ROUNDING

Rounding

- Rounding is a fundamental method to reduce the size of a word, such as after arithmetic operations
 - For example to maintain the word width for memory storage

• Bits are removed from the LSB end of the word

Rounding

• Another example: if we multiply two 5-bit words, the product will have 10 bits

xxxxx × yyyyy = zzzzzzzz and we likely can not handle or do not want or need all that precision

- More issues are present with signed data
- Issues vary for different formats:
 - unsigned
 - 2's complement
 - sign magnitude
 - etc.

Rounding

- Rounding modes in IEEE 754 are much more complex than what is commonly needed in digital signal processing systems
- There are four fundamental rounding modes whose matlab function names are:
 - 1) round(\cdot): towards nearest integer
 - Generally the best rounding algorithm
 - 2) fix(\cdot): truncates towards zero
 - 3) floor(\cdot): rounds towards negative infinity
 - 4) ceil(\cdot): rounds towards positive infinity

1) matlab round()

- Often the best general-purpose rounding mode
- "Unbiased" rounding
- Symmetric rounding for positive and negative numbers
- Max error ¹/₂ LSB

2) matlab fix()

- Truncates toward zero
- Numerical performance is poor
- Symmetric rounding for positive and negative numbers
- Very simple hardware for the magnitude of sign magnitude (simple truncation)
 - xxxxxx in xxxx-- out
- Max error 1 LSB

3) matlab floor()

- Numbers rounded down towards –infinity
- Numerical performance is poor
- Very simple hardware for 2's complement (simple truncation)
 - xxxxxx in
 xxxx-- out
- Max error 1 LSB

4) matlab ceil()

- Numbers rounded up toward +infinity
- Numerical performance is poor
- Max error 1 LSB

Hardware Rounding: A) Truncation

- A. The easiest hardware method is truncation
 - xxx.xxxxx xxx.xx---
 - Simply neglect the truncated bits and remove all hardware which calculates only those bits
 - Maximum rounding error ~1 post-rounded LSB
 - Sign magnitude format numbers (obviously the magnitude portion)
 - Positive and negative numbers both truncate towards zero
 - Same as matlab fix (•)
 - 2's complement format numbers
 - All numbers truncate towards negative infinity
 - Same as matlab floor (•)
 - Unsigned format numbers
 - All numbers truncate towards zero (negative infinity)
 - Same as matlab fix(•) or floor(•)

- **B.** Method #5. Add ½ LSB (that is, one half of the LSB of the *output*) and then truncate
 - This does not correspond to any of the matlab rounding functions for all binary formats
 - Maximum rounding error ¹/₂ of the post-rounded LSB

• It is often not difficult to find a place to add the extra "1" in a complex datapath if you plan ahead

• It is often not difficult to find a place to add the extra "1" in a complex datapath if you plan ahead

- The exact behavior depends on the number format being used:
 - Unsigned
 - Unbiased rounding
 - Magnitude portion of Sign magnitude
 - Unbiased rounding
 - 2's complement
 - Both positive and negative xxxx.1000 cases round towards positive infinity as explained previously
 - The behavior requires a little more analysis