
1

University of California, Davis

Department of Electrical and Computer Engineering

EEC180 DIGITAL SYSTEMS II Spring 2021

Lab 1: Implementing Combinational Logic in the MAX10 FPGA

Prelab: Install Quartus, ModelSim, and SystemBuilder by following the instructions in the Installing Quartus, Modelsim, and

SystemBuilder handout. Read 1)Recommended file organization on the web page, and 2) Handout Verilog 1: Overview, and

Verilog 2: Basics focusing on the assign statement

Resources: The Terasic webpage for the DE10-Lite board contains links to information and resources for the board. These

resources include:

 DE-10-Lite User Manual Version 1.4 Release Date 01-24-2017

 DE10-Lite CD-ROM Version 2.0.0 Release Date 01-24-2017

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=218&No=1021&PartNo=4

Part 0. Design Flow using System Builder, Quartus Prime and ModelSim
A. Creating Project Files Using System Builder

System Builder is a Windows-based utility that is included in the DE10-Lite CD-ROM and is described in Chapter 4 of the User

Manual. This tool generates Quartus Prime project files and does the pin assignment mapping for the I/O pins on the DE10-Lite

board.

1) Run DE10_Lite_SystemBuilder.exe

2) Specify the project name and the I/O devices that you will use in your project.

For example, for this tutorial specify the Project Name as majority and select the LED, Button, Switch, and 7-Segment I/O

devices, as shown in Figure 1. Then click the Generate button to save the project files to your project folder. Once you have

successfully generated your Quartus Prime project files, exit System Builder.

Figure 1. System Builder Configuration

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=218&No=1021&PartNo=4

2

System Builder will create a set of files in your project directory, as shown in Figure 2. Only a few of these files are relevant for

this lab.

Figure 2. Files Generated by System Builder

The majority.v file is the template for your top-level Verilog design file. The template generated by System Builder is shown in

Figure 3. System Builder maps the I/O devices with the proper pin assignments that are hardwired on the DE10-Lite board. This is

a great convenience using System Builder to create your project file and Verilog template file so you do not need to manually

perform the pin mapping. The declarations and structural coding sections are left blank for you to complete.

//===

// This code is generated by Terasic System Builder

//===

module majority(

 //////////// SEG7 //////////

 output [7:0] HEX0,

 output [7:0] HEX1,

 output [7:0] HEX2,

 output [7:0] HEX3,

 output [7:0] HEX4,

 output [7:0] HEX5,

 //////////// KEY //////////

 input [1:0] KEY,

 //////////// LED //////////

 output [9:0] LEDR,

 //////////// SW //////////

 input [9:0] SW

);

//===

// REG/WIRE declarations

//===

//===

// Structural coding

//===

endmodule

Figure 3. System Builder Verilog Template (majority.v)

In this example, we will illustrate the design of a majority gate, as described in Section 3.6 of our textbook, Digital Design – A

Systems Approach. We will use switches for the inputs and an LED for the output.

3

B. Compiling and Programming Using Quartus Prime

 Run Quartus Prime and open the project file that you just created using System Builder.

 Select File > Open Project and navigate to the folder where you stored your files. Select the majority.qpf file.

 Double-click the majority entity instance in the Project Navigator pane in order to open the template created by System

Builder for your top-level design.

 Add the following line of code in the Structural coding section of the majority.v file:

assign LEDR[1] = (SW[0]&SW[1]) | (SW[0]&SW[2]) | (SW[1]&SW[2]);

As described in your text (p. 50) and other handouts, Verilog uses the symbols &, |, ^, and ~ to represent the logic operations

AND, OR, XOR, and NOT, respectively. The keyword assign is used to describe a combinational logic function. In this case,

LEDR[1] will be asserted (logic high) when at least 2 of the 3 switch inputs, SW[0]-SW[2], are high.

The “LEDR” LEDs are active high as shown in Figure 4.

