
VLSl Array Processors
S. Y. Kung

quirements in VLSI design.
*This research was supported in part by the National Science Founda- scaling effects
tion under Grant ECS-82-13358, and by the Army Research Office
under Grant DAAG29-79-C-0054, in the scaling of geometry, we often assume that all the

'4 IEEE ASSP MAGAZINE JULY 1985 0740-7467/85/0700-0004$01.00@1985 IEEE

Array Processors and Algorithm Expressions
A fundamental issue in mapping algorithms onto an

array is to express parallel algorithms in a notation than can
be easily understood and compiled into efficient VLSl array
processors. Thus a powerful expression of array algo-
rithms will be essential to the design of arrays. This paper

JULY 1985 IEEE ASSP MAGAZINE 5

“beats.” In order to synchronize the activites in a systolic
array, extra delays are often used to,ensure correct timing.
More critically, the burden of having to synchronize the
entire computing network will eventually becpme intoler-
able for very-large-scale or ultra-large-scale arrays.

2.3. Wavefront Array

A simple solution to the above-mentioned problems is
to take advantage of the control-flow locality, in addition,
to the data-flow locality, inherently possessed by most
algorithms of interest., This permits a data-driven, self-
timed approach to array processing. Conceptually, this
approach substitutes the iequirement of correct “timing”
by correct “sequencing.” This concept is used extensively
in dataflow computers and wavefront arrays.

JULY 1985 IEEE ASSP MAGAZINE 7

JULY 1985 IEEE ASSP MAGAZINE 9

This situation arises in many application domains, such with only a . P X Q rectangular array (as opposed to an
as DFT and time-varying (multi-channel) linear filtering. In ' N X N array). This is shown in Figure 3-l(a).
most applications, N >> P and N >> Q; therefore, it is
very uneconomical to use N x N arrays for computing A ~ ~ ~ ~ ~ i ~ a f i o n ~ x a m p l e
C = A x B. If local interconnection is preferred, the proposed pro-

Fortunately, with a slight modification to the SFG in Fig- cedure can then be used to systolize the SFC array in Fig-
ure 2-3, the same speed-up performance can be achieved ure 3-l(a) and yield the data array as depicted in Figure

3-l(b). The systolization procedure is detailed below: systolic array has to bear a slow-down factor (Y = 2. The
(i) Time-scaling; According to' Rule (i) above, the slow- pipelining rate is 0.5 word per unit-time for each channel.

down factor (Y is determined by the maximum loop delay (ii) Delay Transfer: Apply 'Rule (ii) above to the cut-sets
in the SFG array. Referring to Figure 3-l(a), any loop con- shown in Figure 3-l(a). The systolized SFG will have one
sisting of one up-going and one down-going edges yields delay assigned to each edge and thus represents a local-
a (maximum) delay of two. This is why the final pipelined ized network. Also based on Rule (ii), the inputs from

12 IEEE ASSP MAGAZINE JULY 1985

different columns of B and rows of A will have to be ad-
justed by a certain number of delays before arriving at the
array. By counting the cut-sets involved in Figure 3-l(a), it
is clear that the first colum'n of B needs no extra delay, the
second column needs one delay, the third needs two
(attributed to the two cut-sets separating the third column
input and the adjacent top-row processor), etc. Therefore,
the B matrix will be skewed, as shown in .Figure 3-l(b). A
similar arrangement can be applied to the input matrix A.

14 IEEE ASSP MAGAZINE JULY 1985

3.2. Converting an SFC Array into a Wavefront Array
The wavefront propagation is very similar to the pre-

vious case. Since in wavefront processing the (average)
time interval (T) between two separate wavefronts is deter-
mined by the availability of the operands and operators. In
this case, there is a feedback loop involved, shown by the
edge-pairs (an up-going arrow and a down-going arrow) in
Figure 3-1, For example, in the node (1 , 1) the second
front has to wait till the first front completes all the foltow-

solution, Toeplitz system solution, and eigenvalue and sin-
gular value decompositions.

Due to limited space, it is impossible to cover all the
algorithms in this article, Instead, the author will focus
upon a very interesting class of,algorithms that can be
regarded as a generalization of the matrix ,multiplication
and LU decomposition problems. 'These algorithms share
a common recursive formulation:

Ck = cp-1 + CFL? . ((-$;I)* . ck;' ;
'I I

cludes transitive closure, shortest path, LU decomposi-
tion, and many other problems. As an example, for LU-
decomposition problem, the operation (Ck').* is in-
version, i.e. (C$F')-'.

A systolic array for this class of algorithms is proposed in
Fig. 3-3. We call this configuration a spiral systolic array,
since this array configuration is basically an llliac IV spiral
configuration used in llliac IV, augmented by diagonal
connections [131.

where +, e, and * denote certain algebraic operators
defined by the specific application. This formulation 4. ALGORITHM DESIGN CRITERIA
covers a broad and useful application domain that in- An effective design of algorithms for array processing

hinges upon a full understanding of the problem specifica-
tion, mathematical analysis, parallelism analysis, and the 1 practicality of mapping the algorithms onto real machines.

