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Historical  Notes on the  Fast  Fourier  Transform 
JAMES W. COOLEY,  PETER  A. W. LEWIS, AND PETER D. WELCH, MEMBER, IEEE 

Abstract-The  fast Fourier transform algorithm has a long and interest- 
ing history that has only  recently been appreciated. IJI this paper, the m- 
tributiom of many  investigators  are described and placed in historical 
perspective. 

T 
HISTORICAL REMARKS 

HE fast Fourier transform (FFT) algorithm is a 
method for computing the finite Fourier transform of 
a series of N (complex) data points in approximately 

N log, N operations.  The algorithm has  a fascinating his- 
tory.  When  it was described by Cooley and Tukey[’] in 
1965 it was regarded as new  by many knowledgeable people 
who believed Fourier analysis to be a process requiring 
something proportional to N 2  operations with a  propor- 
tionality factor which could be reduced by using the sym- 
metries of the trigonometric functions. Computer programs 
using the  N2-operation  methods were, in fact, using up 
hundreds of hours of machine time. However, in response to 
the Cooley-Tukey paper, Rudnick‘’], of Scripps Institution 
of Oceanography, La Jolla, Calif., described h s  computer 
program which also takes a  number of operations  propor- 
tional to N log, N and is based on a method published by 
Danielson and Lanczos[211. It is interesting that the Daniel- 
son-Lanczos paper described the use  of the method in 
X-ray scattering problems, an area where, for many years 
after 1942, the calculations of Fourier  transforms presented 
a formidable bottleneck to researchers who  were unaware of 
this efficient method. Danielson and Lanczos refer to 
R~nge[~I*[’] for the source of their method. These papers 
and  the lecture notes of Runge and  KonigL8] describe the 
procedure in terms of sinecosine series. The greatest 
emphasis, however, was on the  computational economy that 
could be derived from the symmetries of the sine and cosine 
functions. In a relatively short section of Runge and 
Konig@] it was shown how one could use the periodicity of 
the sine-cosine functions to obtain  a 2N-point Fourier 
analysis from two N-point analyses with only slightly more 
than N operations.  Going the other way, if the series to be 
transformed is of length N and N is a power of 2, the series 
can be split into log, N subseries and this doubling algo- 
rithm can be applied to compute  the finite Fourier  transform 
in log, N doublings. The number of computations in the 
resulting successive doubling algorithm is therefore propor- 
tional to N log, N rather  than N 2 .  The use of symmetries 
only reduces the  proportionality factor while the successive 
doubling  algorithm replaces N 2  by N log  N. This distinction 
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was not  important  for the values of N used in the days of 
Runge and Konig. However, when the advent of computing 
machinery made calculations with large N possible, and the 
N log N methods should have been thoroughly exploited, 
they were apparently overlooked, even though they had 
been published by well-read and well-referenced authors. 

The fast Fourier  transform algorithm of Cooley and 
Tukey[’] is more general in that it is applicable when N is 
composite and  not necessarily a power of 2. Thus, if two 
factors of N are used, so that N =  r .  s, the data is, in effect, 
put in an r-column, s-row rectangular array,  and  a two- 
dimensional transform is performed with a phase-shifting 
operation intervening between the transformations in the 
two dimensions. This results in N(r + s) operations instead 
of N 2 .  By selecting N to be  highly composite, substantial 
savings result. For the very favorable  situation when N is 
equal to a power of  2, the Cooley-Tukey method is essen- 
tially the successive doubling algorithm mentioned above 
and takes N log, N  operations. 

The 23-year hiatus in  the use of the algorithm seemed 
quite remarkable, and  prompted us to inquire of Prof. 
L. H. Thomas at the IBM Watson Scientific Computing 
Laboratory, New York,  N. Y . ,  as  to whether he  was familiar 
with the successive doubling algorithm for computing 
Fourier series, and knew  of any occasions when it had been 
used. It  turned  out  that  Prof.  Thomas had spent three 
months in 1948 doing calculations of Fourier series on  a 
tabulating machine, using what he referred to as the 
“Stumpff method of subseries.” The algorithm described 
by Thornas[”] was thought at first to be essentially the same 
as the fast Fourier  transform algorithm of Cooley and 
Tukey since it also achieved its economy by performing one- 
dimensional Fourier analysis by doing multidimensional 
Fourier analysis. However, the algorithms are different for 
the following reaons : 1) in the Thomas algorithm the factors 
of N must be mutually prime; 2) in the Thomas algorithm 
the calculation is precisely multidimensional Fourier  analy- 
sis with no intervening phase shifts or “twiddle factors” 
as they have  been called ; and 3) the correspondences be- 
tween the one-dimensional index and the multidimensional 
indexes in the two algorithms  are  quite different. The 
Thomas or “prime  factor”  algorithm is described in detail 
and  compared with the fast Fourier  transform algorithm 
in the next section.’ It  can be extremely useful  when  used in 
combination with the fast Fourier  transform  algorithm. 

