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M
ulticore digital signal processors 
(DSPs) have gained significant 
importance in recent years due to 
the emergence of data-intensive 
applications, such as video and 

high-speed Internet browsing on mobile devices 
that demand increased computational perfor-
mance but lower cost and power consumption. 
Multicore platforms allow manufacturers to pro-
duce smaller boards while simplifying board layout 
and routing, lowering power consumption and cost, 
and maintaining programmability.

 Embedded processing has been dealing with mul-
ticore on a board, or in a system, for over a decade. 
Until recently, size limitations have kept the number of 
cores per chip to one, two, or four but, more recently, the 
shrink in feature size from new semiconductor processes has 
allowed single-chip DSPs to become multicore with reasonable 
on-chip memory and input/output (I/O), while still keeping the 
die within the size range required for good yield. Power and 
yield constraints as well as the need for large on-chip memory 
have further driven these multicore DSPs to become a system-
on-chip (SoC). Beyond the power reduction, SoCs also lead to 
overall cost reduction because they simplify board design by 
minimizing the number of components required. 

The move to multicore systems in the embedded space is 
as much about integration of components to reduce cost and 
power as it is about the development of very high-performance 
systems. While power limitations and the need for low-power 

devices may be obvious in mobile and hand-held devices, there 
are stringent constraints for nonbattery powered systems as 
well. Cooling in such systems is generally restricted to forced 
air only, and there is a strong desire to avoid the mechanical 
liability of a fan if possible. This puts multicore devices under 
a serious hot spot constraint. Although a fan-cooled rack of 
boards may be able to dissipate hundreds of watts (an ATCA 
carrier card can dissipate up to 200 W), the density of parts on 
the board will start to suffer when any individual chip power 
rises above roughly 10 W. Hence, the cheapest solution at the 
board level is to restrict the power dissipation to around 10 W 
per chip and then pack these chips densely on the board. 

[Examining architectures, programming models, 
 software tools, emerging applications, and challenges]
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The introduction of multi-
core DSP architectures pres-
ents several challenges in 
hardware architectures, mem-
ory organization and manage-
ment, operating systems, 
platform software, compiler designs, and tooling for code 
development and debug. This article presents an overview of 
existing multicore DSP architectures as well as programming 
models, software tools, emerging applications, challenges, and 
future trends of  multicore DSPs. 

HISTORICAL PERSPECTIVES: 
FROM SINGLE CORE TO MULTICORE
The concept of a DSP came about in the mid-1970s. Its roots 
were nurtured in the soil of a growing number of university 
research centers creating a body of theory on how to solve real-
world problems using a digital computer. This research was aca-
demic in nature and was not considered practical since it required 
the use of state-of-the-art computers and was not possible to do 
in real time.

It was a few years later that a toy by the name of Speak & Spell 
was created using a single integrated circuit to synthesize speech. 
This device made the following two bold statements:

digital signal processing can be done in real time ■

DSPs can be cost effective. ■

This began the era of the DSP. So, what made a DSP device dif-
ferent from other microprocessors? Simply put, it was the DSP’s 
attention to doing complex math while guaranteeing real-time 
processing. Architectural details such as dual/multiple data buses, 
logic to prevent over/underflow, single cycle complex instructions, 
hardware multiplier, little or no capability to interrupt, and special 
instructions to handle signal processing constructs gave the DSP 
its ability to do the required complex math in real time.

“If I can’t do it with one DSP, why not use two of them?” That 
is the answer obtained from many customers after the introduc-
tion of DSPs with enough performance to change the designer’s 
mind set from “how do I squeeze my algorithm into this device” 
to “guess what, when I divide the performance that I need to do 
this task by the performance of a DSP, the number is small.” The 
first encounter with this was a year or so after Texas Instruments 
(TI) introduced the first floating-point DSP, called the 
TMS320C30. It had significantly more performance than its 
fixed-point predecessors. TI took on the task of seeing what cus-
tomers were doing with this new DSP that they weren’t doing 
with previous ones. The significant finding was that none of the 
customers were using only one device in their system. They were 
using multiple DSPs working together to create their solutions.

 As the performance of the DSPs increased, more sophisticated 
applications began to be handled in real time. So, it went from 
voice to audio to image to video processing. Figure 1 depicts this 
evolution. The four lines in Figure 1 represent the performance 
increases of DSPs in terms of instruction cycles per sample period. 