Parallel array algorithm design is a new area of, research
study that has profited from the theory of signals and sys-
tems and has been influenced by linear algebraic numer-
ical methods. In a conventional algorithm analysis, the
complexity of an algorithm depends on the computation
and storage required. The modern concurrent com-
putation criteria should include one more key factor:
communication. In the design of array algorithms, the
major factors therefore are computation, communication,
and memory.

The key aspects of parallel algorithms under VLSl archi-
tectural constraints are presented below:

1. Maximum Concurrency: The algorithm should be
structured to achieve maximum concurrency
and/or maximum throughput. (Two algorithms
with equivalent performance in a sequential com-
puter may fare very differently in parallel process-
ing environments.) An algorithm will be favored if
it expresses a higher parallelism that is exploitable
by.the computing arrays.
Example: A very good example is the problem of
solving Toeplitz systems, for which the major algo-
rithms proposed in the literature are the Schur al-
gorithm and the .Levinson algorithm [12]. The latter
is by far more popular in many spectrum esti-
mation techniques, such as the maximum entropy
method [I] or maximum 1ikelihoo.d method [21. In
terms of sequential processing, both the algo-
rithms require the same number of operations.
However, in terms of the achievable concurrency
when executed i n a linear array processor, the
Schur algorithm displays a clear-cut advantage over
the Levinson algorithm. More precisely, using a
linear array of N processing elements, the Schur
algorithm will need only O(N) computation time,
compared with O(NlogN) required for the
Lev,inson algorithm. Here N represents the dimen-
sion of the Toeplitz matrix involved. For a detailed
discussion, see [121.

2. Maximum pipelinability and the balancing of com-
putation and I/O: Most signal processing algorithms

3.

demand very high throughput and are computation-
intensive compared with the input/output (110) re-
quirement. Pipelining is essential to the throughput
of array processors. The exploitation of the pipeline
technique is often very natural in regular and locally-
connected networks; therefore, a major part of c9n-
currency in array processing will be derived from
pipelining. In general, the pipelining rate is deter-
mined by the “maximum” loop delay in the SFG array.
To maximize the rate, one must select the best
among all possible SFG arrays for any algorithm. The
pipeline techniques are especially suitable for bal-
ancing computation and I/O because the ddta tend to
engage as many processors as possible before they
leave the array. This helps reduce I/O bandwidth for
outside communication.
Example: Note,that, for the banded-matrix-and-matrix
multiplication algorithm, the systolic array shown in
Figure 3-2(b) offers a throughput-rate twice as fast as
the design in Figure 3-l(b).

Trade-off between .communication and computation
costs: To make the interconnection network prac-
tical, efficient and affordable, regular communica-

tion should be encouraged, Key issues affecting the
regularity include local vs. global, static vs. dynamic,
and data-independent vs. data-dependent inter-
connection moduJes. The criterion should maximize
the tradeoff between interconnection cost and
throughput. For example, to conform with the com-
munication constraints imposed by VLSI, a lot of em-
phasis has recently been placed on a special class of
local and recursive algorithms.
Example: A comparison between the costs of DFT and
FFT algorithms will be discussed momentarily in
Example I .

4. Numerical performance, quantization effects, and data
dependency: Numerical behavior depends on many
factors, such as the word-length of the computer and
the algorithms used. Unpredictable data dependency
may severely jeopardize the processing efficiency of
a highly regular and structured array algorithm. Effec-
tive VLSI arrays are inherently highly pipelined, and
therefore require well structured algorithms with
predictable data movements. Iterative methods with
dynamic branching, which are dependent on data
produced in the middle of the process, are less suited

JULY 1985 IEEE ASSP MAGAZINE 1 7

for pipelined architecture. A comparison between
several major linear system solvers will be discussed
in Example 2.

Example 7 : Trade-off between computation and
communication costs

When the communication in VLSl systems is empha-
sized, the trade-off between computation and commu-
nication becomes a central issue. (cf. Figure 4-1.) The
preference on regularity and, locality will have a major
impact in designibg parallel 'and/or pipelined algorithms.
Comparing the two Fourier transforming techniques, DFT
and FFT, the computations are O(Nz) vs. O(NlogN) in favor
of FFT. However, the DFT enjoys a simple and local com-
munication, while the FFT involves a global inter.
connection, i.e. the nodes retrieve their data from, far
away elements. In the trade-off of computation vs. com-
munication costs, the choice is no longer obvious.

