
ALTERA M9K

EMBEDDED MEMORY BLOCKS

M9K Overview

• M9K memories are Altera’s embedded high-density
memory arrays
– Nearly all modern FPGAs include something similar of

varying sizes

• 8192 bits per block (9216 including parity bits)

• Highly flexible port configurations

• In general, embedded array memories will perform
much better than memories synthesized from LUTs
– Higher clock rates / higher throughput / lower latency

– Lower energy dissipation

– Lower use of chip resources

– Exception: very small memories
© B. Baas 97https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

Data Initialization Capabilities

• ROMs
– The embedded memory array is truly an SRAM acting like a

ROM so its contents must be initialized

• SRAM
– Unique to FPGAs, the contents of SRAMs may be initialized at

configuration time

• Contents are specified in verilog in an initial block
– This is the only time you may synthesize an initial block!

• Initialization data contents are specified with a .mif file
by Quartus

© B. Baas 98https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

FPGA Chip

• Max 10 10M50DAF484C7G chip

• Yellow rectangles are M9K memory
blocks

– 182 blocks on each chip

– Total of 182 KBytes (204 KB)

• Light-blue rectangles: Logic Array
Blocks (LAB), each of which contains
16 logic elements (LE), each of which
contains a 4-input LUT, a flip-flop,
and routing muxes

• White rectangles: hardware 18x18
multipliers

• Green rectangle: on-board flash
memory that can store the bit-stream
that programs the FPGA when it is
powered on

• Brown blocks on the border are I/O
ports and drivers

© B. Baas 99

M9K Size Configurations

• Supported
configurations per
memory block

© B. Baas 100https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

Number of words
(words)

Number of bits in words
(bits)

8192 1

4096 2

2048 4

1024 8 or 9

512 16 or 18

256 32 or 36

M9K Interface Modes

• Single port

• Simple dual-port
– Supports simultaneous read and write operations to different locations

• True dual-port
– Supports any combination of two-port operations: two reads, two writes,

or one read and one write, at two different clock frequencies

• Shift register

• ROM
– 1 port or 2 port

• FIFO

© B. Baas 101https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

M9K Details

• Independent read-enable and write-enable signals for
each port

• Packed mode in which the M9K memory block is split
into two 4.5 K single-port RAMs

• True dual-port (one read and one write, two reads, or
two writes) operation

• Byte enables for data input masking during writes

• Two clock-enable control signals for each port (port A
and port B)

© B. Baas 102https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-iv/cyiv-51003.pdf

© B. Baas 103

Four Main Methods to Specify an M9K

1. Let Quartus infer an M9K from appropriate verilog
(generally the best approach)

2. Use the IP catalog tool (see an example in the PLL
Tutorial)

3. Use Quartus QSYS (not recommended, #3 is better)

4. Use a Quartus “Language Template”
– Edit > Insert Template > Verilog > Full Designs

> RAMs and ROMs

• See the Compilation Report to find out if M9K
blocks were really used during synthesis

© B. Baas 104

M9K Basic SRAM Template

• The “synthesis
ramstyle” pragma
comment is not
necessary for Quartus to
infer a M9K block but it
is a helpful bit of
documentation and
explicitly states what
the designer wants

• With this pragma,
Quartus will either use
an M9K or print a
warning

module basic_ram(

input clk,

input wr_en,

input [7:0] data_in,

output [7:0] data_out,

input [6:0] address

);

reg [7:0] mem [127:0] /* synthesis ramstyle = M9K */;

// To initialize the RAM, Quartus supports initialization

// which normal RAMs and synthesis do not support.

// initial begin

// mem[0] = 8'b0000_0000;

// mem[1] = 8'b0000_0001;

// mem[2] = 8'b1000_1000;

// ...

// mem[127] = 8'b1111_1111;

// end

always @(posedge clk) begin

if (wr_en == 1’b1) begin

mem[address] <= data_in; // write

end

data_out <= mem[address]; // read

end

endmodule

Example Design
Utilizing LUT

Memory

• In this example,
the M9Ks are not
enabled and the
large ROM
memories are
implemented
using individual
Logic Elements

© B. Baas 105

Diagrams courtesy Justin Salazar

Example Design
Utilizing Block RAM

Memory

• In this example,
the M9Ks are
enabled

• Many Logic
Elements are freed
for other uses

• Should have a
higher maximum
clock frequency

• Should dissipate
lower power

© B. Baas 106

Diagrams courtesy Justin Salazar

