Digital Systems I

EEC 180A

Lecture 1

Bevan M. Baas
Tuesday, January 6, 2015
Today

• Course details
 – Lab, Policies, Schedule (web page)
 – Course objective and strategies

• My background

• Chapter 1
 – Digital systems
 – Number systems
 – Binary (base 2) arithmetic

• Chapter 2
 – Boolean algebra
My Teaching Philosophy

• Primary goal (mine and yours):

 \textit{Learn digital system design well}

• Achieve this through:

 – Reading textbook
 • Objectives, Study Guide, Reading, Problems
 • Book is very complete, designed for self-study
 – Lectures
 – Solving problems on paper (homework)
 – Solving problems and building things in lab
 – Discussions with other students, TAs, myself
Grading Philosophy

• Grading serves two main purposes:
 – 1. Motivate you to do the work required to learn
 • Reading textbook (quizzes)
 • Lectures (quizzes)
 • Solving problems in homework (exams)
 • Solving problems in labs (lab grading, exams)
 • Discussions with others
 – 2. Give others an indication of how well you know the material
Letter Grade Assignments

• I assign a letter grade only for the final course grade
• I look at the final exams and course record of the class and assign two key dividing points: the A/A+ and D+/C- boundaries, and assign course grades from there using equally-sized intervals
 – No required numbers of any particular letter grades
 – Absolute scores are not important; the boundaries shift according to the difficulty of the exams in any quarter
 – Ignore any letter grades you might see on smartsite

(not actual grade data)
Lectures

• Ask questions at any time
 – Please raise your hand
• Be respectful of others
 – Hold conversations outside of class
 – Silence phones
 – Sit in the back if you come in late or need to leave early
Course Announcements

• In class
• Web
 – Assignments, etc.
• Email
 – Time-critical announcements only
Questions

• In class
• In lab
• Office hours
 – TBD
• After both lectures
• See me in person rather than through email
• TAs
 – Lab
 – Office hours
 – Email
Working With Others

• Collaboration
 – Asking questions and explaining principles produces better work and dramatically increases learning
 – Working with others
 • Do homework and prelabs with classmates nearby
 • Ask each other questions, help each other—regarding principles, and approaches to solving only

• Dishonesty
 – Copying produces similar work, stunts learning, is not fair to honest students, and is not allowed in this course
 • Students engaged in dishonest work will be referred to Student Judicial Affairs
 • I will try to keep in-class exams honest
 • Steps will be taken to keep out of class work honest
Course Workload

• 5 unit course
 – 18 “chapters” in 20 lectures

• New way of thinking of things will take some effort
 – Algebra: use variables
 – Calculus: no concrete solutions for indefinite integrals
 – Boolean algebra, binary math
 • Not only $a + b$, but also $a \text{ AND } b$, $a \text{ XOR } b$, …
 • $1 + 1 = 1$
 • $3 + 6 = -7$

• Passing this course requires significant effort and time
 – (Students that have already taken ECS 154A typically find the first part of the quarter very slow but later parts challenging)
Lab Items To Buy

- Four module wide protoboard
Lab Items To Buy

• Wire cutters/ strippers
 – Something like one of these two tools works fine
• Wire is provided in lab
Lab Items To Buy — Optional

• Diagonal cutters take a little more skill

• Needle-nose pliers are very helpful for inserting and removing wires
My Background

- My education
- My research
 - VLSI (chip) design
 - Processor architectures
 - Digital signal processing (DSP) algorithms
- Primary work experience
 - Mechanical engineering internships
 - Hewlett-Packard, Computer Systems Division
 - Atheros Communications
Areas of Research

- Processor architectures
 - Programmable
 - Special-purpose
- DSP algorithms
- Circuits
- VLSI design
- Software tools and applications

\[
G_c(m,n) = \alpha(m) \sum_{i=0}^{N-1} [\alpha(n) \sum_{k=0}^{N-1} g(i,k) \cos \frac{\pi(2k+1)n}{2N}] \cos \frac{\pi(2i+1)m}{2N}
\]
Current Research

- **AsAP – Asynchronous Array of simple Processors**
 - Reconfigurable mesh of high speed programmable processors
 - AsAP 1
 - 36 processors
 - 610 MHz each (2nd fastest processor designed in any university)

- **LDPC decoders**
 - Hardware, algorithms
 - Used in 10 Gbit ethernet, WiMAX, many emerging communications standards

EEC 180A, B. Baas
AsAP2
167-Processor Chip

- 65 nm CMOS, 1.2 GHz (fastest processor designed in any university)
- 3 accelerators + 3 shared memories
- New on-chip networks
- Processors choose own supply voltage and clock freq.
- Apps: JPEG, Wi-Fi TX & RX, H.264 video encoder, ultrasound
- Tools: compiler, mapping, simulators
- Undergrad research opportunities
Today

- Course details
 - Lab, Policies, Schedule (web page)
 - Course objective and strategies
- My background
- Chapter 1
 - Digital systems
 - Number systems
 - Binary (base 2) arithmetic
- Chapter 2
 - Boolean algebra