
© B. Baas 43

Verilog is a
Hardware Description Language (HDL)

• You’ll design far better hardware if you think of it differently
than a standard programming language

• A “standard programming language” such as C, C++, python,
java, etc.:

– Is a way to code an algorithm or is a way to calculate a result

– Is written by a software writer

– Often results in a more elegant solution when the programmer uses
finer features of the language

• On the other hand, a hardware description language:

– Is a way to describe hardware

– Is written by a hardware designer

– Results in a far better solution when the designer uses only the
most basic features of the language

© B. Baas 48

Verilog vs. VHDL

• Verilog
– Invented in 1983 at Automated Integrated Design Systems (later

Gateway Design Automation) which was purchased by Cadence
in 1990. It was transferred into the public domain in 1990 and it
became IEEE Std. 1364-1995, or Verilog-95.

– Later versions include

• Verilog-2001 aka IEEE 1364-2001

– Added signed (2’s complement) arithmetic support

– Added support for combinational always @(*)

• Verilog-2005 aka IEEE 1364-2005

– Strong similarities to C

– Seems to be more commonly used in high-tech companies

© B. Baas 49

Verilog vs. VHDL

• VHDL (VHSIC Hardware Description Language)
– Published in 1987 with Dept. of Defense support as IEEE Std.

1076-1987. Updated in 1993 as IEEE Std. 1076-1993, which is
still the most widely-used version.

– Later versions in 2000, 2002, and 2008.

– Strong similarities to Ada

– The only(?) HDL language used in government and defense
organizations, and seems to be more often used in east-coast
companies. Widely taught in universities ↔ used in
textbooks—who started it?!

© B. Baas 60

* 3 Ways to Specify Hardware *

• There are three primary means to specify hardware circuits:
1) Instantiate another module

2) wire declared with an assign statement

3) reg declared with an always block

• Example instantiating modules inside a main module

module abc (in1, in2, out);

input in1;

input in2;

output out;

assign...

always...

always...

square_root sqr1 (clk, reset, in1, out1);

square_root sqr2 (clk, reset, in2, out2);

endmodule

abc

module
name

module
name

instance
names square_root

sqr1

square_root

sqr2

© B. Baas 61

Concurrency

• All circuits operate
independently and
concurrently
– Different from most

programming paradigms

• This is natural if we
remember “hardware
verilog” describes
real circuit hardware:
transistors and wires

101100…

111001…

010101…

(wire)

(reg)

(wire)

© B. Baas 69

2) wire, assign

• Example:

wire out;

assign out = a & b;

a
&

b
out

© B. Baas 71

3) reg, always

• Picture a much more general way of assigning “wires” or
“signals” or “buses”

• “if/then/else” and “case” statements are permitted

• You could, but don’t use “for loops” in hardware blocks (use in
testing blocks is ok)

• Sequential execution

– statements execute in order to specify a circuit

• Syntax:
always @(sensitivity list) begin

statements
end

• Operation:
statements are executed when any signal in sensitivity list
changes

© B. Baas 73

3) reg, always

• Example: there is no difference whatsoever in this
AND gate from the AND gate built using assign

reg out;

always @(a or b) begin

out = a & b;

end

a
&

b
out

© B. Baas 193

Instantiating Flip-Flops/Registers

• One way to build a FF/register (do not use this)
reg a;

always @(posedge clk) begin

a = a_c;

end

• The “=“ is a “blocking assignment” which
causes the simulator to “block” on an
assignment until the operation is completed,
then it moves to the next statement

• It makes a race condition possible
reg b, c;

always @(posedge clk) begin

b = a;

c = b;

end

– In this case, a races to c in one cycle!

a_c a

clk

b
c

clk

a

clk

© B. Baas 195

Instantiating Flip-Flops/Registers

• The correct solution is to use a “non-blocking assignment”
written with “<=“ which causes the simulator to evaluate
the right side of the expression when the statement is
encountered, but the assignment of the left side is not done
until the end of that time step in “simulator time”

• With the verilog below, the registers perform as normal FFs
behave without a race regardless of their ordering
reg b, c;

always @(posedge clk) begin

b <= a;

c <= b;

end b
c

clk

a

clk

The key differentiator is the time

when the value b is sampled.

Here it is not “blocked” by the
previous assignment b<=a

