FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)

Major Vendor: Xilinx

- Virtex
- Kintex
- Artix
- Spartan

High end
16 nm, $20 \mathrm{~nm}, 28 \mathrm{~nm}$
Balanced cost/performance/energy 16 nm, $20 \mathrm{~nm}, 28 \mathrm{~nm}$
Low power, Low cost 28 nm

Low cost
$28 \mathrm{~nm}, 45 \mathrm{~nm}$

Example: Xilinx 7-series

- LUT: Look-Up Table
- LUTs can implement any arbitrarily-defined 6-input Boolean function
- Configurable as a 6-input LUT with one output, or two 5-input LUTs with separate outputs but common inputs
- Slice
- Contains four 6-input LUTs
- Contains four flip-flops (eight storage elements)
- Multiplexers and arithmetic carry logic
- There are two types
- CLB: Configurable Logic Block
- Each CLB element contains a pair of slices
- Each CLB connects to a switch matrix for access to the general routing matrix

Example: Xilinx 7-series

- Virtex-7
- Kintex-7
- Artix-7
- Spartan-7

364,200-1,221,600 LUTs
41,000 - 298,600 LUTs
8000 - 134,600 LUTs
3752 - 64,000 LUTs

Example: Xilinx 7-series

- An example configuration of a Xilinx series-7 slice
- Four flip-flops are DFF, CFF, BFF, AFF
- Flip-flops can be configured for synchronous or asynchronous set or reset
- LUTs are not shown; their outputs enter the slice on the right of the diagram

Major Vendor: Altera/Intel

- Stratix
- Arria
- Cyclone
- Max

Highest performance
Balanced cost, power, performance
Low cost
Non-volatile single-chip

- Our DE10-Lite board uses a MAX 10 10M50DAF484C7G device
- https://www.altera.com/products/fpga/max-series/max10/overview.html

MAX 10

INTEL ${ }^{\circ}$ MAX 10 FPGAS PRODUCT TABLE

PRODUCT LINE	$10 \mathrm{M02}$	$10 \mathrm{M04}$	10 M 08	10 M 16	10M25	10M40	10 M 50
LEs (K)	2	4	8	16	25	40	50
Block memory (Kb)	108	189	378	549	675	1,260	1,638
User flash memory ${ }^{1}$ (KB)	12	16-156	32-172	32-296	32-400	64-736	64-736
18×18 multipliers	16	20	24	45	55	125	144
Phase-locked loops (PLLs) ${ }^{2}$	1, 2	1,2	1, 2	1, 4	1, 4	1,4	1,4
Internal configuration	Single	Dual	Dual	Dual	Dual	Dual	Dual
Analog-to-digital converter (ADC), temperature sensing diode (TSD) ${ }^{3}$	-	1, 1	1, 1	1, 1	2, 1	2, 1	2, 1
External memory interface (EMIF)	Yes ${ }^{4}$	Yes ${ }^{4}$	Yes ${ }^{4}$	Yes ${ }^{5}$	Yes ${ }^{5}$	Yes ${ }^{5}$	Yes ${ }^{5}$

Package Options and I/O Pins: Feature Set Options, GPIO, True LVDS Transceiver/Receiver

V36 (D) ${ }^{\text { }}$	WLCSP $(3 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch)	C, 27, 3/7	-	-	-	-	-	-
V81 (D) ${ }^{7}$	$\begin{gathered} \text { WLCSP } \\ (4 \mathrm{~mm}, 0.4 \mathrm{~mm} \text { pitch }) \end{gathered}$	-	-	C/F, 56, 7/17	-	-	-	-
F256 (D)	$\begin{gathered} \text { FBGA } \\ (17 \mathrm{~mm}, 1.0 \mathrm{~mm} \text { pitch }) \end{gathered}$	-	$\mathrm{C} / \mathrm{A}, 178,13 / 54$	C/A, 178, 13/54	C/A, 178, 13/54	C/A, 178, 13/54	C/A, 178, 13/54	$\mathrm{C} / \mathrm{A}, 178,13 / 54$
U324 (D)	UBGA $(15 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch)	$\text { C, } 160,9 / 47$	C/A, 246, 15/81	C/A, 246, 15/81	C/A, 246, 15/81	-	-	-
F484 (D)	FBGA $(23 \mathrm{~mm}, 1.0 \mathrm{~mm}$ pitch)	-	-	$\mathrm{C} / \mathrm{A}, 250,15 / 83$	C/A, 320, 22/116	C/A, 360, 24/136	C/A, 360, 24/136	$\mathrm{C} / \mathrm{A}, 360,24 / 136$
F672 (D)	$\begin{gathered} \text { FBGA } \\ (27 \mathrm{~mm}, 1.0 \mathrm{~mm} \text { pitch }) \end{gathered}$	-	-	-	-	-	C/A, 500,30/192	$\mathrm{C} / \mathrm{A}, 500,30 / 192$
E144 (S) ${ }^{6}$	EQFP $(22 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch) $)$	C, 101, 7/27	C/A, 101, 10/27	C/A, 101, 10/27	C/A, 101, 10/27	$\text { C/A, 101, } 10 / 27$	$\text { C/A, } 101,10 / 28$	$\mathrm{C} / \mathrm{A}, 101,10 / 28$
M153 (S)	MBGA $(8 \mathrm{~mm}, 0.5 \mathrm{~mm} \text { pitch })^{8}$	$\text { C, } 112,9 / 29$	C/A, 112, 9/29	$\mathrm{C} / \mathrm{A}, 112,9 / 29$	${ }^{-}$	-	-	-
U169 (S)	UBGA $(11 \mathrm{~mm}, 0.8 \mathrm{~mm}$ pitch)	$\mathrm{C}, 130,9 / 38$	C/A, 130, 9/38	C/A, 130, 9/38	$\mathrm{C} / \mathrm{A}, 130,9 / 38$	-	-	-

Notes:

1. Additional user flash may be available, depending on configuration options.
2. The number of PLLs available is dependent on the package option.

Availability of the ADC or TSD varies by package type. Smaller pin-count packages do not have access to the ADC hard IP.
SRAM, DDR3 SDRAM, DDR2 SDRAM, or LPDDR2.
6. "D" $=$ Dual power supply ($(1.2 \mathrm{~V} / 2.5 \mathrm{~V})$, "S" $=$ Single power supply $(3.3 \mathrm{~V}$ or 3.0 V)

V81 package does not support analog feature set. $10 \mathrm{MO8}$ V81 F devices support dual image with RSU
9. All data is correct at the time of printing, and may be subject to change without prior notice. For the latest information, please visit www.altera.com.
 as the property ofothers. See Trademarks on intel.com for full list of Intel trademarks or the Trademarks \& Brands Names Database.

* Other marks and brands may be claimed as the property of others.

FPGA Chip

- Max 10 10M50DAF484C7G chip
- Light-blue rectangles: Logic Array Blocks (LAB), each of which contains 16 logic elements (LE), each of which contains a 4 -input LUT, a flip-flop, and routing muxes
- White rectangles: hardware 18×18 multipliers
- 144 on each chip
- Yellow rectangles are M9K memory blocks
- 182 on each chip
- Total of 182 KBytes ($204 \mathrm{~KB} \mathrm{)} \mathrm{)}$
- Green rectangle: on-board flash memory that can store the bit-stream that programs the FPGA when it is powered on
- eEBrownblocks on the border are I/O ports and drivers

