
PROCEEDINGS OF THE IRE

High-Speed Arithmetic in Binary Computers*

0. L. MACSORLEYt, SENIOR MEMBER, IRE

Summary-Methods of obtaining high speed in addition, multi-
plication, and division in parallel binary computers are described and
then compared with each other as to efficiency of operation and cost.
The transit time of a logical unit is used as a time base in comparing
the operating speeds of different methods, and the number of indi-
vidual logical units required is used in the comparison of costs. The
methods described are logical and mathematical, and may be used
with various types of circuits. The viewpoint is primarily that of the
systems designer, and examples are included wherever doing so
clarifies the application of any of these methods to a computer.
Specific circuit types are assumed in the examples.

INTRODUCTION

Tq HE PURPOSE of this report is to describe various
methods of increasinig the speed of performing the
basic arithmetic operations in such a manner that

one method may be readily compared with another,
both as to relative operating efficiency and relative
equipnmenit cost. It is divided into three parts: Adders,
Mtultiplication, and Division.

.Adders
As it is generally recognized that most of the time

required by adders is due to carry propagation time,
this section deals with methods of reducing this time,
together with their efficiency and relative costs. It coIn-
siders adders both from the standpoint of reducing the
length of the carry path when using a fixed-time adder
and of recognizing the completion of an addition to take
advantage of the short length of an average carry. Cir-
cuits shown are in terms of basic logic blocks, and use
the transit time of a logical block as a unit to permit the
application of conclusions to various types of circuits.

Alultiplication
In multiplication, if one addition is performed for

each one in the multiplier, the average multiplication
would require half as many additions as there are bits in
the multiplier. This can be improved considerably by
the use of both addition and subtraction of the multi-
plicand. The rules for determining when to add and sub-
tract are developed, and the method of determining the
number of operations to expect from the bit grouping is
explained. This results in a variable inumber of add
cycles for fixed-length multipliers. For som-ne applica-
tions a fixed number of cycles is preferable. To accom-
modate this requirement, rules are developed for han-
dling two- and three-bit multiplier groupings.

Multiplication, which involves repeated additions in
which the selectiotn of the various addends is not af-
fected by a previous suIml, offers the possibility of im-

*Received by the IRE, July 25, 1960.
t Product Dev. Lab., Data Systems Div., IBM Corp., Pough-

keepsie, N. Y.

proved speed by the use of carry-save adders. Condi-
tions under which such improvements will be realized
are investigated, and methods that may be used to re-
duce the amount of equipment required are described.

Division
Working froim the premise that a division should re-

quire no nmore additions than would be required if the
resulting quotient were used as the inultiplier inl a
multiplication, the developmiient of such a metlhod is
traced through several stages. Then another aind still
faster method is also described. Methods of evaluatiiig
the speeds of these various mnethods are developed in
such a manner as also to permnit evaluation of the ef-
fects of variation in imlaximum shifter size.

General
For the purpose of illustrating points in the use of

these various arithmetical methods which may affect
their applicationi to computers, several typical systemiis
circuits are shown, and the use of these is assuimed in
the numerical examples included. The following is a
brief description of the circuits that are assumed avail-
able and a definition of terms that will be used.
DC rather than pulse-type logic is assumed. Registers,

or data storage devices, are assumed to be separate
from the adder. The use of a separate shifter rather than
a shiftiiig register is assumed. M1ost registers used are
"latch-registers"; this means a register capable of beinlg
set from data lines, which are in turn controlled by the
output of the same register upon the application of a
latch-control signal. A gate is a group of two input AND
circuits, each having one of its two inputs connected to
a common line, and the other input to a data input line.
A shifter is a device for transferring all bits in a register
a specified number of positions left or right. The term
"addition" will be used to include both additioni and
subtraction, aind the same adder will be used for both.
Subtraction will always be performed by the use of the
two's complement of the number to be subtracted fromi
the other. This will be obtained by inverting all bits in
the number and also forcing an additional one into the
carry position of the low order bit position of the adder
when performing the addition.

Logical circuits are shown with inputs on the left
and outputs on the right. The bottom output positiotn
represents the logical functioin described in the box,
while the top output positioin represents its inverse.
The logical symbols used within the boxes are AND
(&), INCLUSIVE OR (V), and EXCLUSIVE OR
(V). When the word OR is used alone, it means IN-
CLUSIVE OR.

1961 67

PROCEEDINGS OF THE IRE

Unless otherwise specified, arithmetic used in exam-
ples is assumed to be binary floating point, although
the methods described are not limited in their use to
this type of arithmetic. When a number is described as
normalized, it means that the fraction has beeni shifted
in the register until the high order one in the fraction is
located just to the right of the binary point, and the ex-
ponent has been adjusted accordingly. Thus a nor-
malized fraction will always have a value less than one
and equal to or greater than one-half. In the examples,
exponent handling is implied but not described in detail.

BINARY ADDERS

Binary Adders, Fixed Time

The basic binary adder is comparatively simple and
quite well known. It is also comparatively slow. Fig. 1
shows one version of one stage of such an adder.

Sn=An*Bn4'Cn Rn =(An* Bn) Cn V An Bn

Fig. 1-Full adder, one stage.

In the discussion of adders, the lowest order bit or

adder position will be designated as 1. The two multi-
bit numbers being added together will be designated as

A and B, with individual bits being A1, A2, B1, etc. The
third input will be C. Outputs will be S (sum) R (carry),
and T (transmit).
The conventional ripple-carry adder consists of a

number of stages like that shown in Fig. 1, connected in
series, with the R output of one stage being the C input
of the next. The time required to perform an addition in
such an adder is the time required for a carry originating
in the first stage to ripple through all intervening stages
to the S or R output of the final stage. Using the traiisit
time of a logical block as a unit of time, this amounts
to two levels to generate the carry in the first stage, plus
two levels per stage for transit through each intervening
stage, plus two levels to form the sum in the final stage,
which gives a total of two times the number of stages.
The usual forms of the logical description of the sum

and carry from the nth stage of an adder are

Sn=(A,nv4Bn VCn) and Rn =(AB.vAnC.vB, C.).
Also, from the description of connection between sec-

tions, C,, = R,-. If the carry description is rearranged to
read Rn=(An,Bn)CxVAnBn, and if T. is defined as

(A. V B,,) and D,, is defined as (A,,B7,,), then

Rn = Dn V TnCn.

This separates the carry out of a particular stage into
two parts, that produced internally and that produced
externally and passed through. The former is called a
generated carry and the latter is called a propagated
carry. From this the description of the carry into any
stage may be expanded as follows:

Cn -Rln-I

Cn= Dn_l V Tn_R,-2

Cn= Dn_1 V Tn_lDn_2 V Tnl1Tn_2Rn_3

Cn= Dn-1 V Tn_lDn_2 V Tn_1Tn-2Dn-3

V Tn-1Tn-2Tn-3R-4.

This can be continued as far as is desired.
Fig. 2 illustrates the application of this principle to a

section of a carry propagate adder to increase its speed
of operation. By allowing n to have successive values
starting with one and omitting all terms containing a
a resulting negative subscript, it may be seen that each
stage of the adder will require one OR stage with n in-
puts and n AND circuits having one through n inputs,
where n is the position number of the particular stage
under consideration.

It is obvious that circuit limitations will put an upper
limit oIn the number of stages of an adder that can be
connected together in this manner. However, within
this limit the maximum carry path between any two
stages is two levels, or six levels for the complete addi-
tion.
Assume that five stages represent a reasonable num-

ber of adder stages to be connected in this manner and
designate such an arrangement as a "group." The group
containing the five low-order positions of the adder will
be group 1, etc. A carry into group n will be C(,JR while
a carry out of the group will be R,. If these five-bit
groups are now connected in series with C - Rg(n-1), Ia
a carry will require four levels to be produced and
reach the output of the first group, two levels to go
through each intermediate group, and four levels to
reach and be assimilated into the sum in the final
group. Thus, for five-bit groups, the maximum carry
path length would be 4+ (2n/5) as compared to 2n for a
straight ripple-carry adder. For a 50-bit adder this
would give 24 levels as compared to 100.

Since each five-bit group may be considered as one
stage in a radix-32 adder, a transmit signal may be
generated to take a carry across the group. This will be
designated as Tg,, and will be defined as T, - T,T2T3T4T5,
where the numbers 1, 2, etc., refer to positions within
the group rather than within the adder. At the same
time Dg., which includes only carries originating within
the group, may replace R, which includes the effect of
Cg, whenever a higher level of look-ahead than the one
under consideration is being used with it. The use of

68 January

MacSorley: High-Speed Arithmetic in Binary Computers

FIVE -BIT _
CARRY LOOKAHEAD

L .PART 2.7. I. TS T4=

Fig. 2-Five-bit adder grotup with fuill carry look-ahead.

Rgn where Dan is called for will not produce an error,
but will add unnecessary components.

This process may be continued by designating five
groups as a section and then using carry speed-up cir-
cuits between the sections. Carries into a section will be
C., and carries out of a section will be D8". (If the third
level of carry look-ahead is not used, Rsn must be used
in place of Dsn.) The maximum path length for a carry
to be generated within a section and reach the output
Den is six levels. The maximum path length for a carry
appearing at the input to a section as C, to affect the
sum is also six levels. The maximum path length for a
carry originating within a section to affect a sum within
the same section is ten levels.
Carry look-ahead between bits within a group is

called level one look-ahead, between groups within a
section is called level two, and between sections is called
level three. Table I gives a comparison of speed imn-
provement for different amounts of look-ahead. Five
bits to the group and five groups to the section are as-
sumed. The time units are logical level transit times.
The transmit signal has been described as the EX-

CLUSIVE OR combination of A and B. Correct opera-
tion will also be obtained if the INCLUSIVE OR is
used instead, of or in combination with, the EXCLU-
SIVE OR. The only effect will be a redundant signal at
times.

TABLE I

Look-Ahead
Levels-*

Adder Bits

0 1 1 aid 2 1, 2, and 3

5 10 6 - -
10 20 8 - -
25 50 14 10 -
50 100 24 12 -
too 200 44 16 14

. , .

Figs. 2 and 3 together illustrate a 100-bit adder with
full carry look-ahead. In Fig. 2 (part 1) are shown the
details of the basic sum generatioIn unlit, while (part 2)
shows the basic carry look-ahead unit. Fig. 3 shows the
method of combining the parts to give the complete
adder. The complete circuit shown in Fig. 2 represents
one group in Fig. 3.

Various modifications may be made to the circuit
shown in Fig. 3 if smaller size or less than maximutm
speed is required. Some of the possibilities which are
likely to be of particular use to the computer designer
are listed below, and their relative speeds and costs will
be included in the comparison table. Some minor
variations which these modifications may cause and
which would be obvious to anyone considering the prob-
lem will not be described in detail. Comparisons will be
made on the basis of 50-bit and 100-bit adders.

--l w~~I 1-:yl

19e61 69

PROCEEDINGS OF THE IRE

LA

LB

LC

TRANSIT TIME LOGICAL UNITS 50 BITADDER 100 BITADDER

Al TO DG - 4 UNITS BASIC ADDER 5-BIT GROUP = 30 MAX TRANSIT TIME 12 UNITS 14 UNITS
Cg TO S = 4 UNITS 5-INPUT LOOKAHEAD = 28 LOGICAL UNITS

Ci TO Dg = 2 UNITS 4-INPUT LOOKAHEAD = 22 BASIC SUM GENERATION UNITS 300 600
FIRST LEVEL CARRY 280 560

Al TO Tg5 3 UNITS SECOND LEVEL CARRY 56 112

Dg TO DS = 2 UNITS THIRD LEVEL CARRY 0 22
TOTAL 636 1294

D5 TO CS = 2 UNITS
LOGICAL UNITS/BIT 12.72 12.94

Cs TO Cg = 2 UNITS

Fig. 3-Carry-propagate adder with full carry look-ahead.

1) Eliminate the look-ahead within groups, but re-
tain it between groups and between sections.

2) Retain the look-ahead within groups, but use rip-
ple carry between groups.

3) Use the very elementary carry speed-up circuit
used with the completion recognition adder (Fig.
4). This can be used with any adder, and will give
almost a four-to-one increase in speed over that
of a full ripple-carry adder of 100 bits for only
about 2.5 per cent increase in equipment. It pro-
vides a carry bypass circuit within rather than
around the group. Its principal merit is the high
percentage improvement per unit increase in cost.

Table II summarizes the comparative costs and
speeds for five different adder versions for 50-bit and
100-bit adders. The 50-bit ripple-carry adder is used
as a reference for cost comparison. The types being
compared are 1) full ripple carry, 2) full carry look-
ahead, 3) ripple carry within five-bit groups, look-
ahead between groups, 4) look-ahead within five-bit
groups, ripple carry between groups, 5) carry bypass
within five-bit groups, ripple carry between groups.

Adder
Type

2
3
4
5

Logical
Units

400
636
466
580
410

50-Bit Adder

Comnparative
Cost

100.0
159.0
116.5
145.0
102.5

Time

100
12
24
24
36

Binary Adders, Variable Time

It can be shown that for a large number of binatry
additions the average length of the longest carry of each
addition will not be greater than log2 N, where N is the
number of bits in the numbers being added together.
Random distribution of bits within the numbers is as-
sumed. This gives an average maximum carry length of
not greater than 5.6 for a 50-bit sum or 6.6 for a 100-
bit sum.

