
VARIABLE FREQUENCY
CLOCKING HARDWARE



© B. Baas 329

Variable-Frequency Clocking 
Hardware

• Many complex digital systems have 
components clocked at different frequencies

• Reason 1: to reduce power dissipation 

– The dominant “active” component of 
power is proportional to the clock frequency

– If a module’s clock frequency can be reduced 
while maintaining acceptable performance, a
reduced frequency will reduce the active power dissipation

• Reason 2: Because a sub-module requires a specific clock 
frequency that is different than the main system’s frequency. 

– For example, the DDR4-3200 synchronous DRAM memory interface 
has an I/O bus that operates at 1.60 GHz and so the module 
certainly requires a 1.60 GHz (actually probably 0.8 GHz) clock

Block 1

Block 2

clockfreq1

clockfreq2

clockfreq3
Block 3



© B. Baas 330

Multi-rate Clocking Hardware

1) Build slower divided clocks with FFs

– Some FFs are clocked by the real clock signal, 
others are clocked by a delayed slower clockfreq-half
signal coming from a frequency divider.  
Significant clock skew  potential for dead chip 

– Could risk your job security (moderate 
exaggeration)

2) Use multi-frequency clocks

+ May save significant power in large active circuits

– Requires a complete and independent clock tree 
for each frequency and possibly an independent 
phased-locked loop (PLL) for each

– Each PLL uses significant power

clock

clockfreq-half

PLL 1

PLL 2

clockfreq1

clockfreq2

clockfreq3PLL 3



© B. Baas 331

Multi-rate Clocking Hardware

3) Pseudo-multi-rate: Clock all logic with the highest-rate clock

– Utilize simple counters that load registers or route signals on only 
certain clock edges (for example, every fourth clock edge for 
freq/4).

+ Definitely the simplest and most robust

– Counters must be reset simultaneously and the reset signal must 
meet timing requirements at the highest frequency

– Design in only this way in this class

PLL
Enable = 1

every fourth cycle 

is equivalent to 

using freq/4

D Q



© B. Baas 332

Multi-rate Clocking Hardware

3) Pseudo-multi-rate: Clock all logic with highest-rate clock

– Possible issue if there are a very large number of FFs requiring the 
same enable signal

1. delay of the fanout tree reduces available cycle time

2. the enable signal could be modestly pipelined

– Effectiveness

+ Logical operation—same as if frequency was reduced

+ Power reduction 
of logic—same as 
if frequency was reduced

– Power reduction 
of clock signal—
none at all PLL

Enable = 1

every fourth cycle 

is equivalent to 

using freq/4

D Q



© B. Baas 333

Multi-rate Clocking Hardware 

• Example 1a to imitate a clock frequency of freq/4
reg [1:0] count, count_c;     // two bits counts 00, 01, 10, 11, 00, ...

reg Q;                    // assume D comes from elsewhere

always @(*) begin

count_c = count + 2’b01;       // let the counter wrap 2’b11  2’b00

end

// en_freq4 will be high every 4th cycle

reg en_freq4;

always @(*) begin

if (count == 2’b00) begin

en_freq4 = 1’b1;

end

else begin

en_freq4 = 1’b0;

end

end

// breaking a guideline with “if” here

always @(posedge clk) begin

count <= #1 count_c;

if (en_freq4 == 1’b1) begin

Q     <= #1 D;

state <= #1 state_c;

end

end

PLL

en_freq4 == 1

every fourth cycle  

is equivalent to  

using freq/4  

D Q

en_freq4

en

clk



© B. Baas 334

Multi-rate Clocking Hardware 

• Example 1b to imitate a clock frequency of freq/4

reg [1:0] count, count_c;           // two bits counts 00, 01, 10, 11, 00, ...

reg Q;                        // assume D comes from elsewhere

always @(*) begin

count_c = count + 2’b01;         // let the counter wrap 2’b11  2’b00

end

wire en_freq4;                      // use a wire in this example

assign en_freq4 = (count == 2’b00); // code is compact but slightly less clear

// breaking a guideline with “if” here

always @(posedge clk) begin

count <= #1 count_c;

if (en_freq4 == 1’b1) begin

Q <= #1 D;

end

end

PLL en_freq4 = 1

every fourth cycle  

is equivalent to  

using freq/4  

D Q



© B. Baas 335

Multi-rate Clocking Hardware

• Example 2 to imitate a clock toggling at 1 Hz, a with 500 MHz clock

PLL
en_increment

reg [28:0] count, count_c;            // 29 bits counts up to 536 million

reg en_increment;              // I use a reg in this example

reg Q;               // assume D comes from elsewhere

always @(*) begin

// defaults

count_c = count + 29’h0000_0001;   // "count" is a flip-flop register

en_increment = 1’b0;               // a combinational logic signal

if (count == 29’d499_999_999) begin

count_c = 29’h0000_0000;        // wrap counter back to zero

en_increment = 1’b1;            // pulse FF enable signal high

end

end

always @(posedge clk) begin

count <= #1 count_c;

if (en_increment == 1’b1) begin

Q <= #1 D;

end

end

D Q