Figure 4. Excerpt from DE10-Lite Schematic Showing Active-High LEDs

 Once you have entered your verilog code, click Processing > Start Compilation. The design should compile with 0 errors.

 Select Tools > Programmer. Connect your DE10-Lite board to your host computer with the USB cable. The Hardware

Setup should be set to USB-Blaster[USB-0], as shown in Figure 5. Make sure the majority.sof file is listed and the

Program/Configure box is checked as shown in Figure 5. Then click Start.

Figure 5. Programmer Tool Configuration

4

You can now test the majority gate design on the DE10-Lite board using SW[0], SW[1] and SW[2] as inputs. When at least 2 of

the 3 switch inputs are high, then the output, LEDR[1] should be on; otherwise, it should be off.

Verify that the majority gate design works as expected.

C. Simulating in ModelSim-Intel Using a Testbench

A very powerful debugging technique is to simulate a design using either functional or timing simulation. This is a far better way

to debug a design than downloading and testing in an FPGA board because: 1) in a functional simulation you can see internal

signals as well as I/O signals; and 2) using a testbench avoids the time required to repeatedly download a design into the FPGA

board.

We will start by doing a functional simulation of the majority gate design using a testbench. Although it is possible to manually

give stimulation commands or draw waveforms, the best approach is to write a testbench program in Verilog to generate the

stimulation inputs and monitor the outputs.

An example testbench for the majority gate module is show in Figure 6. This testbench code has been adapted slightly from the

code given in Figure 3.8 (p. 50) in your text only because the names of the I/O signals are different for the DE10-Lite board than

the signals used in the text.

module tb_majority;

 reg [2:0] count;

 wire [7:0] HEX0;

 wire [7:0] HEX1;

 wire [7:0] HEX2;

 wire [7:0] HEX3;

 wire [7:0] HEX4;

 wire [7:0] HEX5;

 wire [1:0] KEY;

 wire [9:0] LEDR;

 wire [9:0] SW;

 assign SW[2:0] = count;

 // The part of the testbench that instantiates the hardware to be tested

 majority maj1 (.HEX0(HEX0), .HEX1(HEX1), .HEX2(HEX2),

 .HEX3(HEX3), .HEX4(HEX4), .HEX5(HEX5),

 .KEY(KEY), .LEDR(LEDR), .SW(SW));

 // The part of the testbench that creates test input signals

 initial begin

 count = 3'b000;

 repeat (8) begin

 #100

 $display("in = %b, out = %b", count, LEDR[1]);

 count = count + 3'b001;

 end

 end

endmodule

Figure 6. Testbench Module – tb_majority.v

Testbench Verilog code is not synthesized into actual hardware; it is for simulation purposes only. Therefore, it can use non-

synthesizable Verilog constructs such as time delay (#) and the initial and $display statements. The testbench instantiates the

module to be tested, in this case the module majority with a specific instance called maj1, and it provides stimuli for the inputs and

monitors the outputs, In ModelSim, the Waveform viewer is a convenient tool for checking the proper operation of a circuit.

5

To perform a functional simulation using ModelSim Intel, do the following:

1) Enter the tb_majority.v into a file in the same project directory as majority.v.

2) In your Quartus Prime project directory, create a new subdirectory for your simulation project. As an example, you could

call the subdirectory simulation.

3) Run ModelSim-Intel FPGA from the start menu or a desktop icon. (Do not launch it from within Quartus Prime since the

testbench will not be part of such a project.)

4) Select File > New> Project to open the Create Project dialog box. Give the project a name and specify the project location

as the subdirectory that you created above. Leave the other settings in the default state. (i.e. Default Library Name =

work, Copy Settings From = Copy Library Mappings). Click OK.

5) Next an Add Items to Project Window opens. Add both your tb_majority.v and your majority.v. Leave the open set to

“Reference from current location”.

6) Select Compile > Compile All. Your project should compile without errors.