In a ripple-carry adder a six-position carry would
represent twelve units of time, as compared to fourteen
units maximum for a 100-bit adder with full look-
ahead. Also, the twelve units represent actual transit
time, while the fourteen units represent predicted time
with safety factor. In addition, the carry look-ahead
adder represents 60 per cent more equipment than the
basic ripple-carry adder.
The variable time (completion recognition) adder

must contain additional equipment that will permit
the recognition of the completion of carry propagation.
Ideally, this equipment should have three characteris-
tics. It should be inexpensive. It should not add to the

GLE I I

100-Bit Adder

Logical
Units

800
1294
954
1160
820

Comparative
Cost

200.0
323.4
238.4
290.0
205.0

Time

200
14
26
44
52

70 January

6MacSorley: High-Speed A rithmetic in Binary Computers

time needed to complete the addition. It should not
indicate completion, even momentarily, when an addi-
tion is still incomplete, and if an input changes after an
addition has been completed, the completion signal
should immediately go off and remain off until the new
result is completed.

Fig. 4 illustrates one version of a completion recogni-
tion adder. While it does not meet all of the require-
ments of an ideal unit, it does appear to be reliable when
used with the proper restrictions. This adder requires
approximately 1280 logical units for 100 bits, which is
essentially the same as the 1294 units for the full carry
look-alhead adder. Thus, where cost is concerned they
may be considered the sam-ie. However, part of the addi-
tional equipnment required for the carry-recognition cir-
cuits mav also be used as part of the checkinig circuitry.
To obtacin equivalenit checking with the carry look-
ahead adder would require considerable additionial
equipment.

Fig. 4-Completion recognition adder.

Each stage of the adder generates a carry and a no-

carry signal, and these are propagated through the
adder along separate paths. If these signials are des-
ignated as C and N, completion of the addition is
recognized by the existence of the condition [(C OR N)
and not (CAND N)] at the output of every bit position
in the adder.
The operatioin of this adder will be more readily unl-

derstood if it is recognized that C-=AnBru V TnCn_
and that Nr= A , V TnN,-1. At the start of an addi-
tion the inputs to the adder must be cleared. This sets
the N output of each block to one and the C output to
zero. The desired inlputs are then entered, which changes
the N outputs to zero for those positions which have a

one in either or both inputs. This turns off the com-

pletion signal. The C output is changed to one for those
positions having an input of 11 and the T signal is
changed to one for those positions having 01 or 10. The
latter positions have zero on both the C anid N lines.

Siginals will then ripple down either the C or N lines
from positions having either 00 or 11 inputs until all
positions have either the C or the N output energized,
at which time a completion signal will be generated. To
prevent false indications of completion, the two inputs
must enter the adder simultaneously; once the opera-
tion has started, no changes may be made in the inputs,
and both iniputs must be changed to zero before the next
addition may be performed. An alternative to this is to
force ones into all input positions by using an additional
inpuit to the OR circuits that are usually present at the
iniput to adders. The restriction here would be that the
correct inlputs are present at the input to the OR circuits
at the timne the forcing inputs are turned off.
No geeneral statement can be made as to whether

fixed-time or variable-time adders are better. The use
of a completioin recogniition adder offers many attrac-
tionis to the systemis designer, particularly if his circuits
have a large spread between average and maximum
tranisit timle. On the other hand, the limitations on
data handling required to prevent armibiguities in the
conitrol siginals may nullify soimie or all of the theoretical
advantages. The best choice cani only be miade by a care-
ful conisideration of all of the factors involved for the
particular application.

BINARY MULTIPLICATION

Mlultiplication Using Variable Length Shift
Multiplication in a computer is usually performed by

repetitive addition. For constant circuit and adder
speeds, the time required to perform a multiplication is
proportional to the number of additionis required. The
slowest way would be to go through one add cycle for
each bit of the multiplier. Substituting shift cycles for
add cycles when the multiplier bit is a zero can reduce
this time; supplying the ability to shift across more than
one position at a time when there are several zeros in a
group can reduce the tim-e still further. Assuming ran-
dom distribution with equal numbers of ones and zeros
in the multiplier, this should result in a 50 per cent re-
duction in time. This is as much improvement as is ob-
vious from normal methods of performing multiplica-
tion.

Further improvements may be secured by taking
advantage of some of the properties of the binary sys-
temii. The rules for handling multiplication to obtain this
improvement will be developed.
A binary integer may be written in the following

form:

An2n + A,12'-1 + An228-2 + * * * + A222+ A121 + Ao20.

The actual number, as written, consists of the char-
acteristics only and would be written AnAn_jAn-2 . .

A2A 1Ao, where each A would have a value of either one
or zero. If such a number contained the coefficients

** - 011111111110 * * *, this part of the number would

711961

PROCEEDINGS OF THE IRE

have the value 2n-1+2n-2+ * * +2n-x, where n is the
position number of the highest order one in the group
for which the lowest order position in the number is
designated zero, and x is the number of successive ones
in the group. The numerical value of this last expes-
sion may also be obtained from the expression 2n - 2nx,
where n and x have the same values as before. For ex-
ample, in the binary number 0111100, n is 6 and x is 4.
The decimal equivalent of the number is given by
25+24+23+22=32+16+8+4=60. It is also given
26_22= 64-4 = 60. Thus forany string of ones in a mul-
tiplier, the necessity for one addition for each bit can be
replaced by one addition and one subtraction for each
group. The only additional equipment required is a
means of complementing the multiplicand to permit
subtracting and, of course, some additional control
equipment. To illustrate this a typical multiplier is
shown below with the required operations indicated.
Each group of ones is underlined.

+

A(
fa(
Ti

which is the number of operations that was obtained.
Within the limitation of using only multiples of the
multiplicand that can be obtained directly by shifting
anld usinlg only one of these at a time, it is believed
that this represenits the least number of additions with
which a binary multiplication can be performed.
The rules for performing a multiplication may now

be giveni. It is assumed that the multiplier and the
partial product will always be shifted the same amnount
and at the same time. The multiplier is shifted in rela-
tion to the decoder, and the partial product with rela-
tion to the multiplicand. Operation is assumed starting
at the low-order end of the multiplier, which means that
shiftinig is to the right. If the lowest-order bit of the
multiplier is a one, it is treated as though it had been
approached by shifting across zeros.

1) When shifting across zeros (from low order end of
multiplier), stop at the first one.

1 I I 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 a) If this one is followed immediately by azero, add
the multiplicand, then shift across all following

- + -+ -+-+- +-+- zeros.

.ditional improvement may be obtained by using the b) If this one is followed immediately by a second

ct that +2n -2n- = +2n-1 and -2n+2n-l= - 2n-1 one, subtract the multiplicand, then shift across

ct that+2l-2e+ =+2a-'aralrndr 2+2 = -2h h all following ones.
i nis 1iUsidsLrateU Dy appiy1ilg IL LO Lne aDuveCxAilipl.
The original results are given first, with the operations
to be combined underlined.

1 I I 1 0000 1 1 1 0 1 1 1 0 1 0 1 00 0 1 0 1

+ - + -+ -+-+-_+-+-
+ - + ++

+

+

-+ -_+ -_

_
+ - - + +

+ +

Two different arrangements are shown. Both will give
the correct result, and the number of cycles required is
the same. The first is that obtained by starting at the
high order end, and the second by starting at the low
order end.

For a given multiplier, the number of additions that
will be required may be computed as follows. Define a

group of ones as a series of bits containing not more

than a single zero between any pair of ones within the
series, containing at least one pair of adjacent ones, and
starting and ending with a one. Then the number of add
cycles is equal to the following: Two times the number of
groups, plus the number of zeros contained within
groups, plus the number of ones not contained within
groups. This may be illustrated with the previous ex-

ample.

1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1.

There are two groups. The first group contains no

zeros, the second contains three. There are two ones not
contained in any groups. This gives (2 X2) +3+2=9,

2) When shifting across ones (from low order end of
multiplier), stop at the first zero.

a) If this zero is followed immediately by a one,
subtract the multiplicand, then shift across all
following ones.

b) If this zero is followed immediately by a second
zero, add the multiplicand, then shift across all
following zeros.

A shift counter or some equivalent device must be
provided to keep track of the number of shifts and to
recognize the completion of the multiplication.

If the high-order bit of the multiplier is a one and is
approached by shifting across ones, that shift will be
to the first zero beyond the end of the multiplier, and
that zero along with the bit in the next higher order
position of the register will be decoded to determine
whether to add or subtract. For this reason, if the multi-
plier is initially located in the part of the register in
which the product is to be developed, it should be so
placed that there will be at least two blank positions
between the locations of the low-order bit of the partial
product and the high-order bit of the multiplier. Other-
wise the low-order bit of the product will be decoded as
part of the multiplier. An alternative to this is for the
fact that the shift counter indicates the end of the
multiplication to force the last operation to be an addi-
tion.

It should be noted that whenever the shifting is across
groups of ones the partial product will be in comple-
ment form, which means that the shifter must contain

72 January

1llacSorley: High-Speed A rithmetic in Binary Computers

provisioni for inisertinig ones in all high order positions
that would normlallv be left blank by the shifting.

If the mnultiplicatiotn is perfornmed starting from the
high-order end of the multiplier, the partial product will
always be in true fori, but anyv operation may result in
a carry traveling the full length of the partial product.
The shifting rules are a little more complicated, as may
be seen below.

1) When shifting across zeros (from high-order end of
multiplier)

a) If the first one following the zeros is followed im-
mediately by a second one, stop shifting at the
last zero and add the multiplicand, then shift
across followinig ones.

b) If the first one following the zeros is followed im-
mediately by a zero, stop shifting at the first one
and add the multiplicand, then shift across fol-
lowing zeros.

2) WVheni shifting across ones (from high-order end of
multiplier)

a) If the first zerd following the ones is followed im-
mediately by a second zero, stop shifting at the
last one and subtract the imiultiplicand; then shift
across the followinig zeros.

b) If the first zero following the ones is followed im-
mediately by a one, stop sh-iftinig at the first zero
and subtract the miiultiplicanid, then shift across
the following ones.

The high-order one of the multiplier is treated as
though there were at least two zeros immediately pre-
ceding it.
As was previously stated, these two miiethods of de-

coding the niultiplier will Xyield the samiie number of add
cycles. This niumlber is depenident on the number and
distributioni of ones within the miiultiplier. If random
(listributioni is assumned, it can be shown that the aver-
age shift for each addition will be 3.0 bit positions when
usinlg an infiniite shifter, or 2.9 bit positionis for a shifter
having a limit of six.

Iu!ltiplication Using Uniform Shifts
For some applicationis a method of multiplication

which uses shifts of uniiform size anid permlits predicting
the number of cycles that will be required fromii the
size of the multiplier is preferable to a nmethod that re-
quires varying sizes of shifts. The mnost important use of
this mnethod is in the application of carry-save adders to
imiultiplicationi, although it can also be used for other
applications. The use of carry-save adders will be dis-
cussed in a later section.
Two methods will be described. The first requires

shiftiing the imiultiplier and partial product in steps of
two, the seconid in steps of three. Both methods require
the ability to shift the position of entry of the imulti-
plicand into the adder in relation to its normiial positioni.

The latter is designated as the one-times-imultiplicand
position and used as a reference positioIn in all descrip-
tions. This small shifter will be the length of the nmulti-
plicand rather than of the partial product. Both meth-
ods may be used starting from either enid of the multi-
plier, but because of the reduced requiremenits on the
size of the adder, are usually used starting from the
low-order end. The latter will be assunmed for any oper-
ating descriptions, but for easier explanation the rules
of operationi will be developed assuming a start from
the high-order end.

Uniform Shifts of Two

Assume that the multiplier is divided inlto two-bit
groups, an extra zero being added to the high-order end,
if necessary, to produce an even number of bits. Only
one addition or subtraction will be made for each group,
aInd, usinlg the position of the low-order bit in the group
as a reference, this addition or subtraction will consist
of either two times or four times the multiplicand. These
multiples may be obtained by shifting the positioIn of
entry of the multiplicand into the adder one or two
positions left from the reference position. The last cycle
of the miiultiplication may require special hanidlinig.
Rules for this will be conlsidered after the general rules
have beeni developed.
The general rule is that, following any addition or

subtraction, the resulting partial product will be either
correct or larger than it should be by an amliouInt equal
to onie times the multiplicanid. Thus, if the high-order
pair of bits of the nmultiplier is 00 or 10, the imiultiplicand
would be multiplied by zero or two and adlded, which
gives a correct partial product. If the high-order pair
of bits is 01 or 11, the multiplicand is miiultiplied by two
or four, not one or three, and added. This gives a par-
tial product that is larger than it should be, aind the next
add cycle must correct for this.

Following the addition the partial product is shifted
lefi- two positions. This multiplies it by four, which
means that it is now larger thani it should be by four
times the multiplicand. This may be corrected during
the next addition by subtracting the difference be-
tween four and the desired multiplicaclnd multiple.

Thus, if a pair ends in zero, the resulting partial prod-
uct will be correct and the following operation will be an
addlition. If a pair enids in a one, the resulting partial
product will be too large, and the following operation
will be a subtraction.

It can now be seen that the operation to be performed
for any pair of bits of the multiplier miiay be determined
by examining that pair of bits plus the low-order bit of
the next higher-order pair. If the bit of the higher-order
pair is a zero, an addition will result; if it is one, a sub-
traction will result. If the low-order bit of a pair is con-
sidered to have a value of onie anid the high-order bit a
value of two, then the multiple called for by a pair is
the numerical value of the pair if that value is even and

731961

PROCEEDINGS OF THE IRE

one greater if it is odd. If the operation is an addition,
this multiple of the multiplicand is used. If the opera-
tion is a subtraction (the low-order bit of the next higher-
order pair a one), this value is combined with minus
four to determine the correct multiple to use. The result
will be zero or negative, with a negative result meaning
subtract instead of add. Table III summarizes these
results.

