

xi and -6, be uniquely solvable (equivalently, 

(8*8) 
det Dl( a) + 0, det D2( e) + 0). Under these conditions, the 
circuit & is uniquely solvable (equivalently, det D,( .) $0) 
- det(l- HlH2) = det(l- H2Hl) f 0. 

Proof: From (8.10) we obtain 

YW detD,( d = det4(p)detU,(d 

detDi(p)=detU,(p)detA,(p)detLr,(p)detB,(p) . det 
A,( P) -B,(P) 

=detD,(p).detD,(p)fO. 
-A,(P) I B,(P) * 

By elementary column operations, 
Using KVL and KCL, we obtain the connection equations 
from Fig. 7. 

detD,(p)=detU,(p)detU,(p)detA,(p) 

.detB,(p)det(l- B;‘A2A;‘Bl) (8.12) 

( y:il= ( -zi2+( ?) ’ =detDl(p)det40det(I-H2H~8.1~) 

( -J2=( ql+ - 4, 
I (8.9) 

and the conclusion follows. Cl 
-%* . Let i!.,(.)~lR[p]~~~ be any g.c.1.d. of (A,, B,) and 

Eliminating 
i,( 0) E R[ plkXk be any g.c.1.d. of ( B2, A2). Equivalently 3 -- 
polynomial matrices A,, B, and B2, A2 such that 

(;;), and ( -J2 
A,=i,A, B,=iB,, 

- - 
(A,, B,) is left-coprime 

B2 = i,15, A, = i,A,, ( B,, A2) is left-coprime. 

(8.14) 

from (8.7) to (8.8) by using W), We get the PMD gi = Then the hyh-id matrices fll and H2 for the lc-ports K, 
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and K, defined by (8.2) and (8.6) resp. become 

Hl = A- ‘jj 
1 1 

H2 = B-‘A- 
2 2’ (8.15) 

The network function Hy,, from the driving-point input u 
to the output y is given by4 

Hy ” := Nr, Dg- ‘N,. 

[ 

%(I 432&j-1 H1H2(1 - H,H,)-’ = 

H,H,(I- H,H,)-’ H,(I - H,H,)-’ 1 . 

(8.16) 

From (8.14) to (8.15) we have 

B[H,] =S’[[detA,], 9[H2] =s[detB,] 

and an easy calculation shows that 

B[H,,~] =~[det~ldet~2det(l-H2Hl)] (8.17) 

From (8.12) to (8.14) we obtain the characteristic poly- 

iii) The complete list of the decoupling zeros of the 
PMD for the circuit 4 is the list 

J[detU,]lrll[detU,]lJS’[det~,]W’[det~,]. 

(8.20) 

iv) The circuit q is exponentially stable iff the circuits 
Xh, and Xh, have no unstable hidden modes and B[H,,,] 
cc-. 

Proof i) z0 E C is an o-d zero of the PMD for 4, 
(see (8.10)-(8.11)), Dgh) 

a rk ------ <v,+v, [ 1 N,(zo) 

= detU,(z,)detU,(z,)=O 

0 z0 is an o-d zero of xh, and/or of &, 
normal xi(p) of the circuit Xi: 

Xi(P) =detD,(p) 

=detU,(p)detU,(p)deti,(p)deti,(p) 

and the conclusion follows. 
ii) zi E C is an i-d zero of the PMD for .& 

0 rk[D,(z,) i N,,(zi)] cv,+v, 

.[detA,(p)detB,(p)det(l-H,H,)]. 

(8.18) 

Let a(q) denote the list of all natural frequencies of the a rk 
circuit Xi. Then from (8.17) to (8.18), 

4%) = 2IXil I 

u, 0 w, - ct, 

0 4 - w2 w, 

0 -AA’ -; 
2 2 

=~[detUl]~S”[detU2]&Z“[det~,] 
< v1+ v2 

&Z’[deti,]lr19[H,,,,]. (8.19) and by elementary column operations, 

Fvl 0 
0 Fk2 

4 0 
0 A2 I 

(‘i> 

Stability of the circuit 4. and Physical Interpretation of the 
Modes 

Equation (8.19) will be used to give a physical interpreta- 
tion of the natural frequencies of the circuit .& First we 
show that the circuit q inherits of all hidden modes of 
the circuits Xh, and Xh, and no other hidden modes 
result from the interconnection. From (8.1)-(8.2) 
((8.4)-(8.5), resp.): 

a) z1 (z2) is an o-d zero of the PMD for the circuit .X,,, 
( Xh2) iff det U,( zl) = 0 (det U,( z2) = 0, resp.), 

b) s1 (s2) is an i-d zero of the PMD for the circuit ‘xh, 
(&,) iff rk[D,(s,) i ~,(sJl< v1 (rk[D,(s,) i NI,(s2)1 < 
v2, resp.). Then we have the 

Theorem 8.2 Consider the PMD’s for the circuits Xh,, 
-q’ and 4 defined by (fj!l)-(8.2), (8.4)-(8.5) and 
(8.10)-(8.11) resp. 

i) The list of all o-d zeros of the PMD for. the circuit Xi 
is the concatenated list of the o-d zeros of the PMD’s for 
the circuits Xh, and X, . 

ii) The list of all i-d zeios of the PMD for the circuit 4 
is the concatenated list of the i-d zeros of the PMD’s for 
the circuits Xh, and Xh,. 

