9.2 a Using maxes to implement combinational logic
A) Number of manx inputs $=2^{\text {Number of input bits }}$

A	B	Z
0	0	0
0	1	1
1	0	0
1	1	1

$A B$
B) Number of max inputs $=\frac{1}{2} \cdot 2^{\text {Nun. of input bits }}$

A	B	C	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
$A B=00$	0	$z_{00}=0$	
$A B=10$	$z_{01}=1$		
$A B=11$	$z_{11}=\bar{C}$		

$A B$

- Assign any input variables to mix control inputs
- For cash muximput, there are only form possibilities:

1) 0
2) 1
3) last input variable
4) last input variable inverted

- Any bovizan expression com be implemented

Other solutions:

c) Number of max inputs $=\frac{1}{2^{2}} \cdot 2^{\text {Number of input bits }}$ 1) Approach 41 Look at Krmap instead of truth table:

There are 6 ways to choose 2 of the 4 input variables.
"4 choose $2 "=\binom{4}{2}=\frac{4!}{2!(4-2)!}=\frac{24}{2 \cdot 2}=6$

$A B$ row in $k-$ map

$A C$
$A D$
split boxes

BC
sport boxes

BD
split boxes

There are 16 possible combinations for each box of 4 outputs. 6 are trivial to implement, the other 10 require a gate.

- Designer judgment is required to find the best solution