TABLE III

Multiplier Operation Multiplier Operation

0-0 0 +0 1-0 0 -4+0=-4
0-0 1 +2 1-0 1 -4+2=-2
0-1 0 +2 1-1 0 -4+2=-2
0-1 1 +4 1-1 1 -4+4=-0

It is obvious from the method of decoding described
that the multiplier may be scanned in either direction.
When starting from the high-order end, the partial
product will always be in true form, but starting from
the low-order end will result in a complement partial-
product part of the time. This means that the main
shifter must be designed to handle the shifting of com-

plement numbers.
The possibility that the low-order bit of the multiplier

will be a one presents a special problem. For operations
starting at the high-order end of the multiplier this
may be handled in either of two ways. One requires an

additional cycle only when the low-order bit is a one,

and consists of adding the complement of one-times the
multiplicand following a zero shift after the completion
of the last regular operation. The other method adds
an additional add cycle to every multiplication by al-
ways treating the multiplier as though it had two addi-
tional low-order zeros. The two extra zeros which this
introduces into the product are then ignored.
When operating from the low-order end of the multi-

plier this problem may be handled more easily. On the
first cycle there is no previous partial product. Therefore
zeros are being entered into one side of the adder. If the
low-order bit of the multiplier is a one, enter the com-

plement of one times the multiplicand into the adder by
way of the input usually used for the partial product.
At the same time, the multiple of the multiplicand se-

lected by decoding the first pair of bits of the multiplier
is entered at the other adder input. This does not require
any additional cycles.

Uniform Shifts of Three

This method of handling three bits of the multiplier at
a time requires being able to obtain two, four, six, or

eight times the multiplicand. One times may also be re-

quired to handle the condition of a one in the low-order
bit position of the multiplier. One, two, four, and eight
times can all be obtained by proper positioning of the
multiplicand, but the six times must be generated in
some manner. This can be done by adding one times the
multiplicand to two times the multiplicand, shifting the
result one position, and storing it in a register.

The development of the decoding rules for this
method follows the same basic requirements already
described for handling two-bit groups. This is evident
from Table IV and will not be repeated.

TABLE IV

Multiplier OperationI Multiplier Operation

0-000 +0 1 -000 -8+0=-8
0-0 0 1 +2 1-0 0 1 -8+2= -6
0-0 1 0 +2 1-0 1 0 -8+2=-6
0-0 1 1 +4 1-0 1 1 -8+4=-4
0-1 0 0 +4 1-1 0 0 -8+4= -4
0-1 0 1 +6 1-1 0 1 -8+6=-2
0-1 1 0 +6 1-1 1 0 -8+6=-2
0-1 1 1 +8 1-1 1 1 -8+8=-0

There are some general facts that apply to both the
two-shift and the three-shift methods of multiplication.

1) The choice of true or complement entry of the
multiplicand into the adder is dependent only on
the condition of the low-order bit of the next-
higher-order group of the multiplier.

2) Special provision must be made for the condition
of a one in the low-order bit position of the multi-
plier. Procedure is the same for both methods.

3) Whenever complement inputs are used for multi-
plicand multiples, there must also be provision for
entering a low-order one into the adder to change
the one's complement to a two's complement. This
includes the complement of one times the multi-
plicand used because of a low-order multiplier
one. This can result in a design problem, since odd
numbers in the two low-order groups of the multi-
plier may call for the entry of two additional ones
into the low-order position of the adder, making a
total of four entries. A solution to this is to decode
the low-order group of the multiplier to call for the
desired multiple, or one less instead of one more.
Then the true value of one times the multiplicand
can be used in the partial product position on the
first cycle when the multiplier has a low-order
one. This may be done very easily, on the first
cycle only, by forcing the low-order bit of the
group to enter the decoder as a zero, but using its
actual value to determine whether or not to add
one times the multiplicand. The justification for
this mnay be seen from either table. This nmodifica-
tion of the decoding will not work for any cycle
except the first, and only when operating from the
low-order end of the multiplier.

To permit a comparison, the illustrative multiplier
used previously to show decoding for the variable-shift
method will be shown below for variable shift, two-
position shifts, and three-position shifts.

All decoding shown is based on starting at the low-
order end of the multiplier. Multiplier groupings are in-
dicated in (2) and (3). The use of multiples of four in
(2) and of eight in (3) places the effective location of the

74 January

1lMacSorley: High-Speed Arithmetic in Binary Computers

O 0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1
+ -+ - - + + + +

+2 -0 -2 +0 +2 -0 -2
O' 0 1' 1 1 1 0'O 0 ')0 1' 1 1' 0 1'
+ - +_

+2 -O -8 +4 -2
'0 0 1' 1 1 1' 0 0 o' 0 1 1' 1 0 1' 1
+ - +_

-O -2
1 1' 0 1'

-2
1 O' 1

+

-2
0 1'

+6
0 1'

-4 +2
0 O' 0 1'

-8
0 0 o' 1

-4 +
0 1'
+

+4 +
0 1'

(1)

(2)

(3)

operation under the low-order bit of the next higher
group. An underline under a pair of operations in (3)
indicates the use of the previously prepared three-
tinmes multiple. The (+) following the multiple figure
for the low-order group indicates that one times the
multiplicand is also used in the partial product entry
position. The decoding for this particular group is as-
suitmed modified as previously described.

Variable Shift Multiplication Circuit
Fig. 5 shows a brief outline of a system capable of

performi ng multiplication in the mainner just described.
At the start of the operation the nmultiplier is entered in
the right half of the MQ register, the multiplicanid into
the MD register, one imore than the miiultiplier size into
the shift counter register, and two inlto the shift control
register, anid also the "use" trigger is set OFF. (It is as-
sun1ied that the multiplier is initially entered inito the
samlle positioni of the AMQ register as the low-order end of
a double precisioni niumber would be, which would
place its high-order bit immediately adjacenit to the
low-order positionl of the partial product. The initial
shift of two separates these by two bit positions, the
necessity for which was previously described. The initial
shift couinter register setting is adjusted for this. The
decoder is located to give correct operation with this
offset.)

SIince the "use" trigger is OFF anid the partial-product
in the J/IQ register is also zero, the output of the maini
adder will be zero. The two in the shift-conitrol register
causes two to be subtracted from the contenits of the
shift counter register in the shift couniter adder. The
low-order end of the shifted mnultiplier goes inito the de-
coder and is decoded to give the next shift required anid
to determiine whether the next operation will be add-
true, add-comiiplemaent, or neither (if shift called for is
larger than shifter caii give). XVhen sufficienit timne has
been allowed for these operations to be completed, a
latch cointrol signal sets the results into the proper
registers, and the next cycle starts. These cycles are
repeated as nmaniy times as required, the shift called for
as a result of decodiing beinig compared each time with
the contents of the shift couinter register to determine
wheni sufficient cycles have been takeni.
To determinie the time required for a cycle, three data

paths must be considered and the longest used. Thev
all include time to power the latch control signal and set
iinformation into the proper trigger, plus any safety
factor that nmust be allowed because of variationi in

MIUTIPUJCAND-DIIISORI
REGISTERi-01__l

Fig. 5-Computer arithmetic system.

transit times. One patlh is fromii the JIQ register, through
the shifter to the decoder, tlhrouglh the decoder to the
shift control register or to the multiltiplicaind true-comnple-
menit control trigger. A second path is from the shift
control register or the shift cotutnter register through the
shift counter adder, and back to the shlift couniter regis-
ter. The third path is from the MQ register, through the
shifter to the main adder, and through the maini adder
back to the MIQ register. It will be assumed initially
that the third path is the longest.

It has already been showin that milost of the time re-
quired in ani adder is required for propagation of
carries, and various mlethods have been described for
reducing this. The most efficienit of these reduced the
time to 12 transit time units for a 50-bit adder for a
conmponeent inicrease of 59 per cent. Four of the 12 units
are due to the basic adder, and 8 are due to carry propa-
gationI.

Multiplication Using Carry-Save A dders
When successive additions are required before the

finial answer is obtained, it is possible to delay the carry
propagation beyond onie stage uiitil the comiipletion of
all of the additions, and theni let oine carry-propagate
cycle suffice for all the additionis. Adders used in this
manniier are called carry-save adders.
A carry-save adder consists of a nuimber of stages,

each similar to the full adder shown in Fig. 1. It differs
from the ripple-carry adder in that the carry (R) output
is not connected directly to the next-higher-order stage

1961 75

PROCEEDINGS OF THE IRE

of the same adder, but goes to an intermediate register
or other device in the same manner as the sum (S) out-
put. Thus a carry-save adder has three inputs which, as
far as use is concerned, may be considered ideintical,
and two outputs which are not identical and must be
treated in different manners.
The procedure for adding several binary niumbers by

using a carry-save adder would be as follows. Designate
the inputs for the nth bit as An, Bn, and C, and the
outputs for the same bit as Sn and R, where Sn is the
sum output and R. is the carry output. In the first
cycle enter three of the input numbers into A, B, and C.
In the second cycle enter the S and R obtained from the
previous cycle into A and B and the fourth input num-
ber into C. In this operation S,, goes into A,,,, but R,,
goes into Bn+1, where Bn,,+ is in the next higher-order bit
position than B.. This is in accordance with the cus-
tomary rule for addition that a carry resulting from
adding one column of figures is added into the next
higher-order column. The third cycle is the same as the
second, etc. This is continued until all of the input num-
bers have been entered into the adder.

Carry propagation may be performed in either of two
ways. Since each add cycle advances all carries one
position, add cycles as already described may be con-
tinued with zeros being entered into the third input
each time until the R outputs of all stages become zero.
The alternative is to enter S and R into a carry-propa-
gate adder and allow time for one cycle through it. This
carry-propagate adder may be completely separate
from the carry-save unit, or it may be a combined unit
with a control line for selecting either carry-save or
carry-propagate operation.

Before carry-save adders can be used in the multi-
plication loop, it is necessary to know the answers to
these questions: 1) How should they be used? 2) How
much additional equipment is required? 3) How much
time will be saved? Assume that the circuit shown
in Fig. 5 is modified by changing the adder to a CP/CS
adder which is so designed that the ability to operate
as either a carry-save or a carry-propagate adder does
not cause it to be any slower when operating in the
carry-propagate mode than is a comparable adder
without this feature. Such an adder can be constructed
at an additional component cost of about 50 per cent of
the number of componenits in the corresponding ripple-
carry adder. Also, since the partial product will now be-
come a partial sum and a partial carry, and since the
latch-register and shifter presently shown can only
handle one of them, a duplicate latch-register and
shifter must be provided for the other.

Figuring in necessary gates and mixing circuits, and
allowing the equivalent of four levels for rise time, skew,
and uncertainties in the latch driver power circuits, the
data path loop contains fourteen levels besides those in
the adder. Also, for the system shown in Fig. 5, no speed
advantage is gained by making the main adder faster
than the path through the decoder and shift-counter-

adder. The latter will be in the neighborhood of eleven
levels, seven for the adder and four for the complete
decoder. Eleven levels, however, can be obtained at coIn-
siderably less cost in equipmeint with the carry-propa-
gate adder with full look-ahead. From this it may be
concluded that there would be very little, if any, time
gain and considerable additional expense if the adder
in Fig. 5 were changed to a CP/CS adder with the neces-
sary associated changes.
The above does not mean that faster multiplication

cannot be obtained through the use of carry-save adders.
It merely indicates that that particular method of ap-
plying it would not produce the desired result.

In Fig. 5 the high-speed main adder represents prob-
ably about half of the equipment in the complete data
path. Figuring the adder as twelve, and the remainder
of the path as fourteen, the total loop path is the equiv-
alent of 26 logical levels. If a carry-save adder were
connected in series with the present adder, then the
total path length would be fourteen plus twelve plus
four, or thirty; however, two additions could be per-
formed in each cycle, which would halve the numiiber
of cycles. This is, of course, an oversimplified descrip-
tion of the m-lethod and its results, but its proper ap-
plication will permit profitable use of carry-save adders
in multiplication.
When two or more adders are operated in series in the

performance of multiplication, an attempt to have a
variable shifter ahead of each of them will result in a
more complicated decoder, longer path length, and conI-
siderable additional equipment. For this reason, at
fixed-shift type of operation, such as one of those already
described, is more desirable than the variable-shift
methods. The comparative merits of and requirements
for two- and three-bit shifts have already been de-
scribed, together with the decoding rules for each. The
application of carry-save adders will be described in
terms of the two-bit shift. Necessary variations in usinlg
the three-bit shift will be readily apparent from the
previous description.

Fig. 6 illustrates a system that will handle eight bits
of the multiplier at a time. It shows three carry-save
adders operating in series, with the two outputs of the
last of these going to a carry-propagate adder. One of
the three inputs to CSA 1 is the partial product fromii
the previous cycle. The other two are multiples of the
multiplicand determined by decoding two groups of
multiplier bits. Two of the three inputs of CSA 2 are re-
quired for the two outputs of CSA 1, leaving one for a
multiple of the multiplicand obtained by decoding the
third group of the multiplier. In a similar manner, CSA
3 provides an input for a fourth multiple. The two out-
puts of CSA 3 go to the inputs of the carry-propagate
adder, and the single output of the CPA goes to the
main latch-register as the partial product for the next
cycle. The modification of the decoding of the first
group for the first cycle is used as was described, so that
the true value of one times the multiplier can be used

76 January

6MacSorley: High-Speed Arithmetic in Binary Computers

Fig. 6-High-speed multiplication system.

when the low order bit of the miultiplier is a one. Entry
for this is shown as G13.
The details of one cycle of the multiplicationi of two

16-bit binary numbers are illustrated in Fig. 7. During
the first add cycle a 16-bit number is being multiplied
by an 8-bit number. This may give a true result not
exceeding 24 bits in length. Therefore a one in positionl
25 will indicate a complemenit partial product. One
times the multiplicand, when required, goes into posi-
tions 1-16 of the A input of CSA 1. Decoding of the
low-order group of the multiplier calls for zero, two, or
four times the multiplicand to be entered at the B input
of CSA 1. This multiple is referenced to position 1 of
the adder, which means that two times the multiplicand
would go to positions 2-17, while if four times were
called for, it would go to positions 3-18. All other posi-
tions of this adder input get zeros if the input is true, and
ones if it is complement.

