
FIXED-INPUT MULTS

© B. Baas 157

Fixed-input Multiplier

• This topic deals with a single multiply operation
where one of the inputs is fixed—by this we mean
one of the multiplier’s inputs is known at the time of
hardware design, will never change, and is therefore
designed into the hardware

• Simplifications will generally place the fixed input
onto the multiplier input rather than the multiplicand
input

© B. Baas 158

Fixed-input Multiplier

• Sometimes, one input is fixed
– So remove partial products that are always zero

A

0

1

1

0

0

1

A
A

0
0

A

0

A & B0

B

© B. Baas 159

Fixed-input Multiplier

• Remove partial products that are always zero

A

0

1

1

0

0

1

A
A

A

© B. Baas 160

Fixed-input Multiplier

• Reduce the overall size by half on average, and even
more if you can pick the multiplier carefully

A

0

1

1

0

0

1

A
A

A

© B. Baas 161

Fixed-input Multiplier

• An efficient design would instantiate hardware for
only the necessary (non-zero) partial products—the
minimum number of power-of-2 numbers which add
together to equal the fixed multiplier input

• Secondly, we look for cases when a negative partial
product will simplify the overall circuit

• A very simple example: multiply by 3
×3 = (×2) + (×1)

© B. Baas 162

Multiply by 3

• Ex: multiply by 3
– ×3 = (×2) + (×1)

– Verilog:
input [7:0] in;

wire [9:0] product;

// multiply by 3

assign product = {in[7], in[7], in}

+ {in[7], in, 1’b0};

in

in

S

S 0

© B. Baas 163

Handling Negative Partial Products

• There are two ways to handle negative partial products;
the dot diagram is different but both give the same result
and eventually simplify to the same hardware
1. Multiply the multiplicand, then invert it (Ex: 6-bit multiplicand × –8)

2. Invert the multiplicand, then multiply it

S S 1 1 1

1

0 0 0S S

S S 0 0 0

1

S SS SS
1

© B. Baas 164

Multiply by 56

• Ex: 8-bit 2’s complement number multiplied by +56
– Three partial products

– ×56 = (×32) + (×16) + (×8)

– Verilog:

input [7:0] in;

wire [13:0] product;

// multiply by 56

assign product =

{in[7], in[7], in[7], in, 3’b000}

+ {in[7], in[7], in, 4’b0000}

+ {in[7], in, 5’b00000};

in

in

S S

S

inS S S

0 0 0 0 0

0 0 0 0

0 0 0

© B. Baas 165

Multiply by 56 (better)

• Ex: 8-bit 2’s complement number multiplied by +56 (better)
– Implement with 2 partial products

– ×56 = (×64) – (×8)

– Verilog:

input [7:0] in;

wire [13:0] product;

// multiply by 56

assign product =

{in, 6’b00000}

- {in[7], in[7], in[7], in, 3’b000};

// one way of many possible ways to write it

assign product_same =

{in, 6’b00000}

+ {~in[7], ~in[7], ~in[7], ~in, 3’b111};

+ {14'b00000000000001};

in

inS S S

0 0 0 0 0 0

0 0 0

Dot Diagram Example

• out = X*3 + Y*56

– Inputs: 6-bit 2’s complement

• Procedure:

– Input range of X and Y: [-32, +31]

– Decompose ×3 = ×2 + ×1

– Decompose ×56 = ×64 – ×8

– Output range: [-32, +31] × [59=3+56]
= [-1888, +1829]

– Output width: 12 bits, [-2048, +2047]

– Fill out dot diagram

• S = sign extension bit

• invert bits when necessary

• show zeros if dot alignment is
not obvious

S S S

S S S

S S S

S S S

S S

0 0 0 0 0 0

1 1 1

0

1

- OR -

S S S

S S S

S S S

S S S

S S

0 0 0 0 0 0

0 0 0

0

1

© B. Baas 166

