BINARY NUMBER FORMATS

Binary Number Formats

- Read Dally textbook
- Chapter 10 - Binary numbers, add, subtract, multiply, divide
- Chapter 11 - Floating point

Chapter 12 Fast arithmetic, Skip for EEC 180

- Chapter 13 - Arithmetic examples
- Binary numbers
- All number systems considered in EEC 180:
- are n-digit $\quad \mathrm{a}_{n-1}, \mathrm{a}_{n-2}, \ldots, \mathrm{a}_{1}, \mathrm{a}_{0}$
- are "binary"
- LSB
- MSB the base $b=2$
Least Significant Bit (Digit)
Most Significant Bit (Digit)
- Accuracy or Precision: "the maximum error over a number's input range" [Chapter 11]

Binary Number Formats

Consider for each: positional weights, range, and zero(s)

1) Unsigned
range of $\left[0,2^{n}-1\right]$

$$
\text { value }=\sum_{i=0}^{n-1} a_{i} b^{i}
$$

2) Sign Magnitude
3) Signed 2's complement
4) Signed 1's complement
5) $B C D$
S unsigned
The positional weight of the MSB is negative.
range of $\left[-2^{(n-1)},+2^{(n-1)}-1\right]$
Not used for hardware
Binary-Coded Decimal

- Each base-10 digit is coded with 4 binary bits

Motivation for using the BCD format

- By necessity:
- For example, displaying a number on a display in base 10
- For example, inputting a number from a 10-key keypad from a user

- High-accuracy financial calculations
- In some cases, processing is done in a "normal" binary format and so input/output must be converted from/to BCD

- In some cases, processing may be done in BCD format directly. Most likely for applications that perform simple operations on data that is input and/or output in BCD format.

Common Binary Number Formats

- Binary numbers
- Ex: 0000_0101

$$
\text { - Ex: 1000_0011 = } 131 \text { (base 10) }
$$

$$
\begin{aligned}
& =5(\text { base 10) }
\end{aligned} \begin{aligned}
& \text { unsigned } \\
& =+5(\text { base 10) }
\end{aligned} \begin{aligned}
& \text { sign-magnitude } \\
& =+5(\text { base 10) }
\end{aligned} \begin{array}{ll}
\text { signed 2's complement } \\
=05 & \\
=131 \text { BCD } \\
=-3 \quad \text { (base 10) } & \\
\text { unsigned } \\
=-125 \text { (base 10) } & \\
\text { sign-magnitude } \\
=83 &
\end{array}
$$

- A) Integer
- B) Fractional
- Where f is the number of fractional bits
- Format can be unsigned, sign-magnitude,

$$
\sum_{i=0}^{n-1} a_{i} b^{i-f}
$$ 2's complement

Common Binary Number Formats

- Binary numbers
- B) Fractional
- Ex: Positional weights for 2's complement 5.3 format: $-168421.1 / 21 / 41 / 8$
- Ex: Positional weights for unsigned 5.3 format: 16, 8, 4, 2, 1 . 1/2, 1/4, 1/8
- Ex: 1010_0.001 5.3 in different formats:

$$
\begin{array}{ll}
=201 / 8 & \\
\text { unsigned } 5.3 \text { format } \\
=-41 / 8 & \\
=-117 / 8 & \\
\text { sign-magnitude } 5.3 \text { format } \\
\text { 2's complement } 5.3 \text { format }
\end{array}
$$

- "There is no decimal point in the hardware"
- The hardware for an 8.0 format adder is the same as for 7.1, 5.3, etc.
- C) Full fractional
- This is really a special case of (B) Fractional with no bits for the whole number portion of the number
- Ex: 0.16 format

Converting BCD \rightarrow Unsigned Binary

- Converting BCD format to unsigned binary is not difficult
- To convert a 3-digit BCD input to unsigned format, add the following values:
- $100 \times$ Hundreds-digit
- $10 \times$ Tens-digit
- Ones-digit
- For example, 135 (BCD) converted to unsigned:

```
- 100 (base 10) 0110_0100
    30 (base 10) 0001_1110
    \(\begin{array}{ll}5 \text { (base 10) } & \frac{0000 \_0101}{1000 \_0111}=128+4+2+1=135 \text { check }\end{array}\)
```


Converting Unsigned Binary \rightarrow BCD

- There is no super-simple way to convert an unsigned binary number to BCD format
- As an example, take a long look at the 6-bit binary number and the corresponding 2-digit BCD number where values are ten or greater
- Conversions will generally require the following steps (for two BCD digits):

Unsigned binary	Base 10	BCD
000000	0	00000000
000001	1	00000001
000010	2	00000010
000011	3	00000011
000100	4	00000100
\ldots	\ldots	\ldots
111100	60	01100000
111101	61	01100001
111110	62	01100010
111111	63	01100011

- Find the tens position, for example by testing various tens ranges, e.g., if (in >= $60 \& \&$ in <70) begin tens $=6$; end // verilog pseudo-code // There are simpler ways to implement this but this works.
- Calculate the remainder with something like:

```
rem = in - (10 * tens);
```

// verilog pseudo-code