Since the low-order bit of group 2 of the multiplier is
two positions to the left of the corresponding bit of
group 1, the reference position for determining entry
into the adder is also two positions to the left of that for
group 1, that is, position 3 instead of position 1. This
means that a two times multiple for group 2 will go
into positions 3-19, while a four times multiple will go
into positions 4-20. Again, unused positionls get zeros
for true and ones for complement.
For CSA 2 the A2 input is the sum outputs (S1) from

CSA 1 carried down in the same columns. The Be input
is the carry outputs (R1) of CSA 1, each shifted one
column left, which leaves column 1 for the complemiienit
forced carry input for group 2. The C2 input is obtained

from decoding group 3, and is referenced to colunmi 5.
For CSA 3 the A3 input is the sum output of CSA 2

brought straight down, and the B3 input is the carry
output of CSA 2 shifted one position left, which leaves
column 1 of B3 for the complement forced carry entry
due to group 3. The C3 input is obtained by decoding
group 4, and is referenced to column 7. The sum out-
puts of this adder go into the corresponidinig columns of
one of the inputs of the carry-propagate adder, while
the carry outputs go into the carry-propagate adder
shifted one position left. This leaves one entry in column
1 available for the forced carry input associated with
group 4. The forced carry associated with group 1 can
also be entered into the carry-propagate adder by way
of the carry input circuit of position one. Rather than
use a special adder connection, this can be donie by en-
tering an input into both sides of position zero when the
carry input is desired.

For all of the adders, carry outputs from column 25
that would normally go iilto coluimn 26 of the next
following adder are ignored and lost, as it would serve
no useful purpose to retain them. Column 25 supplies
the required information as to whether the partial prod-
uct is in true or complement form.

Fig. 7 assumes that each carry-save adder has a
length equal to the length of the partial product de-
veloped in each cycle. Means for reducing each of these
to approximately the length of the multiplicand will be
described following a summary of the operating se-
quence. The sequence is essentially the same for either
version.

Step 1: Enter the multiplier into the right half of the

771961

78 ~~~~~PROCEEDINGS OF THE IREJaur

-COMPLEMENT

RECOGNITION

POSITION

;-HIGHEST 01
TRUE BIT

POSITION

4 1 2-3 22-

MULTIPLIER-4 1:
RDER

MULTIPLICAND-->EF'jj1:
21? 2-01t19~ 18_ 171__16 115

0 1 0 0 1 I0

II ;o 0 0

14 113 112 11I 10_1 9 8 7

II10 0 IJo I >
GR3 GRI Z

0J

_16 15__l41_3121I10

w

a ~-

0 1 1 T I 0 10~ i*

0

I

0

1- -

Al pp

1*12T 210 __ _1100000000 1I IIo I0 1 0 0 Bi G

2 32 T 3 0% 10 0 10 0 1 1 10I0 v 0v i v v C1 G2

liii 10~~~0010I 0110 0110 111 O 101C A2 SI
It

0 0 0
IIIo111110I110 0110 01100

0
B2 RI

3 5 4 C 6 I I o0 0 0 _II__II__CG

Il'l I_ H'o I 0I1 oil III 0 Ii o 1 A3 S2

80 0 010 0 1 0 I 1 o I S B3 R
- - - - 1- F 0 3 G

- io 0 III 0 I01 II 10 101 110 110 1I ool0 C A S

I 4 ~ ~ ~ ~~I0
I1I0 0 0 010 0 0 I I0 0 ji0 01 II 0 010 0 1 04 - LRJICPAI

* SPECIAL DECODING

Fig. 7-First cycle of miultiplication exainple using carry-save adders.

MQ register and the multiplicand into the MD register.

Set the shifter to shift the right half of the MQ register

eight positions to the right, keeping it at this setting

throughout the multiply operation. Clear the multipli-

cand selection register. Set the first-cycle trigger to

cause proper treatment of the low-order bit of the mul-

tiplier.

Step 2: Energize the latch-control signal. This sets

decoder results into the multiplicand selection register

that controls the gates into the carry-save adders,

shifts the multiplier right eight positions to discard the

low-order eight bits and bring the next group of bits into

the decoder, and sets the output of the CPA adder

(zero in this case) into the MQ register.

Step 3: Eniergize the latch-control signal (after suf-

ficienit timne has elapsed for the data to have passed

through all of the adders). This sets the results of de-

codinig the seconid set of eight bits of the multiplier into

the miultiplicanid selectioni register, shifts the multiplier

eight positionis right, anid enters the data from adder

output positionis 1-25 into positions 9-33 of the M.Q

register. The low-order eight bits of this partial product

are in their final form. These are in positions 9-16 of

the register. Therefore, on this cycle, the enitire adder

group is effectively shifted eight positions, which means

that data fromi- register positions 17-33 will go to the

A 1 input of CSA 1 positions 11 17. Since position 33 con-

tains a zero if the partial product is true and a one if it is

complement, iniput positions 18 25 of A 1 will be set to

agree with the input to position 17.

Step 4: Energize the latch-control signal. This sets the

decoder output into the multiplicand selection register

(has no meaning since multiplier was shifted out of

register by Step 3, but nio advantage is gained by sup-

pressing it), shifts the partial product that was in posi-

tions 9-16 of the MQ register into positionis 1-8, and

enters the remainder of the product from the carry-

propagate adder into positions 9-33. Note that the data

that was in positions 17 33 is replaced, and not shifted

elsewhere. This completes the multiplication.

Component Reduction with Carry-Save Adders

A carry-save adder takes in three signals aind gives

out two. If the number of inputs is reduced to two, the

number of outputs still remains at two. Therefore, wheni

two or more carry-save adders are used in series, aniy bit

positions which always have zeros for one of the three

inputs may be omitted. This eliminiates two outputs

from the omitted adders, thus vacatinig inputs to two

positions farther down the adder chain. The two inputs

that would have gone to the omitted adder positionis

can theni go to these two positions. An input may be

moved from any onie place in the chain of adders to any

other place as long as it is always kept in the same

colunmin.

When the two's complement of a binary number is

desired, the one's comiplement is obtained, and theni a

one is added to this in the column of the lowest order bit.

The column into which the one is entered may vary fromi

this if the column selected is the same as, or of a lower

order than, the column containing the lowest-order one

in the true value of the number, and also if the zeros

to the right of the selected column are not iniverted

wheni form-ing the one's complement of the number.

The application of these two principles will permiit

the elimination of a number of low-order positions fromn

the adders shown in Fig. 7. This is illustrated in Fig. 8.

Since the input C1 never needs to have anything ex-

cept zeros in positions 1, 2, and 3, and since nothing

needs to be added into these columnis in aniy other

a.

0

(n
wIi:

w I-)

GR4 GR2

- jI :j1 :j3Ij L2II

78 January

MacSorley: High-Speed A,rithmetic in Binary Computters

adder, the inputs for these columns that would nor-
mally go to A1 and B1 may be shifted down to the CPA
inputs and all carry-save adder positions for these
columns eliminated. The forced-carry input for group
1 remains the two CPA inputs in column zero. In Fig. 8,
terminations for the adders are indicated by double
vertical lines. Positions outside these terminiations are
designated by numbers in circles, and the position to
which these are transferred is designated by the same
numiiber in a hexagon.

Ihe three inputs for CSA 2 are the sum and carry
from CSA 1 and the multiple obtained by decoding
group 3. The lowest-order coluirni required by the latter
is six, which meanis that the inputs to columns 4 and 5
may be transferred. It should be noted that with the
group 2 multiple ending at coluimin 4, the forced carry
for this was moved to column 4 of B2, and is niow being
tranisferred to the same column of CPA input B. CSA
3 is then treated in a similar mainner. Altogether, these
modificationis have eliminated fifteen adder positions
from the low-order ends of the adders.
The modification of the high-order end of the adders

is based on the fact that, since the inputs are staggered,
the adders will have a number of high-order positions
containing either a string of ones or a string of zeros.
When two of the three inputs meet this condition,
these two inputs may always be replaced by a single
input, which reduces the total number of required in-
puts to two. As has already been shown, when this con-
dition exists, these stages of the adder may be elimi-
nated, and the pair of inputs moved down to the next
adder in the chain. The operation of this is illustrated
below for the various combiniations that may occur:

D

E
1

E

1

F

Two Complemenit Inputs
1 ' 1 * X X

1 ' 1 * X X

G ' H X X

1 1 11

D E F G
s
R

X

X

X

X

X
X

Al
B1
C1

S S S S A2
R R R R B2

One Complement Input
1 1 1 1 ' 1 * X X X X A,
0 0 0 0 ' 0 * X X X X B1
D E F G 'H X X X X C

HH7HH ' S S S S S A2
D E F G ' R R R R R B2

0

0

D

0

0

E

0

F

0 0 0 0

D E F G

No Complement Inputs
O ' 0 * X X
O ' 0 * X X
G ' H X X

S

R

X

x

X

X

x

X

A1
B,
Cl

S S S S A2
R R R R B2

The three inputs shown together represent the inputs
as they would be if the complete adder were used. The
asterisks in two of the inputs indicate that there are

never any high-order true bits to the left of this point
for these two inputs. The apostrophes indicate the
point at which it is desired to terminate the adder
shown with three inputs. The two inputs below are two
of the three inputs of the next following adder. For

columns to the right of the terminiation point of the
first adder, the inputs to the following adder are the
sum (S) and carry (R) outputs of the adder above. To
the left of the termination of adder 1, the B2 input of
adder 2 becomes what would have been the C1 input of
adder 1 for the same columns. Note that the carry out-
put of the highest-order column of adder 1 after it is
terminated does not go into the next higher order of
column B2, as this position is occupied by G froin Cl.
The corresponding A2 inputs to adder 2 are the same for
all bit positions to the left of the termination poinlt of
adder 1, and are determined from the three inputs to
the highest order column of the terminated adder 1.

Fig. 8 illustrates the effect of applying this method
to the adders of Fig. 7. In CSA 1, input A1 is determinied
by its true or complement condition starting with
column 17, B1 with columni 19, and Cl with columniii 21.
It is therefore possible to terminate this adder with posi-
tioIn 19, and move the normal C1 inputs for columns 20
and 21 to the corresponding columns of C2.
The normal full adder used for each positioIn of the

CSA contains the following logic:

S = (A V B) V C,
R = (A V B)C V AB.

(4)
(5)

For the high-order column of the terminated adder,
in this case column 19, this is modified to the following:

S = (A V B) V C,

D = (A V B)C V AB.

(6)
(7)

In (4), (5), and (6), the terms A, B, and C may be
applied to any of the three inputs to the adder. This is
not true in (7), where the terms A and B refer to the
two inputs determined by the fact that they are in true
or complement form, while C refers to the data input.
D describes the input that goes to all higher-order posi-
tionis of the next adder, and for that adder it may be
treated as are those positions whose input is determined
by knowledge of whether the input is true or comple-
ment.
Bv continiuing with this procedure, CSA 2 may be

terminated at position 21, the position 21 circuit being
modified as described above; and CSA 3 may be ter-
minated with column 23, the position 23 circuit also
beinig modified.
The three carry-save adders as originally described in

Fig. 7 required a total of 75 individual full adders. The
same adders with the modifications described require 45
full adder units plus three modified units, a saving of 27
units.

For the operation described, the length of the carry-
propagate adder had to exceed the length of the multi-
plicand by two more than the length of the section of the
multiplier handled during each cycle. If this additional
length is not required for other operations, and if the
main part of the adder uses fully carry look-ahead, the
reduced path length for the low-order bits in the carry-

1961 79

PROCEEDINGS OF TIIE IRE

0l
25 124123122 21120119 181171161151 4113512 11 01 0918171615141 31211 I_

l_ l_ l___I ll_~~~~~~I.,_l l 0 0 __1 I 0 0 1 0 1_O 0 _C1_GI

. I IiiO OI I O Oo o 1 Cl G2

I I O OI0 1 I O I 0I 1 CA2S
I0 0

0 0 0
0 ®

X _o o o o o o I oI 0 A X2 RI
I~~~~~~~~2

o oo|0 O|0 O 0 O |0 O 0 I | i ||C |A3 |S2
I 10 00' I Ii3 R2lI

' 0)I0 I O O I I O O_O__ _I 3 C3 G4

) o00 0 0 1 0 1 0 0 0 0 1 I I I I I O Cp A S
0 jI 0 0 1 0 1 1 0 0 0 0 0 | 0 0 | 0 I O I 0 0 O A B R3

II I o o o o I o II o o o o I o - LR CPA|

Fig. 8-Modified high-speed multiplication adder system.

save adders resulting from the modifications made to
save components permits the use of a ripple-carry adder
for most of the extension to increase the length of the
main adder without causing any loss in speed.
From the information given, the modifications re-

quired to permit the use of three-bit multiplier groups
instead of two-bit groups are obvious. The question of
how many carry-save adders to connect in series is a

matter of economics to be decided for a particular ap-
plication. The example given was intended merely to
help describe the general method, and many modifica-
tions of it to suit special conditions will be readily ap-
parent.