For example, the sample rate for voice is 8 kHz. Initial 
DSPs allowed for about 625 instructions per sample period, 

barely enough for transcoding. 
As higher performance devices 
began to be available, more 
instruction cycles became 
available each sample period 
to do more sophisticated tasks. 

In the case of voice, algorithms such as noise cancellation, 
echo cancellation, and voice band modems were able to be 
added as a result of the increased performance made avail-
able. Figure 2 depicts how this increase in performance was 
more the result of multiprocessing rather than higher perfor-
mance single processing elements. Because digital signal pro-
cessing algorithms are multiply-accumulate (MAC) intensive, 
Figure 2 shows how, by adding multipliers to the architec-
ture, the performance followed an aggressive growth rate. 
Adding multiplier units is the simplest form of doing multi-
processing in a DSP device.

For TI, the obvious next step was to architect the next genera-
tion DSPs with the communications ports necessary to matrix 
multiple DSPs together in the same system. That device was creat-
ed and introduced as the TMS320C40. And, as one might suspect, 
a follow-up (fixed-point) device was created with  multiple DSPs on 
one device under the management of a reduced instruction set 
computer (RISC) processor, the TMS320C80.

The proliferation of computationally demanding applications 
drove the need to integrate multiple processing elements on the 
same piece of silicon. This lead to a whole new world of architec-
tural options: homogeneous multiprocessing, heterogeneous 

[FIG1] Four examples of the increase of instruction cycles per 
sample period. It appears that the DSP becomes useful when 
it can perform a minimum of 100 instructions per sample 
period. Note that for a video system the pixel is used in 
place of a sample.
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EMBEDDED PROCESSING HAS BEEN 
DEALING WITH MULTICORE ON A BOARD, 
OR IN A SYSTEM, FOR OVER A DECADE.
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multiprocessing, processors versus accelerators, programmable 
versus fixed function, a mix of general-purpose processors and 
DSPs, or system in a package versus SoC integration. And then 
there is Amdahl’s Law that must be introduced to the mix [1], 
[2]. In addition, one needs to consider how the architecture dif-
fers for high-performance applications versus long battery life 
portable applications.

ARCHITECTURES OF MULTICORE DSPs
In 2008, 68% of all shipped DSP processors were used in the 
wireless sector, especially in mobile handsets and base sta-
tions; so, naturally, development in wireless infrastructure and 
applications is the current driving force behind the evolution 
of DSP processors and their architectures [3]. The emergence 
of new applications such as mobile TV and high-speed Internet 
browsing on mobile devices greatly increased the demand for 
more processing power while lowering cost and power con-
sumption. Therefore, multicore DSP architectures were estab-
lished as a viable solution for high-performance applications 
in packet telephony, third generation (3G) wireless infrastruc-
ture and worldwide interoperability for microwave access 
(WiMAX) [4]. This shift to multicore shows significant im -
provements in performance, power consumption, and space 
requirements while lowering costs and clocking frequencies. 
Figure 3 illustrates a typical multicore DSP platform. 

Current state-of-the-art multicore DSP platforms can be 
defined by the type of cores available in the chip and include 
homogeneous and heterogeneous architectures. A homoge-
neous multicore DSP architecture consists of cores that are 
from the same type, meaning that all cores in the die are DSP 
processors. In contrast, heterogeneous architectures contain 
different types of cores. This can be a collection of DSPs with 
general-purpose processors (GPPs), graphics processing units 
(GPUs), or microcontroller units (MCUs). Another classification 
of multicore DSP processors is by the type of interconnects 
between the cores.

More details on the types of interconnect being used in multi-
core DSPs as well as the memory hierarchy of these multiple 
cores are presented below, followed by an overview of the latest 
multicore chips. A brief discussion on performance analysis is 
also included. 

