## BINARY MULTIPLICATION

## Multipliers

- Multiplies are widely used in digital signal processing, generally more so than in general-purpose workloads
- Major categories of multiplier types
- Unsigned $\times$ Unsigned Also very useful for sign-magnitude data
- Signed 2's complement $\times$ Signed 2's complement Very useful for fixed-point 2's complement data
- Hardware is typically built in a manner broadly similar to how you would do it with paper and pencil
- The naming convention is somewhat unfortunate:


## Multipliers

- Example: 4-bit unsigned multiplicand " $a$ " times 4-bit multiplier " $b$ "
- $b$ could be signed or unsigned
- $p_{x y}=a_{x} \times b_{y}$

$$
=a_{x} \text { AND } b_{y}
$$

|  |  |  | $a_{3}$ | $a_{2}$ | $a_{1}$ | $a_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\times$ | $b_{3}$ | $b_{2}$ | $b_{1}$ | $b_{0}$ |
|  |  | $p_{30}$ | $p_{20}$ | $p_{10}$ | $p_{00}$ |  |
|  |  | $p_{31}$ | $p_{21}$ | $p_{11}$ | $p_{01}$ | $\mathbf{0}$ |
| $p_{33}$ | $p_{23}$ | $p_{22}$ | $p_{12}$ | $p_{02}$ | $\mathbf{0}$ | $\mathbf{0}$ |
|  | $p_{13}$ | $p_{03}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\leftarrow b_{0}$ |
|  |  |  |  |  | $\leftarrow b_{1}$ |  |
|  |  |  |  |  |  |  |

## Multipliers

- Example: 4-bit signed 2's complement multiplicand " $a$ " times 4-bit multiplier " $b$ "
- $b$ could be signed or unsigned
- $s=$ partial product sign extension bits
- $p_{x y}=a_{x} \times b_{y}$

$$
=a_{x} \operatorname{AND} b_{y}
$$

|  |  |  |  | $\times$ | $b_{3}$ | $b_{2}$ | $b_{1}$ | $b_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $s$ | $s$ | $s$ | $s$ | $p_{30}$ | $p_{20}$ | $p_{10}$ | $p_{00}$ | $\leftarrow b_{0}$ |
| $s$ | $s$ | $s$ | $p_{31}$ | $p_{21}$ | $p_{11}$ | $p_{01}$ | $\mathbf{0}$ | $\leftarrow b_{1}$ |
| $s$ | $s$ | $p_{32}$ | $p_{22}$ | $p_{12}$ | $p_{02}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\leftarrow b_{2}$ |
| $s$ | $\overline{p_{33}}$ | $\overline{p_{23}}$ | $\overline{p_{13}}$ | $\overline{p_{03}}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\leftarrow b_{3}$ |

## 3 Main Steps in Every Multiplier

1) Generation of partial products
2) Reduction or "compression" of the partial product array (normally using carry-save addition) so that the product is composed of two words

- Linear array addition
- Tree addition (Wallace tree)

3) Final adder: Carry-propagate adder (СРА)

- Converts the product in carry-save form into a single word form
- Any style of CPA is fine though we probably favor faster ones



## Straight-forward Partial Product Generation

- This is the simplest method to generate partial products
- Hardware looks at one bit of the multiplier $\left(Y_{i}\right)$ at a time
- Partial products are copies of the multiplicand AND'd by bits of the multiplier
- Number of bits in the multiplier
= Number of partial products
= Number of terms/words/rows that must be added

| $Y_{i}$ | Partial product |
| :---: | :---: |
| 0 | 0 |
| 1 | $+x(=$ multiplicand $)$ |

multiplicand multiplier


Carry-Save Adders

Carry-Propagate Adder

## Straight-forward Partial Product Generation

- There are only two possible partial product results
- Two reasonable $+x$
hardware solutions are:
- a row of 2:1 muxes with zeros on one input

- a row of AND gates (this should be more efficient)

| $Y_{i}$ | Partial product |
| :---: | :---: |
| 0 | 0 |
| 1 | $+x(=$ multiplicand $)$ |

## Example unsigned 4-bit $\times 4$-bit multiplication

- Example: 4-bit unsigned multiplicand " $a$ " 1100 times 4-bit multiplier " $b$ " 1010
- $1100 \times 1010=12 \times 10=120$
- $1100 \times 1010=(12 \times 8)+(12 \times 0)+(12 \times 2)+(12 \times 0)=120$
- $1111000=64+32+16+8=120$;)



## Example 2's complement 4-bit $\times 4$-bit multiplication

- Example: 4-bit signed 2's complement multiplicand " $a$ " 1100 times 4 -bit multiplier " $b$ " 1010
- $1100 \times 1011=-4 \times-5=+20$
- $1100 \times 1011=(-4 \times-8)+(-4 \times 0)+(-4 \times 2)+(-4 \times 1)=+20$
- $00010100=16+4=+20$


|  |  |  | 1 | 1 | 0 | 0 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  | $\times$ | 1 | 0 | 1 | 1 |
|  | 1 | 1 | 1 | 1 | 0 | 0 |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | $\overline{1}$ | $\frac{1}{1}$ | $\overline{0}$ | $\frac{1}{0}$ | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |

$\leftarrow 1$
$\leftarrow 1$
$\leftarrow 0$
$\leftarrow 1$