BINARY DIVISION

There are several methods, of varying complexity and
speed, by which division may be performed in a com-

puter. The implementing of a particular method will
vary between computers because of differences in cir-
cuits and machine organization. It is the intent here to
discuss primarily basic methods, and to illustrate these
methods, when required for clarity, with a particular
type of machine organization. The characteristics of
this type were described in the Introduction.
The time required to perform a division is propor-

tional to the number of additions required to complete
it, and the methods that will be described for increasing
speed will be primarily concerned with the reduction of
the required number of additions. These methods will
all use a variable length shift, and the number of addi-
tions required for any particular example will be de-
pendent on bit distribution.

For all methods of division it will be assumed that
prior to the start of the actual division the divisor is so

positioned in the divisor register that it has a one in the
highest-order position of the register. It will also be as-

sumed that the divisor and dividend are binary frac-
tions with the binary point located just to the left of the
high-order position. Thus the divisor will always have a

numerical value less than one, but equal to or greater
than, one-half. These assumptions do not limit the ap-

plication of the principles of operation to be described,
and they simplify the description.

Since all of the methods to be described involve
variable shifts, it will always be assumed that a shift
counter of some type is included, that this counter is set
initially with the number of quotient bits to be devel-
oped, and that any shift-determining circuits include
means for comparing the shift called for against the
number still allowed by the shift counter and then act-
ing on this information according to the rules that will
be developed for the particular method.

In all descriptions the term dividend will be used to
mean both the initial and partial dividend, while the
term remainder will mean the final remainder after the
quotient is completely developed.

Fig. 5, which was used in the description of multi-
plication, will also be used as the basic circuit for de-
scribing division. Any modifications required by a par-

ticular method will be described. All operations start by
setting the dividend into the MQ register, the divisor
into the MD register (including normalization of the
divisor if it is not already in this condition), and the
quotient length into the shift counter (which is assumed
to count down). The high-order bit position of the
dividend (with a shifter setting of zero) and the high-
order bit position of the divisor enter the same column
of the adder unless stated otherwise. Dividend shifting is

to the left, which clears the right end of the MQ register
as the operation proceeds. The quotient is developed
at the right end of the MQ register and shifted along
with the dividend. The dividend decoder is assumed to

2
3

4
5
6

7
8
9

10
2-

2

80 January

1MacSorley: High-Speed Arithmetic in Binary Computers

be on the high-order end of the adder output, which
means that the initial operation always starts with a
forced zero shift, following which the decoder takes con-
trol of the shifting.
Some additional general rules that apply to all meth-

ods, particularly those that deal with starting and ter-
minating a division, will be discussed following the de-
tailed descriptions of the several methods.

Division Using Single Adder, One-Times Divisor, and
Shifting Across Zeros and Ones
Assume a dividend in true form. Since the high-order

bit of the divisor is required to be a one, if the high-
order bit of the dividend is a zero, the divisor is obviously
larger than the dividend which will result in a zero
quotient bit. A zero may therefore be placed in the
quotient, and the dividend and quotient each shifted
left one position before any addition is performed. If
there are n leading zeros, and the decoder can recognize
them, n positions may be shifted across in one operation,
a zero also being inserted in the quotient for each posi-
tion shifted.
With the dividend true and the high-order bit a one,

an addition must be performed to determine whether or
not the dividend is larger than the divisor. If the result
of the operation is true, the dividend was larger, and a
one is entered in the quotient. If the result is comple-
ment, the dividend was smaller than the divisor, and a
zero is entered in the quotient. In either case, the result
of the addition replaces that part of the previous divi-
dend in the MlQ register that was used in the addition.
If the result of the addition was a complement number,
this will now make the entire new dividend a comple-
ment number, even though part of it did not go through
the adder.

Shifting the dividend one position left is equivalent
to dividing the divisor by two with respect to the orig-
inal dividend. For a true dividend with a high-order one,
if one times the divisor results in a zero in that position
of the quotient (divisor larger than dividend), then one-
half of the divisor (next shift position) will always result
in a one in the following bit position of the quotient.
(Dividend is equal to or greater than one-half, while
one-half of divisor must be less than one-half.) If, after
the first addition, the dividend had been returned to its
original value, then, using the first addition as a point
of reference, the second addition would have given a
true result (indicating the one in the quotient) with a
value equal to the original dividend minus one-half of
the divisor. If, instead of returning to the original divi-
dend, shifting, and adding complement, the comple-
ment result of the previous addition had been retained
and shifted, and the true value of the divisor added to
it, the result would have been (original dividend minus
divisor) plus (one-half divisor). This would also be a

true final result having the same value as was obtained
by the previous method.
Assume that a partial division has been performed

yielding a partial quotient of 01111 and a correspond-
ing partial dividend. This result could have been ob-
tained by any of the following series of operations:

dividend+(-1/2-1/4-1/8-1/16) divisor,
dividend+(-1.0+1/2-1/4-1/8-1/16) divisor,
dividend+(-1.0+1/4-1/8-1/16) divisor,
dividend+(-1.0+1/8-1/16) divisor,
dividend+(-1.0+1/16) divisor.

These are all equal to dividend minus 15/16 divisor.
From this it may be stated that if a complement result
is obtained under the condition that it is known that the
next succeeding quotient bit is a one, then as many posi-
tions of the dividend may be shifted across, a one being
entered in the quotient for each position shifted across,
as is known will still result in a true dividend following
the addition.

Since the high-order position of the divisor, in its true
form, always contains a one, a true result will always be
obtained if the high-order bit position of the comple-
ment dividend contains a one. This justifies shifting
across all except the last one in a string of high-order
ones in a complement dividend, together with the en-
tering of a one in the quotient for each position shifted
across. It is also known that if an addition is performed
without shifting across the final one, a true dividend
will always be obtained together with another one in the
quotient. If the comnplement result had been shifted
one position farther, the new dividend obtained would
be the same following the addition of the true divisor
as would have been obtained following a one-position
shift of the true dividend and the addition of the comple-
ment of the divisor. Thus, it is evident that with either
true or complement dividends it is only necessary to
perform an addition when it is not evident what the
quotient bit should be. From this the following operat-
ing rules may be stated.

1) When the dividend is true, shift across any leading
zeros, entering a zero in the low-order end of the quotient
for each position shifted across except the last; then add
the complement of the divisor.

a) If the result is true, enter a one in the low-order
position of the quotient, then shift across zeros.

b) If the result is complement, enter zero in the low-
order position of the quotient, then shift across
ones.

2) When the dividend is complement, shift across
any leading ones, entering a one in the low-order end of
the quotient for each position shifted across except the
last; then add the true divisor.

a) If the result is true, enter a one in the low-order
position of the quotient; then shift across zeros.

b) If the result is complement, enter a zero in the low-
order position of the quotient; then shift across
ones.

If the decoder calls for a larger shift than can be ob-

811961

PROCEEDINGS OF THE IRE

tained from the shifter in one operation, use the maxi-
mum shift available and suppress both the true and
comiiplemenit entry of the divisor to the adder. This will
pass the high-order part of the shifted dividend through
the adder with zero added to it so that it is available to
the decoder. If the dividend is complement, the output
of the adder following this will be complement, which
would normally result in the setting of a zero in the low-
order positioin of the quotient. However, this is in the
middle of a shift across ones, not an addition to deter-
mnine the proper quotient bit following a shift, and the
dividend only goes through the adder because of the

_ + - + - +

0 1 1, 1 0 0, 0 1 1, 0 1 1,
_ +- + ++

necessity of making it available to the decoder. There-
fore, in this case, the low-order bit of the quotient
following the shift must be set to agree with the bits
being shifted across. The same control that suppresses
the entry of the divisor into the adder can also control
this.
Some special rules are required to terminate the divi-

sion and to insure that the final remainder will be in true
form. These are listed below.

1) Dividend true, shift called for by decoder larger
than allowed by shift counter. Treat in same
manner as when shift called for is greater than
capacity of shifter. Make shift allowed by shift
counter, suppress entry of divisor into adder, set
low-order bit of quotient to agree with bits being
shifted across. This will complete the division.

2) Dividenid true, shift called for by decoder equal to
that allowed by shift counter. Treat in the normal
manner. If resulting adder output is in true form,
division is complete with its entry into the register.
If the resulting adder output is in complement
form, one additional cycle is required to get re-
mainder into true form. See 4) below.

3) Dividend complement, shift called for by decoder
equal to or greater than that allowed by shift
counter register. Use allowed shift and proceed in
normal manner. If the resulting remainder is in
true form, division is complete. If the resulting re-
mainder is in complement form, the resulting
quotient is complete, but one additional cycle is
required to get remainder into true form. See 4)
below. The latter condition can only occur when
the shift called for and the shift counter register
are equal.

4) Dividend complement, shift counter register is
zero. Take zero shift, add the true value of the
divisor, suppress entry from adder output into
low-order bit position of quotient as the bit there
is already correct (zero) and the true output of the
adder would change it to a one.

If the following binary division is performed accord-
ing to these rules, it will require fourteen add cycles to
comiplete the operation:

011, 100,011,011,001,001,010, 110

,110 olo, 111, 111, 110,111,001 111,000,100, tOO
To compare this with the inverse operations required

for multiplication, the quotient is shown below with the
various additions and subtractions usedl shown above
the corresponiding bit positions, and the corresponidiing
operations as determined from the multiplicationl rules
shown below.

00 1, 00 1, 0 1 0,
+ o [14]

1 10
+0 [11]

Division Using Double Adder and One-Half, One, and
Two Times Divisor

If a quotient contains a string of zeros followed by a
string of ones, it is possible to shift across the ones onlly
if the addition made after the shift across the zeros re-
sulted in a complemenit dividend. If the result was a
true dividend, then it is necessary to make a separate
addition for each one in the string. This miieans that in
some instances better results would have been obtaiined
if the addition had been performiied one positioin sooner
than the position resulting fronm following the shift
rules. This conditioni is most likely to occur with a
small divisor, as a small divisor is less likely to produce
a change in the sign of the dividenid than a large divisor.
When a quotient contains two strings of ones sep-

arated by a single zero, more efficienit operation will be
obtained if it is always treated as one string of ones with
an initerruption. This mlay be seen by comlparing the
fourth anid fifth operations of the previous divide ex-
ample with the fourth operation of the potential divide
system obtained by an inversion of the multiplicationi
rules and shown for comparisoni. In this case, it is de-
sired that the addition at the end of the first group of
ones produce a complement result which will supply the
single zero for the quotient and leave the remainder in
comiiplement form for shifting across ones again; the in-
verse applies if the quotient is two strings of zeros sep-
arated by a single one. Io obtain this condition, it is
sometimes necessary to perform the addition one posi-
tion later than the position given by the shift rules.
However, if this extra length shift is taken at other
times it may produce incorrect results. The failure to
obtain optimum operations under these conditions is
most likely to occur when the divisor is large because a
large divisor has a greater probability of producing a
change in the sign of the dividend.

It has been shown that the efficiency of the division
operation may be improved if, on certain occasions, the
addition following a shift could be made with the divisor
one position to the left of the normal position, and on

82 January

MacSorley: High-Speed Arithmetic in Binary Computers

other occasions one position to the right of the normal
position. By normal position is meant that position
reached by shifting across all leading ones for a com-
plement dividend or across all leading zeros for a true
dividend. The divisor used in the normal position is
designated as one times divisor, left of normal position
as two times divisor, and right of normal position as
one-half times divisor.
One method of obtaining this improvement is by

double addition. It requires that the main adder be
slightly longer than twice the length of the divisor, or
that there be two adders available. The procedure is to
perform two additions simultaneously and then use the
result that produces the largest shift. If a double-length
adder is available, the two additions may be performed
in it as long as there is at least one position with no
inputs to it between the two operations. One addition
will always be performed with the divisor located, with
reference to the dividend, as called for by the shift
decoder. The other addition will be performed using
twice the divisor if the two high-order bits of the divisor
in its true form are 10 (value of divisor less than three-
fourths), and one-half the divisor if the two high-order
bits are 11 (value of divisor equal to or greater than
three-fourths). Thus a small divisor uses the larger
multiple, while a large divisor uses the smaller multiple
for the auxiliary addition.
The circuitry required is similar to that of Fig. 5 ex-

cept that the adder size is increased, gates are added to
enter the dividend into the other half of the adder also,
and to select two times or half times the divisor for
entry there, the decoder is increased to decode and com-
pare the two results, and a gate is added to permit a
choice of the two outputs.

Although the two additions may be performed in two
parts of one adder, the two parts will be called adder A
and adder B. Adder A will correspond to the adder
described in the previous method, while adder B will be
the alternate adder. The output of adder B will be used
only if its use results in a greater shift than would result
from using adder A. If the shifts called for by the two
adder outputs are the same, the adder A results will be
used.

If the previously described example were performed
using this method, the resulting operations would be
exactly the same as those obtained by using the inverse
of the multiplicatipn rules. The rules for quotient de-
velopment and division termination are very similar to
those for the system using a single length adder, and will
be developed when it is described.

