To implement any Boolean expression in circuits, we want:

inputs \{ \ldots \} \rightarrow \text{outputs} \rightarrow 1 \text{ chip}

Want outputs to be any function of any inputs (could be a very large circuit!)

Instead, settle for restricted set of expressions:

- Realize Sum-of-Products expressions for each output
- Programmable AND inputs
- Programmable OR inputs
- Limited \# of inputs
- Limited \# of outputs per chip
- Combine several chips to create multi-level circuits for more complex functions.

Programmable Logic Arrays (PLA)
Ex: \[X = ABC + DE \]
\[Y = AB + CD + EF \]
\[Z = B'c' + ABC + CD \]

How are the connections made?

Custom chip: Add or leave out diode, transistor, ... at correct intersections

One-time Programmable: Blow "fuse" (create open ckt) or "anti-fuse" (creates short ckt) at manufacturing time or first programming

Programmable (Temporary or Volatile): Loses configuration when power turned off (configuration stored in memory)

Programmable (Permanent until Erased or Nonvolatile): Configuration written electrically, erased electrically or with U.V. light.
Possible programmable connections:

- Diode
- FET
- Programmable

Alternative Connections

"Wired AND"

\[V_{cc} (5V) \]

- \(A = 1 \rightarrow \text{Diodes off, } Z = 1 \)
- \(B = 1 \)

- \(A = 0, \text{ Diode on, } Z = 0 \)
- \(B = X \)

"Wired OR"

- \(A = 0 \rightarrow \text{Diodes off, } Z = 0 \)
- \(B = 0 \)

- \(A = 1 \rightarrow \text{Diode on, } Z = 1 \)
- \(B = X \) pulls \(Z \) high, \(Z = 1 \)
Programmable Array Logic

Similar concept to PLA but the OR array is fixed:

\[A \quad B \quad C \quad D \cdots \]

Drawback: Cannot share product terms among outputs as with PLAs.

LAB 4 PAL (Generic Array Logic) 22V10
- 11 inputs
- 10 outputs
- 8-16 ANDs per OR output