
BINARY NUMBER

FORMATS

Binary Number Formats

• Read Dally textbook

– Chapter 10 – Binary numbers, add, subtract, multiply, divide

– Chapter 11 – Floating point

– Chapter 12 – Fast arithmetic, Skip for EEC 180

– Chapter 13 – Arithmetic examples

• Binary numbers

– All number systems considered in EEC 180:

• are n-digit an–1 , an–2 , ..., a1 , a0

• are “binary” the base b = 2

• LSB Least Significant Bit (Digit)

• MSB Most Significant Bit (Digit)

– Accuracy or Precision: “the maximum error over a number’s
input range” [Chapter 11]

© B. Baas 90

Binary Number Formats

1) Unsigned range of [0, 2n – 1]

𝑣𝑎𝑙𝑢𝑒 =

2) Sign Magnitude

3) Signed 2’s complement The positional weight of the MSB
is negative.

range of [–2(n–1) , +2(n–1) – 1]

4) Signed 1’s complement Not used for hardware

5) BCD Binary-Coded Decimal
– Each base-10 digit is coded with 4 binary bits

© B. Baas

91

𝑖=0

𝑛−1

𝑎𝑖𝑏
𝑖

S unsigned

Consider for each: positional weights, range, and zero(s)

Motivation for using the BCD
format

• By necessity:

– For example, displaying a number on a
display in base 10

– For example, inputting a number from
a 10-key keypad from a user

– High-accuracy financial calculations

• In some cases, processing is done in a “normal” binary
format and so input/output must be converted from/to
BCD

• In some cases, processing may be done in BCD format
directly. Most likely for applications that perform simple
operations on data that is input and/or output in BCD
format.

© B. Baas 92

Common Binary Number Formats

• Binary numbers
– Ex: 0000_0101 = 5 (base 10) unsigned

= +5 (base 10) sign-magnitude
= +5 (base 10) signed 2’s complement
= 0 5 BCD

– Ex: 1000_0011 = 131 (base 10) unsigned
= –3 (base 10) sign-magnitude
= –125 (base 10) signed 2’s complement
= 8 3 BCD

– A) Integer

– B) Fractional

• Where f is the number of fractional bits

• Format can be unsigned, sign-magnitude,
2’s complement

© B. Baas 93

𝑖=0

𝑛−1

𝑎𝑖𝑏
𝑖−𝑓

Common Binary Number Formats

• Binary numbers

– B) Fractional

• Ex: Positional weights for 2’s complement 5.3 format:
–16 8 4 2 1 . 1/2 1/4 1/8

• Ex: Positional weights for unsigned 5.3 format:
16, 8, 4, 2, 1 . 1/2, 1/4, 1/8

• Ex: 1010_0.001 5.3 in different formats:

= 20 1/8 unsigned 5.3 format
= –4 1/8 sign-magnitude 5.3 format
= –11 7/8 2’s complement 5.3 format

• “There is no decimal point in the hardware”

• The hardware for an 8.0 format adder is the same as for 7.1, 5.3, etc.

– C) Full fractional

• This is really a special case of (B) Fractional with no bits for the whole
number portion of the number

• Ex: 0.16 format

© B. Baas 94

Converting
BCD  Unsigned Binary

• Converting BCD format to unsigned binary is not
difficult

• To convert a 3-digit BCD input to unsigned format,
add the following values:
– 100 × Hundreds-digit

– 10 × Tens-digit

– Ones-digit

• For example, 135 (BCD) converted to unsigned:
– 100 (base 10) 0110_0100

30 (base 10) 0001_1110

5 (base 10) 0000_0101

sum 1000_0111 = 128 + 4 + 2 + 1 = 135 check

© B. Baas 95

Converting
Unsigned Binary  BCD

• There is no super-simple way
to convert an unsigned binary
number to BCD format

• As an example, take a long look at
the 6-bit binary number and the
corresponding 2-digit BCD
number where values are ten or
greater

© B. Baas 96

Unsigned binary Base 10 BCD

000000 0 0000 0000

000001 1 0000 0001

000010 2 0000 0010

000011 3 0000 0011

000100 4 0000 0100

...

111100 60 0110 0000

111101 61 0110 0001

111110 62 0110 0010

111111 63 0110 0011

• Conversions will generally
require the following steps
(for two BCD digits):

– Find the tens position, for example
by testing various tens ranges, e.g.,
if (in >= 60 && in < 70) begin tens = 6; end // verilog pseudo-code

// There are simpler ways to implement this but this works.

– Calculate the remainder with something like:
rem = in – (10 * tens); // verilog pseudo-code