[FIG3] Typical multicore DSP platform.
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[FIG2] Four generations of DSPs show how multiprocessing has 
more effect on performance than clock rate. The dotted lines 
correspond to the increase in performance due to clock increases 
within an architecture. The solid line shows the increase due to 
both the clock increase and the parallel processing. 
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INTERCONNECT AND 
MEMORY ORGANIZATION
As shown in Figure 4, multiple DSP cores 
can be connected together through a 
hierarchical or mesh topology. In hierar-
chical interconnected multicore DSP 
platforms, data transfers between cores 
are performed through one or more 
switching units. To scale these architec-
tures, a hierarchy of switches needs to be 
planned. Central processing units (CPUs) 
that need to communicate with low 
latency and high bandwidth will be 
placed close together on a shared switch 
and will have low latency access to each 
others’ memory. Switches will be connected together to allow 
more distant CPUs to communicate with longer latency. 
Communication is done by memory transfer between the 
memories associated with the CPUs. Memory can be shared 
between CPUs or be local to a CPU. The most prominent type 
of memory architecture makes use of Level 1 (L1) local memo-
ry dedicated to each core and Level 2 (L2), which can be dedi-
cated or shared between the cores as well as Level 3 (L3) 
internal or external shared memory. If local, data is moved off 
that memory to another local memory using a non-CPU block 
in charge of block memory transfers, usually called direct 
memory access (DMA). The memory map of such a system can 
become quite complex and caches are often used to make the 
memory look “flat” to the programmer. L1, L2, and even L3 
caches can be used to automatically move data around the 
memory hierarchy without explicit knowledge of this move-
ment in the program. This simplifies and makes more portable 
the software written for such systems but comes at the price of 
uncertainty in the time a task needs to complete because of 
uncertainty in the number of cache misses [5]. 

In a mesh network [6], [7], the DSP processors are orga-
nized in a two-dimensional (2-D) array of nodes. The nodes are 
connected through a network of buses and multiple simple 
switching units. The cores are locally connected with their 
“north,” “south,” “east,” and “west” neighbors. Memory is gen-
erally local, though a single node might have a cache hierarchy. 
This architecture allows multicore DSP processors to scale to 
large numbers without increasing the complexity of the buses 
or switching units. However, the programmer generally has to 

write code that is aware of the local nature of the CPU. Explicit 
message passing is often used to describe data movement. 

Multicore DSP platforms can also be categorized as sym-
metric multiprocessing (SMP) platforms and asymmetric mul-
tiprocessing (AMP) platforms. In an SMP platform, a given 
task can be assigned to any of the cores without affecting the 
performance in terms of latency. In an AMP platform, the 
placement of a task can affect the latency, giving an opportu-
nity to optimize the performance by optimizing the placement 
of tasks. This optimization comes at the expense of an 
increased programming complexity since the programmer has 
to deal with both space (task assignment to multiple cores) 
and time (task scheduling). For example, the mesh network 
architecture of Figure 4 is AMP since placing dependent tasks 
that need to heavily communicate in neighboring processors 
will significantly reduce the latency. In contrast, in a hierar-
chical interconnected architecture, in which the cores mostly 
communicate by means of a shared L2/L3 memory and have 
to cache data from the shared memory, the tasks can be 
assigned to any of the cores without significantly affecting the 
latency. SMP platforms are easy to program but can result in a 
much increased latency as compared to AMP platforms.

EXISTING VENDOR-SPECIFIC 
MULTICORE DSP PLATFORMS
Several vendors manufacture multicore DSP platforms such as TI 
[8], Freescale [9], picoChip [10], Tilera [11], and Sandbridge [12], 
[13]. Table 1 provides an overview of a number of these multicore 
DSP chips.

[FIG4] Interconnect types of (a) hierarchical network and (b) mesh network multicore 
DSP architectures.
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[TABLE 1] MULTICORE DSP PLATFORMS.

TI [8] FREESCALE [9] PICOCHIP [10] TILERA [11] SANDBRIDGE [12], [13]
PROCESSOR TNETV3020 MSC8156 PC205 TILE64 SB3500
ARCHITECTURE HOMOGENEOUS HOMOGENEOUS HETEROGENEOUS HOMOGENEOUS HETEROGENEOUS
NUMBER OF CORES SIX DSPS SIX DSPS 248 DSPS AND 1 GPP 64 DSPS THREE DSPS AND 1 GPP
INTERCONNECT 
TOPOLOGY

HIERARCHICAL HIERARCHICAL MESH MESH HIERARCHICAL

APPLICATIONS WIRELESS 
VIDEO 
VOIP

WIRELESS WIRELESS WIRELESS 
NETWORKING 
VIDEO

WIRELESS
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TI has a number of homogeneous and heterogeneous multi-
core DSP platforms, all of which are based on the hierarchal-in-
terconnect architecture. One of the latest platforms is the 
TNETV3020 (Figure 5), which is optimized for high-performance 
voice and video applications in wireless communications infra-
structure [8]. The platform contains six TMS320C64x1 DSP 
cores each capable of running at 500 MHz and consumes 3.8 W of 
power. TI also has a number of other homogeneous multicore 
DSPs, such as the TMS320TCI6488, which has three 1 GHz 
C64x1 cores and the older TNETV3010, which contains six 
TMS320C55x cores, as well as the TMS320VC5420/21/41 DSP 
platforms with dual and quad TMS320VC54x DSP cores. 