r u, 0 w, 0 j Fvl 0 1 
a rk 

I 

0 u, 0 w, i 0 r?l, 
I 

I 

Czi> < ‘l+ v2 

by column and row exchanges, 

a rk 

D, 4 1 
- ‘-I 

0 
_____ ---__ -- 

0, : D, i N, * 

1 (zi)<vl+v2 

0 zi is an i-d zero of Xh, and/or of Xh, 

and the conclusion follows. 
iii) From i), the list of all o-d zeros of the PMD for 4 

is given by 

4Note the similarity between this equation and the feedback connection 
equations encountered in control applications [e.g., Cal. 1, p. 2211. 9“ [det U,]lkY’[det U,]. (8.21) 
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Let i,(m) and i,(a) be as in eqn. (8.14). Then z1 (z2) is 
an i-d zero that is not an o-d zero of the PMD for the circuit 
Yh, (Yh,) iff det iI = 0 (det i2(z2) = 0, resp.). From 
ii), the list of all i-d zeros that are not o-d zeros of the 
PMD for q is given by 

%?‘[det&]W“[det~,]. (8.22) 

The concatenation of the lists from (8.21) to (8.22) gives 
the complete list of the decoupling zeros of the PMD for 
4 and the conclusion follows. 

iv) The circuit q has a hidden mode associated with 
each decoupling zero of the circuit x, and of the circuit 
xh,. The list of all natural frequencies a(q), given by 
(8.19), is the concatenation of 9[H,,] and the decoupling 
zeros listed in (8.20). Associated with each decoupling zero 
ZdEQ=, there is an unstable hidden mode of the circuit 
4. OSince the circuit 4 is exponentially stable iff a(&) 
c C --) the conclusion (iv) follows. 0 

The physical interpretation of the natural frequencies of 
the circuit q listed in (8.20) is as follows: Associated 
with each natural frequency from the list in (8.21) the 
circuit q has an unobservable hidden mode. Some of these 
modes may also be uncontrollable as well as being unob- 
servable. (To determine the o-d zeros that are also i-d zeros 
for each of the circuits .&, and ‘xh,, see Section VI.) 
Associated with each natural frequency from the list in 
(8.22) the circuit Xi has an uncontrollable (but observa- 
ble) hidden mode. Associated with each natural frequency, 
say L, from the list in (8.17) the circuit & has a 
controllable and observable mode and the impulse re- 
sponse at the driving point of & includes an exponential 
term of the for:m p(t)e”co’ (where p(t) is a polynomial). 

Remark: In this paper we choose to write tableau equa- 
tions as a general method of circuit analysis although all of 
the discussion above is also valid for Modified Node 
Analysis (MNA), using as circuit variables the node volt- 
ages, the additional branch currents, and the port variables 
v* and if’. 

IX. CONCLUSION 

This paper investigates the dynamics of lumped, linear 
time-invariant k-ports, and of circuits obtained from them, 
by using tableau equations. In a polynomial matrix de- 
scription framework, the concepts of modes, hidden modes, 
uncontrollable and unobservable modes are explained and 
conditions are obtained for the exponential stability of 
k-ports (theorem 3.5) of circuits (theorem 3.6) and of 
interconnected k-ports (theorem 8.2). It is shown that the 
interconnection of two k-ports inherits all hidden modes of 
each of the individual circuits in the interconnection and 
that the presence of any unstable hidden modes causes the 
circuits to be exponentially unstable even though the net- 

work functions from their inputs to their outputs are 
exponentially stable. 

ACKNOWLEDGMENT 

The authors are very grateful for the reviewers’ careful 
comments. 

REFERENCES 
[Bel. l] 

[Cal. l] 

[Cal. 21 

[Car. l] 

[Chu. l] 

[Chu. 21 

[Chu. 31 

[Chu. 41 

[Kai. l] 

[Ros. l] 

[Sig. l] 

[Vla. l] 

V. Belevitch, Classical Network Theory. 
Holden-Day 1968. 

San Francisco, CA: 

F. M. Callier and C. A. Desoer, Multivariable Feedback 
Systems. 
1982. 

New York-Heidelberg-Berlin: Springer-Verlag, 

F. M. Callier and P. P. Civalleri, “On the controllability and 
observability of linear lumped time-invariant N-ports: Hermite 
normal form versus Smith canonical form,” Alta Freq., vol. 
XLVII-N.l. 
H. J. Carlin and A. B. Giordano, Network Theory. En- 
glewood Cliffs, NJ: Prentice-Hall, 1964. 
L. 0. Chua and P-M. Lin, Computer-Aided Analysis and 
Design of Electronic Circuits. Englewood Cliffs, NJ: 
Prentice-Hall, 1975. 
L. 0. Chua and Y-F. Lam, “Dimension of N-ports,” IEEE 
Trans. Circuits Syst., vol. CAS-21, May 1974. 
L. 0. Chua and B. J. Leon, “Unified N-Port system theory,” 
US Government Res. and Development Rep., vol. 41, Jan. 
1966. 
L. 0. Chua, Introduction to Nonlinear Network Theory. New 
York: McGraw-Hill, 1969. 
T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice- 
Hall. 1980. 
H. H. Rosenbrock, State Space and Multivariable Theory. 
New York: Wiley, 1970. 
L. E. Sigler, Algebra. UTM, New York-Heidelberg-Berlin: 
Springer-Verlag, 1976. 
J. Vlach and K. Singhal, Computer Methodr for Circuit Ana!v- 
sis and Design. New York: Van Nostrand-Reinhold, 1983. 

m 

Charles A. Desoer (S’50-A’53-SM’57-F’64), for a photograph and bi- 
ography please see page 634 of this issue. 

A. Nazli Ciinde~ started studying electrical en- 
gineering at Bog@ University, Istanbul, 
Turkey, and transfered to the University of Cali- 
fornia, Berkeley, where she received the B.S. (with 
highest honors) and the M.S. degrees. She is 
currently working towards the Ph.D degree at 
Berkeley. In graduate school she has held univer- 
sity fellowships, teaching and research assistant- 
ships. Her research interests are in system theory 
and multi-variable control. 


