ROUNDING

Rounding

- Rounding is a fundamental method to reduce the size of a word, such as after arithmetic operations
- For example to maintain the word width for memory storage

- Bits are removed from the LSB end of the word

XXXXXXXX YYYYY

Rounding

- Another example: if we multiply two 5-bit words, the product will have 10 bits

```
XXXXX X YYYYY = zZZZZZZZZZ
```

and we likely can not handle or do not want or need all that precision

- More issues are present with signed data
- Issues vary for different formats:
- unsigned
- 2's complement
- sign magnitude
- etc.

Rounding

- Rounding modes in IEEE 754 are much more complex than what is commonly needed in digital signal processing systems
- There are four fundamental rounding modes whose matlab function names are:

1) round(\cdot): towards nearest integer

- Generally the best rounding algorithm

2) fix(•): truncates towards zero
3) floor(•): rounds towards negative infinity
4) ceil(•): rounds towards positive infinity

1) matlab round()

- Often the best general-purpose rounding mode
- "Unbiased" rounding
- Symmetric rounding for positive and negative numbers
- Max error $1 ⁄ 2$ LSB

2) matlab fix()

- Truncates toward zero
- Numerical performance is poor
- Symmetric rounding for positive and negative numbers
- Very simple hardware for the magnitude of sign magnitude (simple truncation)
- xxxxxx in
xxxx-- out
- Max error 1 LSB

3) matlab floor()

- Numbers rounded down towards -infinity
- Numerical performance is poor
- Very simple hardware for 2's complement (simple truncation)
- XXXXXX in

XXXX-- out

- Max error 1 LSB

4) matlab ceil()

- Numbers rounded up toward +infinity
- Numerical performance is poor
- Max error 1 LSB

Hardware Rounding: A) Truncation

A. The easiest hardware method is truncation

- XXX. XXXXX
XXX. XX---
- Simply neglect the truncated bits and remove all hardware which calculates only those bits
- Maximum rounding error ~1 post-rounded LSB
- Sign magnitude format numbers (obviously the magnitude portion)
- Positive and negative numbers both truncate towards zero
- Same as matlab fix(•)
- 2's complement format numbers
- All numbers truncate towards negative infinity
- Same as matlab floor (•)
- Unsigned format numbers
- All numbers truncate towards zero (negative infinity)
- Same as matlab fix(•) or floor (•)

Hardware Rounding: B) Add 112 LSB and Truncate

B. Method \#5. Add $1 / 2$ LSB (that is, one half of the LSB of the output) and then truncate

- This does not correspond to any of the matlab rounding functions for all binary formats
- Maximum rounding error $1 / 2$ of the post-rounded LSB

Hardware Rounding: B) Add $1 / 2$ LSB and Truncate

- It is often not difficult to find a place to add the extra " 1 " in a complex datapath if you plan ahead

Hardware Rounding: B) Add $1 / 2$ LSB and Truncate

- It is often not difficult to find a place to add the extra " 1 " in a complex datapath if you plan ahead

Hardware Rounding: B) Add $1 / 2$ LSB and Truncate

- The exact behavior depends on the number format being used:
- Unsigned
- Unbiased rounding
- Magnitude portion of Sign magnitude
- Unbiased rounding
- 2's complement
- Both positive and negative xxxx. 1000 cases round towards positive infinity as explained previously
- The behavior requires a little more analysis