Freescale’s multicore DSP devices are based on the StarCore 
140, 3400, and 3850 DSP subsystems that are included in the 
MSC8112 (two SC140 DSP cores), MSC8144E (four SC3400 
DSP cores), and its latest MSC8156 DSP chip (Figure 6), which 
contains six SC3850 DSP cores targeted for 3G-long-term evo-
lution (LTE), WiMAX, 3GPP/3GPP2 and time division synchro-
nous code division multiple access (TD-SCDMA) applications 
[9]. The device is based on a homogeneous hierarchical inter-
connect architecture with chip level arbitration and switching 
system (CLASS). 

PicoChip manufactures high-performance multicore DSP 
devices that are based on both heterogeneous (PC205) and 
homogeneous (PC203) mesh interconnect architectures. The 
PC205 (Figure 7) was taken as an example of these multicore 

DSPs [10]. The two building blocks of the PC205 device are 
an ARM926EJ-S microprocessor and the picoArray. The 
picoArray consists of 248 VLIW DSP processors connected 
together in a 2-D array as shown in Figure 8. Each processor 
has dedicated instruction and data memory as well as access 
to on-chip and external memory. The ARM926EJ-S used for 
control functions is a 32-b RISC processor. Some of the 
PC205 applications are in high-speed wireless data communi-
cation standards for  metropolitan area networks (WiMAX) 
and cellular networks [high-speed downlink packet access 
(HSDPA) and wideband code division multiple access 
(WCDMA)], as well as in the implementation of advanced 
wireless protocols. 

Tilera manufactures the TILE64, TILEPro36, and TILEPro64 
multicore DSP processors [11]. These are based on a highly 
scalable homogeneous mesh interconnect architecture.

The TILE64 family features 64 identical processor cores 
(tiles) interconnected using a mesh network of buses (Fig-
ure 9). Each tile contains a processor, L1 and L2 cache memo-
ry, and a nonblocking switch that connects each tile to the 
mesh. The tiles are organized in an 8 3 8 grid of identical gen-
eral processor cores and the device contains 5 MB of on-chip 
cache. The operating frequencies of the chip range from 500–
866 MHz and its power consumption ranges from 15 to 22 W. 
Its main target applications are advanced networking, digital 
video, and telecom.

[FIG5] Texas instruments TNETV3020 multicore DSP processor.
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SandBridge manufactures multicore heterogeneous DSP 
chips intended for software-defined radio applications. The 
SB3011 includes four DSPs each running at a minimum of 
600 MHz at 0.9 V. It can execute up to 32 independent 
instruction streams while issuing vector operations for each 
stream using an SIMD datapath. An ARM926EJ-S processor 
with speeds up to 300 MHz implements all necessary I/O 
devices in a smart phone and runs Linux OS. The kernel has 
been designed to use the POSIX pthreads open standard [14] 
thus providing a cross-platform library compatible with a 
number of operating systems (Unix, 
Linux, and Windows). The platform can 
be programmed in a number of high-
level languages including C, C11, or 
Java [12], [13].

MULTICORE DSP PLATFORM 
PERFORMANCE ANALYSIS
Benchmark suites have been typically 
used to analyze the performance among 
architectures [15]. In practice, bench-
marking of multicore architectures has 
proven to be significantly more compli-
cated than benchmarking of single core 
devices because multicore performance 
is affected not only by the choice of CPU 
but also very heavily by the CPU inter-
connect and the connection to memory. 
There is no single agreed-upon pro-
gramming language for multicore pro-
gramming and, hence, there is no 
equivalent of the “out of the box” bench-
mark, commonly used in single core 
benchmarks. Benchmark performance 

is heavily dependent on the amount of tweaking and optimi-
zation applied as well as the suitability of the benchmark for 
the particular architecture being evaluated. As a result, it can 
be seen that single-core benchmarking was already a compli-
cated task when done well, and multicore benchmarking is 
proving to be exponentially more challenging. The topic of 
benchmark suites for multicore remains an active field of 
study [16]. Currently available benchmarks are mainly sim-
plified benchmarks that were primarily developed for single-
core systems. 