Actually, Stump@’] gave  only  a  doubling and  a tripling  algorithm 
and suggested (see Stumpdgl,  p. 442, line 11) that  the reader  generalize to 
obtain  the  method  for  factors  of N other  than 2 or 3. Thomas  made  a 
further  assumption  (assuming  that  the  index  called r by Stumpff  was  equal 
to N / s  where s= 2 or 3) which led to his algorithm.  Without t h s  assump- 
tion,  Stumpff s description  leads  to  the  Cooley-Tukey  algorithm. 
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Several other calculations have  been reported in the 
literature  and in private communications which  use one  or 
the other of the two algorithms. 

Another line of development has since led to  the 
Thomas  algorithm is its full generality. This comes  from 
work in the analysis and design of experiments. Let 
A(ko, k , ,  . . . , km- 1) be, for example, a crop yield  when a 
level ki of treatment i, which  may  be an  amount of fertilizer, 
is used. Yates[”] considered the case where ki=O or 1, 
meaning treatment i is or is not used. This yields N=2” 
values of crop yields and,  to get  all possible differences 
between  all  possible averages, one would, in principle, have 
to compute N linear combinations of all  of the A’s. This 
would require N 2  operations. Yates devised a scheme 
whereby one  computed a new array of N sums aad differ- 
ences  of pairs of the A’s. The process  was repeated on the 
new array  with pairs selected in a different order. This was 
done  m=log2 N times, meaning he did the calculation in 
N log, N operations instead of N 2 .  

Goodr4] noted  that the Yates  method  could be regarded 
as mdimensional  Fourier analysis with  only two points in 
each direction and  that  the procedure  could be generalized 
to  one for an  arbitrary  number of points in each direction. 
Then Good showed that if N is composite, with mutually 
prime factors, i.e., N = rl ,  r2 ,  . . * , r,, one  could do a one- 
dimensional  Fourier analysis of N points by doing rndimen- 
sional Fourier analysis on an m-dimensional, rl x rz x , * * * , 
x rm, array of points. With these ideas put together and 
developed, Good’s  paper contains the full generalization 
of the Thomas  prime  factor algorithm. 

THE PRIME FACTOR ALGORITHM 

As mentioned in the previous section, the  algorithm used 
by Thomas  and described later by Good has been mis- 
takenly said to be equivalent to the fast Fourier  transform 
algorithm of Cooley  and  Tukey. It is important  to dis- 
tinguish between  these  two algorithms since each  has its 
particular advantages which can be exploited in appropriate 
circumstances. 

The differences will  be illustrated by considering the 
calculation of a  Fourier series  using two factors of N. The 
Fourier series  is 

N -  1 

X ( j )  = 1 A(n) W N j n  (1) 
n = O  

where WN = eZni/N. Consider first the fast Fourier trans- 
form algorithm. We assume N = r .  s, and define a one-to- 
one  mapping between the integers j ,  01 j <  N, and  the pairs 
of integers (jl, j,), 0 I j ,  < r,  0 I jl < s, by the relation 

j = j l r  + io. (2) 

Similarly, we let 

n = n,s + no, (3) 

where 

O I n < N ,  O ~ n , < s ,  O I n , < r .  

This enables us to refer to A(n) and X ( j )  as though they 

TABLE I 
CORRFSFQNDENCE BETWEEN ONE- AND TWO-DIMENSIONAL 
INDEXING INTHE  ARBITRARY FACTOR ALGORITHM FOR THE 

CASE r = 8 ,  S=3, A N D  N=24 

n=snl+no=3n,+no 
“1 

0 1 2 3 4 5 6 7  

0 0 3 6 9 12 15 18 21 

2 ~ 2 5 8 1 1  14 17 20 23 
“ 0  1 ~ 1 4 7 10 13 16 19 22 

j = r j , + j o = 8 j l + j o  

i o  
1 0 1 2 3 4 5 6 7  

0 0 1 2 3 4 5 6 7  

2 1 16 17 18 19 20 21 22 23 
il 1 ~ 8 9 10 11 12  13 14 15 

were two-dimensional  arrays  and permits us to  do  the 
Fourier analysis in two steps : 

r -  1 

Al(jo,  no) = 1 A h ,  nO)wjon1 (4) 
n l  = O  

s -  1 

Njl, io) = 1 Al(jo,  ~o)W~lmWiono- ( 5 )  
no= 0 

Table I shows where A(n) and X ( j )  are placed  in the  two- 
dimensional  arrays indexed by (nl, no) and ( j l ,  j,), re- 
spectively,  for r = 8 and s = 3. For this case, (4) consists of 
three eight-term Fourier series, one for each row of the n 
table. Then if j, is taken to be the  column index of the 
results, Al(jo, no), ( 5 )  describes eight Fourier series of three 
terms  each  on the columns of the array of Al(jo, no)WjNonO. 
The factor Wjono, referred to  as  the “twiddle factor” by 
Gentleman  and Sander3], is usually combined  with either 
the WFl  factor in (4) or  the WjlW factor in (5). 