7) Click Simulate > Start Simulation. Select Design > work > tb_majority

8) To view a simulation waveform, click View > Wave. Then in the Objects window, select count, right click on it and

select Add Wave. This will add the count signal to your Wave window. Next expand the LEDR signal, select LEDR[1]

and add it to the Wave window. This way you can see the waveform for the input and output signals of the majority gate.

9) You can run the simulation by selecting Simulate > Run > Run 100 or by simply typing run in the command window.

This will run your simulation for 100 time units, which is 100 ps by default. See Figure 7 for a screenshot of the Wave

window after simulating for 800 ps.

Figure 7. Functional Simulation Waveform for Majority Gate Design

You should also see output in the ModelSim console window from the $display command in the testbench. The console output

should be a text version of the waveform output and should be the same as in Figure 3.9 in your text and shown in Figure 8.

6

in = 000, out = 0

in = 001, out = 0

in = 010, out = 0

in = 011, out = 1

in = 100, out = 0

in = 101, out = 1

in = 110, out = 1

in = 111, out = 1

Figure 8. ModelSim Console Output

Part 1. Implementing Basic Combinational Logic Gates on the DE10-Lite Board

Following the example given in Part 0, create a new project and implement some logic gates of your choice using the switches,

buttons, LEDs and 7-segment displays on the DE10-Lite board. Download your design and verify proper operation. There are

many possible design options. A few examples are 2-, 3- or 4-input AND, NAND, OR, NOR gates. You could also use a

pushbutton to directly control an LED or segment of a 7-segment display. Note that the segments of the 7-segment display are

active-low, as shown in Figure 9, and bit 7 corresponds to the decimal point. For example, in order to turn off all the segments of

the HEX0 7-segment display and keep them off, you could use the following assign statement:

assign HEX0 = 8'b11111111;

You can verify experimentally or from the DE10-Lite board schematic that the push-button switches are active-low.

Design a “testbench” verilog module which instantiates a copy of your module, exercises the circuit through all possible input

combinations, and prints inputs and outputs alongside each other in a format that is easy to read.

Figure 9. Excerpt from DE10-Lite Schematic Showing Active-Low 7-Segment Display. Active low operation is visible because

the common nodes on pins 1 and 6 are tied to Vcc.

Once your design works on the DE10-Lite board, demonstrate it to your TA for your checkoff.

Part 2. Implementing a Combinational Logic Decimal 7-segment Display for 4-bit Switch Inputs

In this part, design a simple combinational circuit so that the value of the 4-bit switch input, SW[3] – SW[0], is displayed in

decimal on HEX[1] and HEX[0]. Thus, your display will show the values 00, 01, 02, … 09, 10, 11, 12, 13, 14, 15 depending on

the positions of SW[3]–SW[0]. The other 7-segment displays (HEX5–HEX2) must be off.

Perform the following steps and show all work:

1) Write a truth table for the outputs (i.e., the segments on the HEX1 and HEX0 displays) based on the 4-bit input

(SW[3]–SW[0]).

2) Draw a Karnaugh map for each output function.

3) Use the Karnaugh map to generate logic equations for each output.

4) Implement each logic equation using a Verilog assign statement.

5) Design and implement a testbench to test the 16 input cases.

6) Compile your Verilog design and test it in the DE10-Lite board.

7

Later, you will learn other ways to describe combinational logic in Verilog, such as using a case statement to directly implement a

truth table without solving for the logic equations.

Demonstrate your working design on the DE10-Lite board to your TA for verification.

Submitted Work [100 pts total]

Submit the following items for verification and grading:

1) [60 pts] Lab Checkoffs

[25 pts] Demonstrate Part I implementation of basic logic gates using switches and LEDs

[35 pts] Demonstrate Part II implementation of decimal display of numbers from 00 - 15

2) [10 pts] Complete Verilog source code for both lab exercises (Part I and Part II).

3) [10 pts] Truth table, Karnaugh maps and output equations for your Part II design.

4) [20 pts] Printed outputs from Testbenches showing inputs alongside outputs for Parts I and II.

2021/04/01 Posted