[FIG6] Freescale 8156 multicore DSP processor.
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[FIG7] picoChip PC205 multicore DSP processor.
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One such a benchmark is the Berkeley Design Technology, 
Inc. (BTDI) orthogonal frequency division multiplexing (OFDM) 
benchmark [17] that was used to evaluate and compare the per-
formance of some single and multicore DSPs in addition to 
other processing engines. The BTDI OFDM benchmark is a sim-
plified digital signal processing path for a fast Fourier transform 
(FFT)-based OFDM receiver [17]. The path consists of a cascade 
of a demodulator, finite impulse response (FIR) filter, FFT, slic-

er, and Viterbi decoder. The benchmark 
does not include interleaving, carrier 
recovery, symbol synchronization, and 
frequency-domain equalization.

Table 2 shows relative results for maxi-
mizing the number of simultaneous non-
overlapping OFDM channels that can be 
processed in real time, as would be needed 
for an access point or a base station. These 
results show that the four considered mul-
ticore DSPs can process in real time a high-
er number of OFDM channels as compared 
to the considered single-core processor 
using this specific simplified benchmark.

However, it should be noted that this 
application benchmark does not necessarily 
fit the use cases for which the candidate 
processors were designed. In other words, 
different results can be produced using dif-
ferent benchmarks since single and multi-
core embedded processors are generally 
developed to solve a particular class of func-
tions that may or may not match the 
benchmark in use. At the end, what matters 
most is the actual performance achieved 
when the chips are tested for the custom-
er’s desired end solution.

SOFTWARE TOOLS 
FOR MULTICORE DSPs
Due to the hard, real-time nature of DSP 
programming, one of the main require-
ments that DSP programmers insist on 
having is the ability to view low-level 
code, to step through their programs 

[FIG8] The picoChip picoArray.
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[TABLE 2] BTDI OFDM BENCHMARK RESULTS ON VARIOUS 
PROCESSORS FOR THE MAXIMUM NUMBER OF SIMULTANE-
OUS OFDM CHANNELS PROCESSED IN REAL TIME. THE 
SPECIFIC NUMBER OF SIMULTANEOUS OFDM CHANNELS 
IS GIVEN IN [17].

CLOCK 
(MHZ)

DSP 
CORES

OFDM 
CHANNELS

TI TMS320C6455 1,200 1 LOWEST
FREESCALE MSC8144 1,000 4 LOW
SANDBRIDGE SB3500 500 3 MEDIUM
PICOCHIP PC102 160 344 HIGH
TILERA TILE64 866 64 HIGHEST
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instruction by instruction, and 
evaluate their algorithms and 
“see” what is happening at 
every processor clock cycle. 
Visibility is one of the main 
impediments to multicore DSP 
programming and to real-time debugging as the ability to 
“see” in real time decreases significantly with the integration 
of multiple cores on a single chip. Improved chip-level debug 
techniques and hardware-supported visualization tools are 
needed for multicore DSPs. The use of caches and multiple 
cores has complicated matters and forced programmers to 
speculate about their algorithms based on worst-case scenari-
os. Thus, their reluctance to move to multicore programming 
approaches. For programmers to feel  confident about their 
code, timing behavior should be predictable and repeatable [5]. 
Hardware tracing with embedded trace buffers (ETB) [18] can 
be used to partially alleviate the decreased visibility issue by 
storing traces that provide a detailed account of code execu-
tion, timing, and data accesses. These traces are collected 
internally in real time and are usually retrieved at a later time 
when a program failure occurs or for collecting useful statis-
tics. Virtual multicore platforms and simulators, such as 
Simics by Virtutech [19], can help programmers in developing, 
debugging, and testing their code before porting it to the real 
multicore DSP device. 

Operating systems (OSs) provide abstraction layers that 
allow tasks on different cores to communicate. Examples of 
OSs include SMP Linux [20], [21], TI’s 
DSP BIOS [22], and Enea’s OSEck [23]. 
One main difference between these OSs 
is in how the communication is per-
formed between tasks running on differ-
ent cores. In SMP Linux, a common set 
of tables that reflect the current global 
state of the system are shared by the 
tasks running on different cores. This 
allows the processes to share the same 
global view of the system state. On the 
other hand, TI’s DSP/BIOS and Enea’s 
OSEck supports a message passing pro-
gramming model. In this model, the 
cores can be viewed as “islands with 
bridges” as contrasted with the “global 
view” that is provided by SMP Linux. 
Control and management middleware 
platforms, such as Enea’s dSpeed [23], 
extend the capabilities of the OS to allow 
enhanced monitoring, error handling, 
trace, diagnostics, and interprocess com-
munications. 