Fig. 9 is a table showing all possible results that can
be obtained for a five-bit true divisor and complement
dividend under the restrictions that a true divisor al-
ways has a high-order one and a complement dividend
is always used following shifting across all leading ones,
which means that it will always have a high-order zero.
A corresponding table can be prepared for complement
divisor and true dividend. If this is done and the two

are compared, it will be found that for the same position
the result on one table will be the exact inverse of that
on the other table. For example, at column 3, row 10,
of Fig. 9 the result is 00110, while the corresponding
position of the other table would be 11001. The number
of positions to be shifted is the same in both cases. The
information of prima;y interest to be obtained from
these tables is the number of shifts, which is shown in
Fig. 10.
From this table it is apparent that points of maximum

shift lie along the diagonal representing equal values for
divisor and dividend. Also, if random distribution of
divisor bits between problems and dividend bits between
and within problems is assumed, then the average shift
per cycle will be 651/256=2.54 for a five-bit divisor
used with a shifter capable of handling shifts of five or
less. (It can be shown that the distribution of bits within
a dividend does not remain completely random as the
division progresses. However, the variations will not be
sufficiently great to invalidate the results of the com-
parisons of efficiencies of different methods of division
based on the assumption of complete randomness.)

Fig. 11 shows a table of shifts that may be obtained
when using one-half times the divisor or two times the
divisor. Both are shown on the same table, half of the
table being used for each. These results apply both for
dividend complement with divisor true and for divi-
dend true with divisor complement. On this and the
preceding figure, the pattern of shifts along any row
should be noted, as each row contains a section of the
pattern. The pattern goes both ways from the line of
maximum shifts, and is one "5", one "4", two "3's", four
"42's", eight "l's", and all that follow "0". Any selection
system used must not permit the selection of zero shift
durinig normal operation, as this will result in an error
in the problem.
When one-half or two times the divisor is used, the

dividend is positioned in the same manner as if one
times the divisor were to be used; then the divisor is
entered into the adder shifted one position to the left
or right of where it would have been for one times. The
columns of the output of the adder that are examined to
determine the next shift are the same ones that would
have been examined had one times the divisor been
used. When preparing the table and using one-half times
the divisor, the low-order bit of the divisor is lost as a
result of the right shift. This would not be the case in an
actual operation, as the adder would have been ex-
tended by one position and an additional bit of the
dividend would have been brought into the adder. When
two times the divisor is used, the high-order bit of the
original divisor is entered into the overflow position of
the adder, but for all the combinations for which two
times the divisor would be used, this combines with the
complement dividend to produce a true divisor with no
overflow. Therefore this five-bit remainder used for the
chart is correct.

Examples of the use of one times the divisor are

1961 83

84

2

D1VISOR
TRUE

PROCEEDINGS OF THE IRE

S 7 1.0

lI tII 011 10 01101 01 100 iO |1 10 i000 0011 001 10 00101 00100 00 0010 00001 0000I I_ I_

1.0 -_ - - - --__
II 15 o01to0 01101 01100 01011 0ooio oloo0 01000 00111 001100ooi 00100 0001o 00010 00001 00000o Ilo l 15

I II 10 14 101101 01100 01011 OlOlO 01001 01000 00111 00110 00101 00100 00011 00010 00001 00000 IIIH 1110 14

I 101 13 o01100 01011 01010olool 0olooo 0011 001100oo0o 001000001o 00010 00001 00000o o11 11o0 13

I101 Olll01010 01001 01000 00111 00110 00101 00100 00011 00010 00001 00000 11111 11110 11101 11100oo
8 11011 11 010t0 01001 01000 001l1 00110 00101 00100 00011 000l0 00001 00000 11111 11i10 11101 o tiO1 1011

I1010 10 o0oo0 01000 00111 00110 00101 00100 00011 00010 00001 00000 liil iti110 1t101 1100 11011 11010 10

I 1001 9 01000 00111 00110 00101 00100 00011 00010 00001 00000 1111 tII 110 1101 1100 1I101 11010 11001 9

11000 8 100111 00110 00101 00100 00011 00010 00001 00000 11111 11110 11101 11100 11011 11010 11001 11000 8

4 01 11 7 00110 00101 0010000011o00010 00001 00111Hlo ii11 l10oi 1 100 11011 11010 11001l 0ooo 10111 7

10110 6 00101 00100 00011 00010 00001 00000 I III 11110 11101 10lo0 11011 11010 11001 11000lol0i 10110 6

10101 5 00100 00011o00010 00001 00000o oli1 1 1i0o111 lo0 11011 11010 11001 11I010111 10110,10101 o 5

10100 4 00011 00010 00001 00000 t1t11 iI lo i110 1100 11011 lOG 11001 11000 0 101 01otttot oo0100 4

8 1001 1 3 00010 00001 00000 11111 11110 t 1101 11100 11011 11010 1100 11000 10111 10110 10101 10100 100oo 3

10010 2 00001 00000 11111 lltl0 11101 1t100 11011 11010 11001 1100 101o1 10110 10101 10100 10011 10010 2

10001I 00000 11111 11110 11101 11100 11011 11010 11001 11000 10111 10110 10101 10100 10011 10010 10001 I

l1000 0 11111 11i0lIIlOt li10o 1101I 11010 11001 11000 10111 10110 10101 10100 10011 t0010 10001 10000 0
--3 - ..- - - , _ , ===_=

0

20 6 7 8 9 1 10 11 12 1 13 14 153 4 5

Fig. 9-Division table, divisor true, dividend complement, uIsinlg one times (livisor.

±1/2

TRUE
DIVISOR
VALUE

..
2 1 3

±5/8
v

4 5 6 7

±3/4
L'

8 9 l0

±7/8

12 13 14 15

±1.0

i

100000oool 10010110011 10100 10101 10110 10111 11000 11001 11010 I11011111 1lloo0011o0 l11 11111l
0111j1 Oil 0J 01 J01100 01011 01010 01001 01000 00111 00110 00101 00100 00011 00010 00001 00000

I

II0 1 1 2 3 4 5 6 7 I 8 1 9 110

*- DI

<- DIl

_X.v- _ 15R R R 1 R R 7Th R=RR RR R RRZR| s -

I J 1 O l 13R R R R R 2 2 _ f / R R /~~~~~~~~~R R R 4 354

111III 15 HH Hl

+7/8+~~~~~~~~ IO 12 R _R2 2 2 3 3,-442_ I1llo 14_ R R R R R R R R R R R R R/ R s
71101131 2 2 2 3 33 544 5 4 713_ .4

1 102 R R ," RRRRR" RR ,-R 5R7ThSS s S -±7/8 l3 ,,22_212 R A'R R 74 57 3 4211011II ~~~RR R 7R R R R 2 ,-3 R4 R 7 >'s s-"~s 7'liioI 2 I- Iz-_ 2 32 3 747 ~ ,5 .54-3 " 3? -,4
R HR R R R RXR R R ZR s 7s 7S s 7s s

1101 10I __IIj 2I 2I

- OO 2 102S 3 4 5 57 5 2 43

110001 8^ R R R RS 7R RZ --7RZ'R =S S S SS45
±3/4 01 2 2 70 "'4 5 ,z 5 1- L. 2 2.. 2 2 4-

2 22 23
' 41 4 3 '

101/106O H S7 '355H S Z57/z55 5 5755 55

I2 273 3247 57 4 ,5 3 3?.. 2~
11008 RR HR RI R"T R R& ~ s ""s sI s 7s s1112222334 ~4 7 "33- 2 2 2 2__I_101004 ~~~~RR R7 R S7S-R S7 S -11S S , S7 S S SS43 2 3 32l,, 2 2 2 71 1__ I_

R R R R --' R Z R s s s-.ss S S100113 RR6 7 S 7AlS S' s s 40122 3 4. 43 33? -27 221 11

R RR' R'S s ssss " s7s s s ss s-10102 3 A 5 4__2-3 ___ 2 2 2 2 3
- RSRZTh s z7S' s Iz s s s s , s s s10100415 1- 1

- __4I 42

100000 S S S SS4SS
±1/2 ~~~~~~~54 I--, 1-3Z321 2 22 2__I_ I_ I_S 35

12 1:13 1 14 1 15 1ls5

IVIDEND IN TRUE FORM.

IVIDEND IN COMP FORM

S- SIGN OF REMAINDER SAME AS
_ THAT OF PREVIOUS DIVIDEND

_ R SIGN OFREMAINDER REVERSE
THAT OF PREVIOUS DIVIDEND

SHIFTS
SHIFT LENGTH |2 |3 | 14 | 5 | TOTAL
NUMBER 64
PERCENT 25.0

651 x2B54CBITS/CYCLE
256

80 52 29 I31 256J 48 19.0 AVERAGE SHIFT CYCLES FOR 48 BIT

_ 31.3 20.4 I IA 12.0 -10. 2.54 QUOTIENT WITH 5 BIT DIVISOR

Fig. 10-Division table using one times divisor with five-bit divisor.

January

9 10 ll 12 13 14 15

-VIDEND
COMPLEMENT

I I I -A

I
.1

2 3 4 5 6 7 8

o I I I

MacSorley: High-Speed Arithmetic in Binary Computers

Fig. 11-Division tables using 2.0 and 2 times divisor.

shown in Table V, followed by examples of one times and
one-half times. The examples on the left use one times,
while the top right uses two times and the bottom right
one-half times. The part of the result that is used in the
figures is to the right of the binary point in each case.

The part to the left is shown indirectly by the indication
of true or complement result. The figure numbers,
column numbers and row numbers refer to the table
locations of the examples. The underlined part of the
result indicates the amount of shift that would result in
each case.

TABLE V

Figs. 9 aind 10 Fig. 11

11 0 0 0 1 0 11 * 0 0 0 1 0 Column 13
00 *10001 01 * 00010 Row 1

11*10011 00*00100

1 1 * 011 10 1 1 * 011 10 Column 1
00 *1 1 101 00 *01 1 10 Row 13

00*01011 11*11100

Fig. 12 is obtained by replacing all of the positions
calling for a shift of one on Fig. 10 with the shift called
for on the corresponding position of Fig. 11. The three
sections are shown separated by heavy stepped lines.
The circled numbers represent shifts that are the same

on both figures. This represents the optimum com-

bination that can be obtained when using one-half, one,

and two times the divisor, and gives an average of 2.82
bits per cycle.
The heavy line between rows 7 and 8 represents the

division that was made between the use of half times
and two times divisor in the double adder method. As
may be seen, the optimum use for each multiple is
within this division, which means that the double-adder
method of division will give the same results as are ob-
tained from optimum use of these particular divisor
multiples. An alternate selection rule which may be
used with the double adder method for these particular
multiples is: If the output of the alternate adder does
not call for a shift of two or more, use the output of the
adder having the one times divisor input. This avoids
the need for any compare circuits, and also gives correct
results.

Division Using Single Adder With Half, One and Two
Times Divisor

If only a single length adder is available, the use of
the three divisor multiples to improve efficiency is still
possible, although the improvement may be somewhat
less. In this case the selection must be made by examin-
ing, or decoding, the high-order bits of the divisor and
dividend before each operation to determine what multi-
ple to use. The degree of improvement will be dependent
on the number of bits included, as will the complexity
of the decoding system and the time required by it.
The selection must be sufficiently accurate that it will
never call for a multiple that will result in a zero shift.

I

1961 85

PROCEEDINGS OF T'HE IRE

t±3/4 ±7/8

January

±1l.0

TRUE

DIVISOR

VALUE
4 5 6 7 8 9 I I 12 13 14

100 oo tof oot0 If0 rotooTl1l10to'10.1 tot1tt]t0001 tloo]i oo11 ot]I01 00]I__tlo t itollili1

0[1 110HooHo [110 0ooIoIo0IotoIootootjioooJoolItIooHoJootoljooIoo]ooolt01 Joooiolooooi 00000

0 11

JI TIMES DIVISOR ~ 2 TIMES DIVISO

~-DIVIDENI

*-DIVIDENI

yOPTIM

1111 15 4 3 3 2 2ES12UJS2E3S2 R

2 2 R2 R3 R

5 R5 46 143
11110 14 4 2~ M'js 2j52. R

2
R R 2j

R

3 H R
4

R
5 R5 S

4 48 46

1110i13 13 S 2
S

2 s2M R
2 H1 R

2
R H3

R R
4 R1 R

5 4S 13 547 46

11100 12 L3 3 2 2 RSQR®1 2 2 RH R
3 R4 R5 R

5 $ 4 s3 S 48 48

I10 I I13 s,2 s ms R RRHR
3

R

R4
R s 4- s3

3

7 4

11011II ~ ~ ~~' R R 2 2 3 3 R H R
5

S $
3 2 $ 47 43

11010 10 3DS EJ'S 2, R 4 4 S $74

210 R RR R R R R R S S S S S S S 46 46
110019 1I19.I~0 H2 3 3 4 5 5 4 3 3 22 2 2

10111 7 RIO R R R R H R R 5 S $ $ S S S S 5 411000 kk)~~723 3 4 5 5 4 3 3 2 2 2 4646-
10111 R~ 0R R

3
R R

5 51 4 3 3 2 2 2 2k.D)(D R4 4

1011060 R
R R3

4
R S4 3 2 2

S
2

R G)R4
1010150 RH R 4R 5R5S4 S $ $ $ 2 0HDR DR(0 R R24
______ 3 34I H 4 3 3 2 2 S($D 0D22 2 4

100100 2 4
R

H 1s4 14 s3$ $ $ 2 $ 2 $ $D RHDR2 R2 R R

H 42 42
1000 1 1 H2___ 2__ 423

54 33S22i 2 2 2 2y ?3

5 4 13 3 2 2 2 2 211 2111E 3 34 46 2

2 3 4 5 6 7 8 9 10 I I 12 13 14 15 1172 2f702-M?