Example 2: Comparison of Linear System Solvers

It is well known that there are three major numerical
algorithms for solving a linear system of equations; name-
ly, the LU decomposition, the Householder QR (HQR) and
the Givens QR (GQR) decomposition algorithms 1191.
From'a numerical performance point of view, a HQR or a
GQR decomposition is often preferred over an LU decom-
position for solving linear systems. As for the maximum
concurrency achievable by array processing, the GQR al-
gorithm achieves the same 2-D concurrency as the LU
decomposition with the same complexity in a modular,
streamlined fashion. They both hold a decisive advantage
over the HQR method in terms of maximum concurrency
achievable. Therefore, the Givens QR method is superior
to the LU decomposition and the Householder QR
method when both numerical performance and massive
parallelism are considered. Note that the price', how-
ever, is that the GQR method is computationally more
costly than the other two methods, (cf. the third column
of Table 1 .)

TABLE 1: Com arison of linear system solvers. The key
issues are data 8 ependenc numerical performance, maxl-
mum concurrency, and totajl'number of computations. [*The
numerical performance of LU decomposition may be im-
proved by using a pivoting scheme t191;~but this necessitates
control on the magnitude of a pivot, jeopardizing the other-
wise smooth data flow in the array].

18 IEEE ASSP MAGAZINE JULY 1985

5. IMPLEMENTATION CONSIDERATIONS OF ARRAY
PROCESSOR SYSTEMS

5.1. Design of Array Processor Systems

The major components of an array processor sysiem are:

1) the hos t compu te r 2) t he i n te r face sys tem,
including buffer memory and control unit 3) the connec-
tion networks (for PE-to-PE and PE-to-memory corinec-
tions) 4) the processor array, comprising a number of
processor elements with local memory.

A possible overall system configuration is depicted in
Figure 5-1, where the design considerations for the four
major components’are further elaborated. In general, in
an overall array processing system, one seeks to maximize
the following performance indicators: computing power
using multiple devices; communication support, to
enhance the performance; flexibility, to cope with the
partitioning problems; reliability, to cope with the fault-
tolerance problem; and practicalityand cost-,effectiveness.

5.2. DSP-Oriented Array Processor Chips
The implementation of VLSl chips and the structure of

array computing systems depend largely on the estab-
lished switching technologies.. Another important design
consideration is the appropriate level of granularity of
the processor elements (PE’s) composing the array, (cf.
Figure 5-2[al). . .

For some low-precision digital. and image processing
applications, it is advisable to consider very simple pro-
cessing primitives. A good example of a commercial VLSI
chip is NCR’s Geometric Arithmetic Parallel Processor, or
GAPP, which is composed of a 6-by-I2 arrangement of

, single bit processor cells. Each of the 72 processor cells in
the NCR45CG72 device contains an ALU, 128 bits of RAM,
and bi-directional communication lines connected to i ts
four nearest neighbors: one each to the North, East,
South, and West [41. Each instruction is broadcast to all the
PE’s, cau~sing the array to perform like a SlMD (single-
instruction-multiple-data) machine. The CAPP array,
however, is mostly programmed in a low-level (macro-
assembly-level) language, posing some programming dif-
ficulties for general users.

Many DS,P applications require the PE’s to include more
complex primitives, such as multiply-and-add modules.
An example of a commercial chip with a larger granularity
is INMOS’ Transputer [21]. Transputer is an Occam-
language based design, which provides hardware support
for both, concurrency and communication-the heart
of array computing. It has a 32-bit processor capable of
10 MIPS, 4 Kbytes of 50 ns static RAM, and a variety of
communications interfaces. It adopts the now popular
RlSC (reduced-instruction-set-computer) architecture de-
sign. The INMOS links, with built-in handshaking circuits,
are the hardware representation of the channels for com-
munications. Furthermore, its programming language,
Occam, is very suitable for programming wavefront-type
array processing. Therefore, the transputer can be readily

adapted for the construction of lasynchronous) wave-
front arrays.

Other examples of commercially available VLSl chips
worthy of consideration for array processor implementa-
tions are NEC’s data flow chip ppd7281 [31, TI’S program-
mable DSP chip TMS320, and recent 32-bit processors
such as AMD 29325, Motolora 68020, and Weitek‘s 32-bit
(or the new @-bit) floating-point chips [201. Many DSP
applications require very special features such as fast
multiply/accumulate, high-speed RAM, fast coefficient
table addressing, and others. Therefore, the development
of a series of customized special-purpose,chips for DSP
array processors should be given a high priority by’the
VLSl and DSP research community.

5.3. Comparisons between Systolic and Wavefront Arrays

The main difference between the two array processing
schemes is that the wavefront arrays operate asynchro-
nously (at the price of handshaking hardware), while the
systolic arrays pulse globally in synchronization with a
global clock. .

The systolic array features the very important advan-
tages of modularity, regularity, local interconnection,
highly pipelined multiprocessing, and continuous flow of
data between the PE’s. It has a good number of DSP appli-

JULY 1985 IEEE ASSP MAGAZINE 19

22 IEEE ASSP MAGAZINE JULY 1985