As in memory organization, program-
ming models in multicore processors 
include SMP models and AMP models [24]. 
In an SMP model, the cores form a shared 

set of resources that can be 
accessed by the OS. 

The OS is responsible for 
assigning processes to different 
cores while balancing the load 
between all the cores. An 

example of such an OS is SMP Linux [18], [19], which boasts a 
huge community of developers and lots of inexpensive soft-
ware and mature tools. Although SMP Linux has been used on 
AMP architectures such as the mesh interconnected Tilera 
architecture, SMP Linux is more suitable for SMP architec-
tures (see the section “Interconnect and Memory 
Organization”) because it provides a shared symmetric view. In 
comparison, TI’s DSP/BIOS and Enea’s OSE can better support 
AMP architectures since they allow the programmer to have 
more control over task assignments and execution. The AMP 
approach does not balance processes evenly between the cores 
and so can restrict which processes get executed on what 
cores. This model of multicore processing includes classic 
AMP, processor affinity, and virtualization [23]. 

Classic AMP is the oldest multicore programming 
approach. A separate OS is installed on each core and is 
responsible for handling resources on that core only. This sig-
nificantly simplifies the programming approach but makes it 
extremely difficult to manage shared resources and I/O. The 
developer is responsible for ensuring that different cores do 
not access the same shared resource as well as be able to com-
municate with each other. 

ADDING MULTIPLIER UNITS IS 
THE SIMPLEST FORM OF DOING 

MULTIPROCESSING IN A DSP DEVICE.

[FIG10] The Agere SP2603.
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In processor affinity, the 
SMP OS scheduler is modified 
to allow programmers to assign 
a certain process to a specific 
core. All other processes are 
then assigned by the OS. SMP 
Linux has features to allow 
such modifications. A number of programming languages fol-
lowing this approach have appeared to extend or replace C to 
better allow programmers to express parallelism. These include 
OpenMP [25], MPI [26], X10 [27], MCAPI [28], GlobalArrays 
[29], and Uniform Parallel C [30]. In addition, functional lan-
guages such as Erlang [31] and Haskell [32] as well as stream 
languages such as ACOTES [33] and StreamIT [34] have been 
introduced. Several of these languages have been ported to 
multicore DSPs. OpenMP is an example of that. It is a widely 
adopted shared-memory, parallel-programming interface pro-
viding high-level programming constructs that enable the user 
to easily expose an application’s task and loop-level parallelism 
in an incremental fashion. Its range of applicability was signifi-
cantly extended by the addition of explicit tasking features. The 
user specifies the parallelization strategy for a program at a 
high level by annotating the program code; the implementa-
tion works out the detailed mapping of the computation to the 
machine. It is the user’s responsibility to perform any code 
modifications needed prior to the insertion of OpenMP con-
structs. In particular, OpenMP requires that dependencies that 
might inhibit parallelization are detected and where possible, 

removed from the code. The 
major features are directives 
that specify that a well-struc-
tured region of code should be 
executed by a team of threads, 
who share in the work. Such 
regions may be nested. Work 

sharing directives are provided to effect a distribution of work 
among the participating threads [35].

Virtualization partitions the software and hardware into a set 
of virtual machines (VMs) that are assigned to the cores using a 
VM manager (VMM). This allows multiple operating systems to 
run on single or multiple cores. Virtualization works as a level 
of abstraction between the OS and the hardware. VirtualLogix 
employs virtualization technology using its VLX for embedded 
systems [36]. VLX announced support for TI single and 
 multicore DSPs. It allows TI’s real-time OS (DSP/BIOS) to run 
concurrently with Linux. Therefore, DSP/BIOS is left to run 
critical tasks while other applications run on Linux.

APPLICATIONS OF MULTICORE DSPs

MULTICORE FOR MOBILE APPLICATION PROCESSORS
The earliest SoC multicore in the embedded space was the two-
core heterogeneous DSP1ARM combination introduced by TI in 
1997. These have evolved into the complex OMAP line of SoC for 
handset applications. Note that the latest in the OMAP line has 
both multicore ARM (symmetric multiprocessing) and DSP (for 

heterogeneous multiprocessing). The 
choice and number of cores is based on the 
best solution for the problem at hand and 
many combinations are possible. The OMAP 
line of processors is optimized for portable 
multimedia applications. The ARM cores 
tend to be used for control, user interac-
tion, and protocol processing, whereas the 
DSPs tend to be signal processing slaves to 
the ARMs, performing compute intensive 
tasks such as video codecs. Both CPUs have 
associated hardware accelerators to help 
them with these tasks and a wide array of 
specialized peripherals allows glueless con-
nectivity to other devices.