ID IN TRUE FORM

ID IN COMP FORM

UM AND DOUBLE ADDER

CODED MULTIPLE SELECTION

OPTIMUM &i DOUBLE ADDER

-722= 8=BITS/CYCLE
256

IZO--AVERAGE SHIFT

2.82 CYCLES FOR 48

BIT QUOTIENT

WITH 5 BIT

DIVISOR

COOED MULTIPLE SELECTION

702
~2.74 BITS/CYCLE

17.5=AVERAGE SHIFT
CYCLES FOR 48

BIT QUOTIENT

WITH 5 BIT

DIVISOR

SHIFTS - DOUBLE ADDER SHIFTS-CODED SELECTION
SHIFT LENGTH 2 3 4 5 TOTAL 2 3 4 5 TOTAL
NUMBER 16 110 66 32 32 256 34 94 64 32 32 256
PERCENT 6.2 43.0 25.8 12.5 12.5 100.0 13,3 36.7 25.0 12.5 12.5 100.0

Fig. 12 Division table using 2.0, 1.0, -1timies divisor with optimum codinig.

The, dashed lines in Fig. 12 that outlinie rectanigles in

the upper left anid lower right corners indicate what may

be expected from very simiple decoding. This is based on

the followinig rules: 1) If the high-order bits of the

divisor are 111 anid the high-order bits of the dividend

are either or 100, use the half times divisor m-iultiple.

2) If the high-order bits of the divisor are 100 anid the

high-order bits of the dividenid are either 000 or II11, use

the two times divisor miultiple. 3) If neither of these

coniditionis exist, use the one times divisor multiple.

This gives an average of 2.74 bits shifted per cycle as

comipared with 2.82 for the double adder.

Quotient Development and Termination When UTsing 1/2,

1.0, and 2.0 Multiples

When these multiples are used, ani additionial low-

order register position is required. Designate the two

low-order positions of this register as X and Y, where X

is the position that is normally set by whether the out-

put of the adder is true or complemnent wheni onie times

the divisor is used. Position Y is the niext lower-order

position in the register.

When the half tim-es divisor is used, it is in the same

position with respect to the dividenid that the one times

divisor would have beeni had the previous shift been one

greater. Therefore the quotienit bit determiined by the

output of the adder wheni the half times divisor is uised

must be placed where it will eniter the quotient adjacenit
to position X, which is positioii Y. The quotienit bit

placed in position X niiust be the samie that would have

beeni placed there had onie times the divisor been used,

anid will always be the samie as the bits shifted across

durinig the preceding shift.

The bit placed in positioni Y as a result of the use of

the half tiines divisor is a correct quotienit bit. In the

evenit that its generationi is followed by a shift of onie,

the iniformationi that the half times divisor was used

must be stored so that oni the niext add cycle positioni X

cani be set fromi data that was in positioni Y inistead of

fromi the condition of the adder output.

It should be nioted thani wheni the remiainider fromi

the use of the half timies divisor miultiple is decoded to

give the niumber of bits to shift across, the niumiber will

always be onie greater thian would hiave beeni obtainied

had the previous shift been onie greater followed by the

use of onie times the divisor, which puts the eiid of the

shift at the same place in either case.

XVhenever the one timies divisor is used, positioni Y is

set to agree with the bits that will be shifted across oni

the next shift. It enters inito all shiftinig operations ex-

cept shifts of onie. It may be shifted across positioni X,

86

±1/2 ±5/8

~- 1/2 TIMES DIVISOR - -1 TIMES'DIVISOR -:0
v

If

I

MacSorley: High-Speed Arithmetic in Binary Computers

but never into it (except for the special condition de-
scribed above).
The two times multiple will be selected only when

the one times multiple, if used, would not cause a re-
versal in dividend sign, but the use of the two times
multiple will cause a reversal. Therefore, if the original
dividend was true, X is set to a one; if it was comple-
ment, X is set to a zero. Y is set to agree with the bits
that are to be shifted across as determined by the out-
put of the adder using the two times multiple. This bit
is not preserved in the event of a one-position shift.
The above information is summarized in Table VI.

TABLE VI

Original Multiple x
Dividend Selected

True half times 0
True two times I
Complement half times 1
Complement two times 0

To terminate a division, follow the rules previously
given, with the added restriction that if the shift called
for is equal to the contents of the shift counter register,
the choice of the divisor multiple is limited to the one

times multiple.

Division Using Divisor Multiples of Three-Fourths, One
and Three-Halves

It was previously stated that the largest shifts oc-

curred along the diagonal of equal values of divisor and
dividend. Fig. 11 shows that such diagonals for the
half times or two times multiples would each intersect
the rectangle at one corner only, the half times going
through the corner at which the divisor has a value of
1.0 and the dividend 0.5, and the two times going
through the corner at which the divisor has a value of
0.5 and the dividend 1.0. A multiple which would have
its high points within the area so that the high values
on both sides would be available should give a greater
improvement in efficiency. To be 'of practical use, it
should also be easy to generate. Such a multiple is three-
halves times the divisor, which can be generated in one

addition cycle by adding one times the divisor to one-

half times the divisor. Three-fourths times the divisor
can then be generated from this sum by shifting.

Fig. 13 shows a shift table obtained when using three-
fourths and three-halves divisor multiples with five-bit
divisors and five-bit dividends. The line of maximum
shifts varies somewhat from the theoretical line because
of the limits in size and the effects of truncating the
three-fourths times multiple of five bits. Without these
limits, the line of maximum shifts for the three-fourths
times divisor multiple would go between the points of
divisor equal to 2/3 dividend equal to 1/2 and divisor
equal to 1.0 dividend equal to 3/4; for the three-halves
times divisor multiple, the line would go between the
points of divisor equal to 1/2 dividend equal to 3/4

and divisor equal to 2/3 dividend equal to 1.0.
Fig. 14 shows a combination of Figs. 10 and 13 to

give the optimum arrangement when using the 3/4,
1.0, 3/2 multiples. The heavy stepped lines show the
separation between the areas of use of the three multi-
ples. The circled numbers represent shifts that are the
same in the two adjacent areas. The separation line
could go on either side of these positions without chang-
ing the result. The heavy horizontal line at divisor
equals three-fourths represents the separation between
the inputs to the alternate adder when these multiples
are used in the double adder method, and the numbers
in squares in the seven positions below this line indicate
the shifts these positions would have as part of the one
times area, instead of the three-fourths times area. The
optimum arrangement here for the five-bit divisor in-
dicates an average of 3.57 bits per cycle, while the use
of these multiples in the double adder method gives
3.51 bits per cycle.

Fig. 15 shows a coding arrangement for multiple
selection that gives the same results as are obtained
from the double adder method. A simpler coding meth-
od, which uses the three-fourths times multiple when the
high-order bits of the divisor are 11 and the high-order
bits of the dividend are either 10 or 01, and uses the
three-halves multiple when the high-order divisor bits
are 10 and the high-order bits of the dividend are either
11 or 00, will give an average of 3.37 bits per cycle
based on a similar table (not shown).
The use of the three-fourths, one, and three-halves

divisor multiples requires an additional register position
(Z) because the three-fourths multiple produces two ad-
vance quotient bits, three definite bits in all. These go
into positions X, Y, and Z. The three-halves multiple
produces two definite quotient bits in positions X and
Y, and a tentative bit in position Z. The one-times mul-
tiple produces one definite quotient bit in position X
and two tentative bits in positions Y and Z.

If the division example previously described were per-
formed using the double-adder method with three-
fourths, one, and three-halves divisor multiples, the
number of operating cycles would be reduced from
eleven to nine. One cycle would have to be added to this
to allow for the generation of the three-halves times
multiple of the divisor.

Fig. 16 illustrates graphically the various conditions
that may occur when using the 3/4, 1.0, 3/2 divisor
multiples. It shows an initial true dividend with com-
plement divisor multiples only, but the inverse can
easily be found from this by reversing all directions and
interchanging zeros and ones in the quotient bit col-
umns.

In example 1 the initial dividend is between 1 1/2 and
2 times the divisor. Selection here would choose the use
of the 3/2 divisor multiple which would give two def-
inite quotient bits and one tentative (indicated by a
circle). The 1.0 times multiple could be used, though it
would be less efficient. It would give one definite quo-

1961 87

PROCEEDINGS OF THE IRE

+1/2

TRUE
DIVISOR
VALUE

I.

+5/8 ±3/4 ±7/8

3/4 TIMES DIVISOR -1

±1.0

I10000I10001 10010 10011 10100 10101 10110 101 11 11000 11001 11010 11011 Ii oo IoI101 IIo10Hl1
I01 iII Oi110 01101 O 1001 010 1O01010 01001 0100011100110 00101 00100 0001 1 00010 00001 00000- : | - :~~~

±1.0 - R R H R RI R RH S S S S S S S S
11111152 2 2 1

-iio1 RHR R R H R s S S S S S S R -41111 2 12 3 13 4 5 -5 4 .3 3 -2 2 2 2 __ I_ _1110 132 R R R R R', SSS s S S S S R R 13 3 4 5 5 4 3 3 2 2 2 2 13I1110012 H~~R R R R S s S S S S i RHJ HI0p 2 3 3 4 5~ 15 4 3 3 2 2 2 __1 1_ 12HRHRRH ,'S S SS S Ss R Hi H R10III13 13 4 5..z5f 4 3 3 2 2 2 RI R _R R_ R
_

110110 NRI H S S S S S S 5 HR R''~~~~~~3~ 4 5 "5 4 3 3 12 .2 21I 2 1
11001 RI R"S~; S S S S1 S2 S 1" R R H

2

l H
2

N
910194 5 5 4 3 3 2 _I22 _

1100084 ~~R H S S S SS s RHR R R R 8±3/4-) - 14 5 H 4 S 3 3 2 2 IL I_ 2 2 2 __3 0117 R S S SS S R R R R R H H-017 7Z5 4 3 3 2 2 I2 2 2 2 3 3_
101106S S S S R R 2R 2

H R H RIo I6 14 3 3 12 2 "I
2 2

S S S S S R H R R RH H H R,-10101 54 3 .3 2 ? 7 2 2 2 3 3 4 5--'- S S s S R H R R RH R . S
4.10100 4 __ 2 2 2 2 3 3 14 5 4±5/8 4 s -3 - R H R R R H R R S S S1001133 3 3

3010 3 2
_

2 2 2 2 3 3 4 4
3

S H ~~~~~RR H H R R R..,S SS
10001 1 2 2 2 2 3 3 4 5 .1. 5 4 3 3 2 2

R H R H H H R-S S S S S S S 0100000 ' ~~~22 3 3 4 5 -5 4 ~ __3 2 2 2
+1/2

±1/2

TRUE
DIVISOR
VALUE

0 1112 4 I1 16171819 110 1 13 1 14I 15

I ----3/2
TIMES DIVISOR >

Fig. 13-Division tables using and 4 times divisor.

±5/8 ±3/4 ±7/8
4,~~~~~~~~~~-

±1.

3/4 TIMES DIVISOR -- -10 TIMES DIVISOR;-

10000 10001 10010 10011 [10100 10101 10110 10111 11000 11001 11010110-1 1110011101 I0II 11111
01111 o100J10101[100 01011 01010 01001 01000 00111 00110 1010 00100 0001 00010 00001 00000

01| |112 1 3 1 4 5 1 1 1 9 10 1 11 2 1 131 14 1 15

DIVIDEND IN TRUE FORM.

DIVIDEND IN GOMP FORM.

DIVIDEND IN TRUE FORM

* DIVIDEND IN COMP. FORM

F OPTIMUM

v DOUBLE ADDITION
± 1.0-)- I ii5I 2 2R5R

I I II 1 12 2 2
HR R 5 4 3 3 i3 R

RHRSS R 5
R .R5H 56

I 1 1 1 11 2 R 2 R 3 R 3 R 4 R 5 5 4 S 4 S 3 3 3 5 5 5

I I 10112 R R RH R S S R R R H S= = 59 59_ 0 2 3 3 4 5 5 4 3 3 3 3 4 5 5 4 59
I 1010 1 HR R R RR4_ SR R R S S S3 2 59 59

t3/ 0 32 3 3 84 5 5 4 3 3 3 3 4 5 54 3
_ 10 1 I II7 R 3 34 4 R 5 4 = R

3R4R R S s SR R 5
±71/8-l H H Hs s S R RR R H 4sS S R .5 50

o11011 4QS 1@ R 4 5 5 4 3 3 4 R R5 H 4 3 3

25/8O~~HOO H S S S ,. RR RH H 555 H 95

1 0" 923 _ R R 5 54 3 R3 R

4
R 5R 5 4 3 3 2 58 58

t 15O0 SH S S RR R H S S S SR R H H 5R 561100084 ~_ ~_ . 3 3 ! 3 0 0 5
101117.-l 4R5R5s4 3sR R R0 H R4SR RSH H 9R568

±5 _8_
4 3__ 5

100110 6 4 R~ H0RR5 S S4s3s. QRQ5RQHs H H H3s5 50
1010 24R15 R

5 HRs13S S SS4R5R 5HR4 H Hs2 58 56
100011 I 5R1 s 4__03___ 5 4 3 3.2 6 5

I±1/2-).>I((S 14 3 3 3 R3 R4 R5 R5 4 3 3 2 2 2 s2 53

| 2 1 3 1 4 1 5 6 7 8 9 10 1 12 13 1 4 I5 119161900

1-I.0 TIMES DIVISOR *|1 - 3/2 TIMES DIVISOR >

OPTIMUM

916 357-BITS/CYCLE

48 13.4=AVERAGE SHIFT
CYCLES FOR 48
BIT QUOTIENT
WITH 5 BIT
DIVISOR

DOUBLE ADDER

goo63.51 BtINICYCLE

48
13.7= AVERAGE SHIFT351 CYGES FOR4

BIT0U9IENt
WITH 5 DTr
DIVISOR

Fig. 14-Di)rision table using 4, 1.0, 4- timiies divisor with optimum coding.