For  the Thomas  prime factor algorithm, one  must re- 
quire that r and s be mutually prime. In this case, different 
mappings of the one-dimensional  arrays  into twodimen- 
sional arrays  are used.  These are also one-to-one mappings 
and  are defined as follows. Let 

n = rn, + sn, (mod N) (0 I n < N) (6) 

and 

j, = j (mod I )  (0 I j o  -= r )  
jl = j (mod s) (0 I jl < s). (7) 

Then  the expression of j ,  in terms of j ,  and jl, is a solution 
of the “Chinese  remainder  problem” and is  given  by 

j s.srjo + r . r , j l  (mod N )  (0 < j < N) (8) 

where s, and r, are solutions of 

s’s,  1 (modr) s, < r 
r .  r, 1 (mod s) r, < s, 

respectively. Substituting (6) and (8) and using (7) gives 
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TABLE I1 
CORRFSP~NDENCE BETWEEN ONE- AND TWO-DIMENSIONAL 

INDEXING IN THE P R I M E  FACTOR ALGORITHM FOR THE 
CASE r = 8 .  s=3. AND N=24 

n=rno+sn,=8no+3n,  (mod 2 4 , O < n < N )  

n ,  
0 1 2 3 4 5 6 7  

0 0 3  6  9 12 15 18 21 

2 16  19 22 1 4  7 I O  13 
no 1 8 11  14  17 20 23 2 5 

j = s s s s , j o + r . r s j l  = S i 0 +  16j,  (mod 24. O < j < X )  

J o  
0 1 2 3 4 5 6 7  

0 0 9 18 3 12 21 6 15 

2 8 17 2 11 20 5 14 23 
il 1 16 I I O  19 4 13 22 7 

which enables one to write the  Fourier series (1) in  the form 

Al( jo ,  no) = 1 A(nl ,  n0)WP1 (9) 
r -  1 

n l = 0  

s- 1 

X(jl, j o )  = 1 Al(jo,  n 0 W ! l n o .  (10) 
n o = O  

As in the fast Fourier transform algorithm, this is a two- 
dimensional Fourier transform. The essential  difference  is 
that the “twiddle factor” W F 0  does not appear in (10) and 
the correspondence between one- and two-dimensional 
indexing  is  different. The presence of the “twiddle factor” 

does not  introduce any more computation, but it does in- 
crease programming complexity  slightly. To illustrate better 
how the indexing  in the two algorithms differs, the map- 
pings of n and j for the  Thomas prime factor algorithm are 
given  in Table I1 for comparison with the indexing  described 
in Table I. 

The prime factor algorithm can be programmed very 
easily in a source language like FORTRAN and, therefore, 
can be  used  efficiently  with a subroutine designed for a 
number of terms equal to a power  of  two. For example, 
if r is a power of  two and s is any  odd  number, the subseries 
(9) can be computed by the power of two subroutine. 
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Limits on Bandlimited Signals 

Abstract-The problem of esthnating the errors arising in a  variety of 
numerical operatiom  involving  baodlimited faactiom is considered. The 
errors  are  viewed as respollses of suitably created system, a d  the analysis is 
based on the  evaluation of the maximum response of these systems in  terms of 
the energy or power of their input. The investigation i n c l u d e s  deterministic and 
random signah, and it is extended to twdin1easioop1 fmctiom and Hankel 
transforms. Finally, the results are  related  to the uncertainty  principle  in one 
and two variables. 

Manuscript received December 22, 1966; revised May 2, 1967. This 
paper was presented at  the  International  Symposium  on  Information 
Theory,  San  Remo,  Italy,  September 1967. This work was supported  in 
part by the  Joint Services Electronics  Program (U. S. Army. U. S. Navy, 
U. S .  Air Force)  under  Contract AF 49(638)-1402. 

The  author is with the Polytechnic Institute of Brooklyn,  Farmingdale, 
N. Y.  

I. INTRODUCTION 

H N MANY  AREAS of  engineering and applied sciences, 
a recurring task is the simplification  of various opera- 
tions by suitable approximations: derivatives  by  differ- 

ences, integrals by sums, infinite  series by finite truncations, 
and others. Such approximations are meaningful  only  if the 
resulting errors are small in some sense, and a basic problem 
in numerical analysis is to establish realistic bounds to 
these errors. With few  exceptions,  this problem is  difficult 
and in most cases  it  is avoided by using,  in truncations,  for 
example, a “sufficiently”  large number of terms, or, in 
quadratures, “small enough” intervals. An interval is small, 