This multicore is an integration play 
to reduce cost and power in the wireless 
handset. Each core had its own unique 
function and the amount of interaction 
between the cores was limited. However, 
the development of a communications 
bridge between the cores and a master/
slave programming paradigm were impor-
tant developments that allowed this 
model of processing to become the most 
highly used multicore in the embedded 
space today [37].

AT THE END, WHAT MATTERS MOST 
IS THE ACTUAL PERFORMANCE 

ACHIEVED WHEN THE CHIPS ARE 
TESTED FOR THE CUSTOMER’S DESIRED 

END SOLUTION.

[FIG11] TI TCI6487.
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MULTICORE FOR CORE 
NETWORK TRANSCODING
The next integration play was 
in the transcoding space. In 
this space, the master/slave 
approach is again taken, with a 
host processor, usually servicing multiple DSPs, that is in 
charge of load balancing many tasks onto the multicore DSP. 
Each task is independent of the others (except for sharing pro-
gram and some static tables) and can run on a single DSP 
CPU. Figure 10 shows the Agere SP2603, a multicore device 
used in transcoding applications.

Therefore, the challenge in this type of multicore SoC is 
not in the partitioning of a program into multiple threads or 
the coordination of processing between CPUs, but in the coor-
dination of CPUs in the access of shared, non CPU, resources, 
such as DDR memory, Eth ernet ports, shared L2 on chip mem-
ory, bus resources, and so on. Heterogeneous variants also 
exist with an ARM on-chip to control the array of DSP cores. 

Such multicore chips have reduced the power per channel and 
cost per channel by an order of magnitude over the last decade.

MULTICORE FOR BASE 
STATION MODEMS
Finally, the last five years have seen many multicore entrants 
into the base station modem business for cellular infrastructure. 
The most successful have been DSP-based with a modest number 
of CPUs and significant shared resources in memory, accelera-
tion, and I/O. An example of such a device is the TI TCI6487 
shown in Figure 11.

Applications that use these multicore devices require very 
tight latency constraints, and each core often has a unique func-
tionality on the chip. For instance, one 
core might do only transmit while another 
does receive and another does symbol rate 
processing. Again, this is not a generic 
programming problem. Each core has a 
specific and very well-timed set of tasks to 
perform. The trick is to make sure that 
timing and performance issues do not 
occur due to the sharing of non- CPU 
resources [38].

However, the base-station market also 
attracted new multicore architectures in a 
way that neither handset (where the cost 
 constraints and vol ume tended to favor 
hardwired  solutions beyond the ARM/DSP 
platform) nor transcoding (where the 
complexity of the software has kept “stan-
dard” DSP multicore in the forefront) have 
experienced. Examples of these new para-
digm companies include Chameleon, 
PACT, BOPS, Picochip, Morpho, Morphics, 
and Quicksilver. These companies arose 
in the late 1990s and mostly died in the 

 fallout of the tech bubble burst. 
They suffered from a lack of 
production quality tooling and 
no clear programming model. 
In general, they came in two 
types; arrays of arithmetic logic 

units (ALUs), with a central controller, and arrays of small 
CPUs, tightly connected and generally intended to communi-
cate in a very synchronized manner. Figure 8 shows the picoAr-
ray used by picoChip, a proponent of regular, meshed arrays of 
processors. Serious  programming challenges remain with this 
kind of architecture because it requires two distinct modes of 
programming, one for the CPUs themselves and one for the 
interconnect between the CPUs. A single programming lan-
guage would have to be able to not only partition the workload 
but also comprehend the memory locality, which is severe in a 
mesh-based architecture. 

NEXT GENERATION MULTICORE 
DSP PROCESSORS
Current and emerging mobile communications and network-
ing standards are providing even more challenges to DSP. 
The high data rates for the physical layer processing, as well 
as the requirements for very low power have driven design-
ers to use application-specific integrated circuit (ASIC) de -
signs. However, these are becoming increasingly complex 
with the proliferation of protocols, driving the need for soft-
ware solutions.