88 January

0 12 13 14 5 16 1718- 1 9 110111 112

SHIFTS-OPTIMUM SHIFTS-DOUBLE ADDER

SHIFT LENGTH 2 3 4 5 TOTAL 2 3 4 5 TOTAL

NUMBER 0 37 96 61 62 256 0 43 97 57 59 256

PERCENT 0.0 14.5 37.5 23.8 24.2 100.0 0.0 16.8 37.9 22.3 23.0 100.0

I

I -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I -D

13 14 15

/ ± 3 7 ±1I

TRUE
DIVISOR
VALUE

III 1Ol 13 S S3 S 5 S RR R= R S S S R 5+7/8||11111152 2 2 3 3 4 5 5 4 3 3 2 3 4 5 R5
_ 1 1 1 4_ 3 3 4 5

R R
R R R S S R R 562 2 3 3 4 5 5 4 3 3 2 R24 5 2 5

I 11 0 1329s S S S R R R S S S S S R R 5813 3 4 5 5 4 3 2 3 3 4 5 _ 4 5

100 12 s5 5 S S R R R S S S S R R R 5
±+8

110 12 4 5 5 4 3 3 4 5 5 R4 3 3 59

_5/8 10SI S S S R R R R S S S R R R R 59111I
3 4 5 4 3 3 3 .4 5 5 4 3 3 2

_

11012010 S R R R R R S S R R R R R R 57.3 S4 S5 5 4 3 3 -2 4 S 5 5 4 .3 3 2 .2 _

1 1001 9 455 R S S s S R R 2 R 2 H2 5

3_4 1 4 5 5 4 2 3 3 4 5 5 4 3 3 2 2 2 53
101106~~~~ RRSSR R R R R R R H R 51108 5 4 3 3 4 55 5 4 3 3 1__ 3_ 3 56

1011175 2 s3 4 3 4 5 5 43 3-1 2 223 5 3 __5
101004 s s sR R RS H R H R H S s R S 5

± 0110 3 3 4 5 5 4 3 32 22 3 3 4 __55
R RS R RHN S 5 5 R S S R

101015 14 S 3 S 5 43 3 2 2 2 35 3 4 3_3

10010024 4 14 R

4 3 3 4? 3 3 45R 4R__R2 R5

Mol ~ S R R R H R RRSS S R R R R H 51010 5 4 3 323 4 5 5 4 3 3 2 __-2
100000 S R H R S S S S R R R R R R R 510002 4 3 23 3 4 5 5 4 3 3 2 2 2 2 __

OIl1 2-1 3 141 5 16 17 8 19 1101I11 121_]131_I_14___151_903
1.0 TIMES DIVISOR >|< 3/2 TIMES DIVISOR

-- DIVIDEND IN TRUE FORM.

K- DIVIDEND IN COMR FORM.

SHIFT LENGTH
NUMBER
PERCENT

SHIFTS 903 |
2 3 4 5 TOTAL 256=35BISCYL

0_ 96 174 118 124 512j 4 = 136 AVERAGE SHIFT CYCLES FOR 48 BIT
0.0 118.8 3-3.9 23.1 24.2 1100.0 3.52 QUOTIENT WITH 5 BIT DIVISOR

Fig. 15-Division table using 2, 1.0, I times divisor with four-way by sixteen-way coding.

Fig. 16-Quotient development using
3/4, 1.0, 3/2 times divisor.

3/4 TIMES DIVISOR 1.0 TIMES DIVISOR-e

1ooooioooi iooio loollloioo loioi [o lo 1oiTllooo lioo ll,oio]i loll llliioo l[iiio[lll
011 01110 01101o0o1 01011 01010 01001 01000 001t 001u10 00101 00100 0001]1 00010 00001 00000

0 1 2 3 4 5S 6 7 8 9 10 11 I 12 13 14 15

l~~~~~~~~~~~~

±1/2 ±5/8 ±+3/4 ±+7/8 + 1.0

PROCEEDINGS OF THE IRE

tient bit anid two tentative bits. In this case the first
tentative bit would be incorrect, and would be changed
on the next cycle. The 3/4 multiple would Inot be se-
lected for use with this iniitial condition.

In example 2 the iniitial dividend is greater than one
times the divisor but less than one-and-a-half times the
divisor. Either the 3/2 or 1.0 divisor multiple may be
selected here, but not the 3/4 multiple as it would be
less efficient than the 1.0 times mnultiple. Here again the
3/2 multiple gives two definite quotient bits and the
1.0 times multiple gives one.
Example 3 has a dividend less than one times the

divisor but greater than 3/4 times. It may use either of
these multiples, but not the 3/2 multiple. The 3/4 mul-
tiple gives three definite quotieint bits, while the 1.0
multiple gives onie definiite aind two tentative.

In example 4 the dividend has a value betweeii 1/2
and 3/4 the divisor. This condition will always result in
the choice of the 3/4 divisor multiple, though the 1.0
times will give correct results.
Example 5 shows a dividend having a value less than

half the divisor. This conidition could only arise as a re-
sult of an incorrect previous cycle as it would require a
true dividend with a leading zero following the shift.
The use of the 3/4 multiple will never result in a

following shift of only one. If it results in a shift of two,
the fact that the 3/4 multiple was used must be remem-
bered into the next cycle, and the entry into positioin X
mllust be made from position Z instead of fromii data ob-
tained in that cycle from the adder result. Similar pre-
cautions must be taken when usinlg the 3/2 multiple to
protect data from position Y in the event of a one-
position shift.

Divisioni terminiiation procedure is the same as was
previously described, with the additional requirement
thcat the 3/2 multiple must not be used if the shift
counter register agrees with the shift called for, and the
3/4 multiple must not be used if the shift counter regis-
ter agrees with or is one greater than the shift called for
by the decoder. In either case, the one-times multiple
shotuld be substituted.

Comparative Evalluation of Various Methods of Division

The effectiveniess of several methods of performing
division has been compared on the basis of five-bit di-
visors. These results need to be modified to show the
effect of larger divisors. A simple method of doing this
which will yield a close approximation to the desired
result may be developed from a study of the pattern of
shift amount variations in Fig. 10. From this it can be
predicted that if a six-bit chart is constructed, it will
show the same percentage of total operations for shifts
of 1, 2, 3, and 4 positions. The present shift of 5, which
actually represents five or greater, would split approxi-
mately evenly into five, and six or greater. The six or
greater could then be split approximately evenly in six,
and seven or greater. The accuracy of this even division

increases as the number of positions in the square in
creases.

In a computer the need for large shifts occurs so in-
frequently that it is usually Inot considered practical to
include a shifter capable of making, in oIne shift cycle,
all shifts that may be required. Once the data has beep
expanded to include the possibility of long shifts, the
effect of this on performance must be considered.
To permit easier expansion, the data for the five-bit

divisor was transferred to a basis of 1000 operations
rather than 256, the 1000 operations beinig obtained b,
usinig the percentage figures fromii the various tables
with the decimal moved one position right. In each casLt
the expansion was extended to include all shifts that
would occur at least one-tenth of one per cent of the
time. The remaining shifts, amounting to one-tenith of
one per cent, were all assigned to the next shift length.
All numbers of shifts were adjusted to be whole num-
bers. The average total positionls shifted across for 1000
shifts was then obtained by multiplying each shift
number by its frequency of occurrence, then adding
these products together. This number divided by 1000
gave the average bits shifted across per cycle with Ino
limitation on the shifter size.

Limiting the range of the shifter leaves the number of
bits shifted across the same as for the operation with no
limit, but it increases the number of shift cycles re-
quired to get across theni. If a limit of four is assumed, a
desired shift of five will require two operations, one
shift of four and one shift of one. A desired shift of ten
would require three operations, two shifts of four and
one shift of two.
The results obtained in this manner for eight different

division methods will be summarized in Table VII. A
description of the column1 headings is given below.

1) Division using one times the divisor and shifting
across zeros only. Data for this was obtained from
Fig. 10 by assigning shift values of one to all com-
plemnent results when starting with a true divi-
dend.

2) Division using one times the divisor and shifting
across ones and zeros, single addition.

3) Division using one-half, one, and two times the
divisor with coded multiple selection.

4) Division using one-half, one, and two times the
divisor with double addition, also with optimum
selection.

5) Division using three-fourths, one, anid three-
halves times the divisor with simple (two by two)
coding.

6) Division using three-fourths, one, and three-halves
times the divisor with complex (four by eight)
coding.

7) Division using three-fourths, one, and three-halves
times the divisor with double addition.

8) Division using three-fourths, one, and three-halves
times the divisor with optimum selection.

90 Janu.ary

Freiman: Statistical Analysis of Certain Binary Division Algorithms

TABLE VII

Average Bits Shifted Across Per Shift Cycle

Shifter 1 2 3 4 5 6 7 8
LiInit

None 1.86 2.66 2.86 2.94 3.59 3.77 3.75 3.82
8 1.85 2.64 2.84 2.92 3.54 3.72 3.69 3.76
6 1.83 2.54 2.78 2.86 3.40 3.55 3.54 3.60
4 1.76 2.39 2.53 2.61 2.98 3.07 3.08 3.03
5* 1.80 2.54 2.74 2.82 3.37 3.58 3.51 3.58

* Five-bit divisor.

These figures are believed to represent an accurate
comparison of the efficiencies of the different methods of
division that have been described. The absolute ac-
curacy is subject to the limitations previously explained.

ACKNOWLEDGMENT

Most of the material used in the preparation of this
report was accumulated or developed during the design
of the parallel arithmetic section of the IBM Stretch
Computer. Particular mention should be made of the
following original contributions.
The method of division described in the section "Di-

vision Using Single Adder, One-Times Divisor, and
Shifting Across Zeros and Ones" was proposed by D.
W. Sweeney, and was described in an IBM internal
paper entitled "High-Speed Arithmetic in a Parallel
Device," by J. Cocke and D. W. Sweeney, February,
1957.
The method of division described in the section
Division Using Divisor Multiples of Three-Fourths,

One, and Three-Halves" was proposed by J. R. Stewart,
and a theoretical evaluation of its advantages was made
by C. V. Freiman.
The method of modifying the high-order end of the

adders described in the section "Component Reduction
with Carry-Save Adders" was proposed by F. R.
Bielawa.

BIBLIOGRAPHY
[1] A. W. Burks, H. Goldstine, and J. von Neumann, "Preliminary

Discussion of the Logical Design of an Electronic Computing In-
strument;" The Institute for Advanced Study, Princeton, N. J.;
1947.

[21 A. L. Leiner, J. L. Smith, and A. Weinberger, "System Design
of Digital Computer at the National Bureau of Standards,"
Natl. Bur. of Standards, Circular 591; February, 1958.

[3] B. Gilchrist, J. H. Pomerene, and S. Y. Wong, "Fast-carry logic
for digital computers," IRE TRANS. ON ELECTRONIC COM-
PUTERS, vol. EC-4, pp. 133-136; December, 1955.

[4] M. Lehman, "High-speed digital multiplication," IRE TRANS.
ON ELECTRONIC COMPUTERS, vol. EC-6, pp. 204-205; Septem-
ber, 1957.

[5] J. E. Robertson, "A new class of digital division methods,"
IRE TRANS. ON ELECTRONIC COMPUTERS, vol. EC-7, pp. 218-
222; September, 1958.

[6] E. Bloch, "The engineering design of the Stretch Computer,"
Proc. EJCC, Boston, Mass., pp. 48-58; December 1-3, 1959.

[7] S. J. Campbell and G. H. Rosser, Jr., "An Analysis of Carry
Transmission in Computer Addition," preprints of papers pre-
sented at the 13th Natl. Meeting of the ACM, Univ. of Illinois,
Urbana; June 11-13, 1958.

[8] V. S. Burtsev, "Accelerating Multiplication and Division Opera-
tions in High-Speed Digital Computers," Exact Mechanics and
Computing Technique, Acad. Sci. USSR, Moscow; 1958.

[9] J. E. Robertson, "Theory of Computer Arithmetic Employed in
the Design of the New Computer at the University of Illinois,"
Digital Computer Lab., University of Illinois, Urbana, file no.
319; June, 1960.

[10] A. Avizienis, "A Study of Redundant Number Representation
for Parallel Digital Computers," Digital Computer Lab., Uni-
versity of Illinois, Urbana, Rept. No. 101; May 20, 1960.

[11] C. V. Frieman, "A Note on Statistical Analysis of Arithmetic
Operations in Digital Computers," this issues pp. 91-103.

Statistical Analysis of Certain Binary
Division Algorithms*

C. V. FREIMANt, MEMBER, IRE

Summary-Nondeterministic extensions of the nonrestoring
method of binary division have been described by MacSorley [11.
One extension requires that the magnitudes of the divisor and par-
tial remainders be "normal," i.e., in the range [0.5, 1.0). This leads to
a time improvement of more than two relative to conventional non-
restoring methods. Other extensions involve the use of several
divisor multiples (or trial quotients). A Markov chain model is used
here to analyze these methods. Steady-state distributions are de-
termined for the division remainder and performance figures based
on both this steady-state distribution and a random distribution are

* Received by the IRE, August 8, 1960.
f IBM Res. Ctr., Yorktown Heights, N. Y.

calculated. These are compared with the results of a computer simu-
lation of 214 randmly-chosen division problems using two specific
methods of division.

INTRODUCTION
N choosing the algorithms to be used for the various
arithmetic operations in a digital computer, it is
usually necessary to compromise between speeds

of operation and costs of implementation. Should the
amount of time required by a particular algorithm be
variable, information about the statistical properties

1961 91

