
VERILOG 3:

TIME AND DELAY

© B. Baas 95

3 Realms of Time and Delay

1) Verilog simulation: “wall clock” time

2) Verilog simulation: timing within the simulation
a) These delays are set by “#” delays discussed in the

following slides

3) Circuit delays (in circuits created by the synthesizer
tool + the fabrication technology library)
a) Simple models using “#” delays in a cell library

b) More sophisticated Static Timing Analysis (STA) which takes
into account things like circuit capacitive loading and delays
due to wires (briefly covered at the end of 180)

c) Propagation delays (tp) found by spice simulations

d) Measured silicon

Discussed

in this

Verilog 3

section

© B. Baas 96

Delays

• Delays may be inserted into always and initial blocks
to cause the simulator to let “simulation time”
advance

• Syntax:
– #n // delay of n time units

– Example:

always @(...) begin

a = 1’b0;

#5; // 5-unit delay

a = 1’b1;

#3; // 3-unit delay

a = (c|d)^(e|f); // a = 0 here

end

a

t
0 5 8

© B. Baas 97

Verilog “#” Delays are normally
used in three places

1) Testbench verilog where it is essential
– Example: to time input signals

– Example: the clock generator (see Verilog Testing notes)

– Example code:

//Example testbench to generate input signals

always @(...) begin

reset = 1’b1;

in = 16’h0000;

#10; // 10-unit delay

reset = 1’b0;

in = 16’h0001;

#10;

in = 16’h0002;

#10;

in = 16’h0003;

#10;

...

end

© B. Baas 98

Verilog “#” Delays are normally
used in three places

2) In flip-flop declarations in “hardware(!) verilog”
– To set a clock-to-Q delay for the purpose of increasing

waveform readability

– Usage will normally produce a warning from synthesis tools

– Details and syntax are given in a later lecture

3) In gate libraries to provide crude delay estimations
– We will not work on this in this class

© B. Baas 99

Concurrent Operation

• Think of verilog modules as operating on independent
circuits (remember it describes hardware).

always begin // this block executes repeatedly without pausing
a = (b&c) | d; // 1

#5; // 5-unit delay

a = ~a; // 0

#5;

end

always begin

f = ~(g ^ h); // 1

#7; // 7-unit delay

f = ~f; // 0

#7;

end

a

f

t
0 5 7 10

© B. Baas 100

Setting the timescale of “#” delays

• `timescale time_unit base / precision base

• The first argument specifies “#1” delay

• The second argument specifies the precision with
which delays may be specified

• Base is {s, ms, us, ns, ps, fs}

• Ex: `timescale 1ns/10ps

– #5 would produce a 5 ns delay