Software-defined radio (SDR) holds the promise of allowing a 
single piece of silicon to alternate between different modem 
standards. Originally motivated by the military as a way to allow 
multinational forces to communicate [39], it has made its way 

FOR PROGRAMMERS TO FEEL  
CONFIDENT ABOUT THEIR CODE, 
TIMING BEHAVIOR SHOULD BE 
PREDICTABLE AND REPEATABLE.

[FIG12] The AsAP processor architecture.
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into the commercial arena due 
to a proliferation of different 
standards on a single cell phone 
(for instance GSM, EDGE, 
WCDMA, Bluetooth, 802.11, FM 
radio, and DVB).

Signal-Processing On-Demand Architecture (SODA) [40] is 
one multicore DSP architecture designed specifically for SDR 
applications. Some key features of SODA are the lack of cache 
with multiple DMA and scratchpad memories used instead for 
explicit memory control. Each of the processors has a 32 3 16 b 
SIMD datapath and a coupled scalar datapath designed to handle 
the basic DSP operations performed on large frames of data in 
communication systems. 

Another example is the Asynchronous Array of Simple 
Processors (AsAP) architecture [41] that relies on the dataflow 
nature of DSP algorithms to obtain power and performance 
efficiency. Shown in Figure 12, it is similar to the Tilera archi-
tecture at a superficial glance, but also takes the mesh network 
principal to its logical conclusion, with very small cores 
10.17 mm2 2  and only a minimal amount of memory per core 
(128 word program and 128 word data). The cores communi-
cate asynchronously by doubly clocked FIFO buffers, and each 
core has its own clock generator so that the device is essential-
ly clockless. When a FIFO is either empty or full, the associated 
cores will go into a low power state until they have more data 
to process. These and other power-saving techniques are used 
in a design that is heavily focused on low power computation. 
There is also an emphasis on local communication, with each 
chip connected to its neighbors, in a similar manner to the 
Tilera multicore. Even within the core, the connectivity is 
focused on allowing the core to absorb data rather than reroute 
it to other cores. The overall goal is to optimize for data flow 
programming with mostly local interconnect. Data can travel a 
distance of more than one core but will require more latency 
to do so. The AsAP chip is interesting as a “pure” example of a 
tiled array of processors with each processor performing a 
 simple computation. The programming model for this kind of 
chip is, however, still a topic of research. Ambric  produced an 
architecturally similar chip [42] and showed that, for simple 
data flow problems, software tooling could be developed.

An example of this data flow approach to multicore DSP 
design can be found in [43], where the concept of bulk-syn-
chronous processing, a model of computation where data is 
shared between threads mostly at synchronization barriers, is 
introduced. This deterministic approach to the mapping of 
algorithms to multicore is in line with the recommendations 
made in [44] where it is argued that adding parallelism in a 
nondeterministic manner (such as is commonly done with 
POSIX threads [14]) leads to systems that are unreasonably 
hard to test and debug. Fortunately, the parallelization of DSP 
algorithms can often be done in a deterministic manner using 
data flow diagrams. Hence, DSP may be a more fruitful space 
for the development of multicore than the general-purpose 
programming space.

Sandbridge (see the section 
“Existing Vendor-Specific 
Multicore DSP Platforms”) has 
also been producing DSPs 
designed for the SDR space for 
several years. 

CONCLUSIONS AND FUTURE TRENDS
In the last two years, the embedded DSP market has been swept 
up by the general increase in interest in multicore that has been 
driven by companies such as Intel and Sun. 

One reason for this is that there is now a lot of focus on 
tooling in academia and also a willingness on the part of users 
to accept new programming paradigms. This industry-wide 
effort will have an effect on the way multicore DSPs are pro-
grammed and perhaps architected. But it is too early to say in 
what way this will occur. Programming multicore DSPs 
remains very challenging. The problem of how to take a piece 
of sequential code and optimally partition it across multiple 
cores remains unsolved. Hence, there will naturally be a lot of 
variations in the approaches taken. Equally important is the 
issue of debugging and visibility. Developing effective and 
easy-to-use code development and real-time debug tools is 
tremendously important as the opportunity for bugs goes up 
significantly when one starts to deal with both time and space.

The markets that DSP plays in have unique features in their 
desire for low power, low cost, and hard real-time processing, 
with an emphasis on mathematical computation. How well the 
multicore research being performed presently in academia will 
address these concerns remains to be seen.
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