Digital Systems I

EEC 18

Lecture 1

Bevan M. Baas
Thursday, September 23, 2021

Today

- Course details
- Lab, Policies, Schedule (web page)
- Course objective and strategies
- My background
- Chapter 1
- Digital systems
- Number systems
- Binary (base 2) arithmetic
- Chapter 2
- Boolean algebra

Teaching Assistants

- Terry O'Neill Tue lab

- Satyabrata Sarangi Wed lab

- Contact information is on the course web page

Course Workload

- 5 unit course
- 18 "chapters" in 20 lectures
- New way of thinking of things will take some effort
- Algebra: use variables
- Calculus: no concrete solutions for indefinite integrals
- Boolean algebra, binary math
- Not only $a+b$, but also a AND b, a XOR b, \ldots
- $1+1=1$
- $3+6=-7$
- Passing this course requires significant effort and time
- (Students that have already taken ECS 154A typically find the first part of the quarter very slow but later parts challenging)

Lectures and Labs

- Lectures
- By zoom, links are on canvas
- All lectures and exams
- Labs
- In person
- Wear masks at all times
- cover your nose and mouth
- the university takes this very seriously
- Follow all instructions from your TA
- https://campusready.ucdavis.edu/instructors

Student Responsibilities

Students are expected to:
(7) Monitor your symptoms and stay home if you are feeling sick. Take the Daily Symptom Survey to access campus facilities.
(.) Be fully vaccinated before the start of classes or hold an approved exception for religious or medical reasons. Additional time is granted to students who will have had no access to a vaccine before arriving on campus.
() Wear face coverings indoors and in mass transit. Unvaccinated students must also wear face coverings outdoors in crowded places.
() Test regularly as directed by campus guidelines. Testing is available at the ARC Testing Kiosk in Davis and at the Administrative Services Building in Sacramento. Students will face disciplinary action if they are out-of-date with testing requirements.
(3at only in designated areas and never in classrooms. Students may remove their masks very briefly to drink while in class.

Lectures

- Ask questions at any time
- Please raise your hand
- Ask a question at any pause (zoom)
- Be respectful of others
- Hold conversations outside of class
- Silence phones
- Sit in the back if you come in late or need to leave early

Course Communication

- In class during lecture
- Canvas announcements \rightarrow Email
- Time-critical announcements only
- Web page
- Primary source of course information
- Office hours
- Posted on the course web page
- Let me know by the second lecture if you have a conflict
- Please see me (or TA) in person or by zoom with questions rather than email

My Teaching Philosophy

- Primary goal (mine and yours):

Learn digital system design well

- Achieve this through:
- Reading textbook
- Objectives, Study Guide, Reading, Problems
- Book is very complete, designed for self-study
- Lectures
- Solving problems on paper (homework)
- Solving problems and building things in lab
- Discussions with other students, TAs, myself

Grading Philosophy

- Grading serves two main purposes:

1. Motivate you to do the work required to learn

- Reading textbook (quizzes)
- Lectures (quizzes)
- Solving problems in homework (exams)
- Solving problems in labs (lab grading, exams)
- Discussions with others

2. Give others an indication of how well you know the material

Letter Grade Assignments

- I assign a letter grade only for the final course grade
- You can see score statistics for each graded item on Canvas
- I look at the final exams and course record of the class and assign two key dividing points: the $\mathrm{A} / \mathrm{A}+$ and $\mathrm{D}+/ \mathrm{C}$ - boundaries, and assign course grades from there using equally-sized intervals
- No required numbers of any particular letter grades
- Absolute scores are not important; the boundaries shift according to the difficulty of the exams in any quarter
- In fact, easy exams cause large grade drops for small errors
- Ignore any letter grades you might see on canvas

EEC 116, B. Baas

Working With Others

- Collaboration
- Asking questions and explaining principles produces better work and dramatically increases learning
- Working with others
- Do homework and prelabs with classmates nearby
- Ask each other questions, help each other-regarding principles, and approaches to solving only
- See Course Collaboration Policy on web page
- Dishonesty
- Copying produces similar work, stunts learning, is not fair to honest students, and is not allowed in this course
- Students engaged in dishonest work will be referred to Student Judicial Affairs
- I will try to keep in-class exams honest
- Steps will be taken to keep out of class work honest

Penalties for Violating the Policy on Student Conduct and Discipline

- Penalties
- Minimum penalty: meetings with SJA officer, zero grade on work, record with SJA
- Permanent F grade on your transcript, no credit for the class
- One to three quarter suspension from the university
- Permanent dismissal from all ten campuses of the University of California. Permanent notation on your transcript.

Penalties for Violating the Policy on Student Conduct and Discipline

- Several perspectives
- Personal obvious reasons
- ECE and UCD (especially for those inclined to share work with someone doing poorly in class)
Cheating harms our major and university's reputation among employers who interview our graduates.
- In summary: The purpose of the penalties and me mentioning them is so that no one will get one!!! Don't do anything that violates the Policy on Student Conduct!

Penalties for Violating the Policy on Student Conduct and Discipline

- Typical scenario:
- Someone shares code/design with another
- They get caught
- The "Copier" feels terrible guilt for causing a friend to get a zero
- The "Sharer" deeply regrets sharing resulting in a zero when he/she should have had a full score

Cheating Websites chegg, coursehero, etc.

- The university has recently taken a very strong stand against paying for work (2-quarter suspension for first offense last year)
- Key take-away messages:
- Do not post assignments
- Of course do not use any unpermitted outside material in work you submit
- Of course do not post solutions
- Two students did last year and got caught!!!

Submitting Work

- Unless announced otherwise, materials due must be submitted through canvas as instructed
- Only pdf format
- It greatly simplifies grading

Course Web Page

http://www.ece.ucdavis.edu/~bbaas/18/

- This link is posted on the canvas home page

Lab Items NOT To Buy

- Four-module-wide protoboard

My Background

- My education
- Westmont College
- Cal Poly, San Luis Obispo
- Stanford

Physics
Mechanical/Electrical Engineering
Electrical Engineering

- My research
- VLSI (chip) design
- Processor architectures
- Digital signal processing (DSP) algorithms
- Work experience
- Mechanical engineering internships
- Hewlett-Packard, Computer Systems Division
- Atheros Communications

Areas of Research

- Processor architectures
- Programmable
- Special-purpose
- DSP algorithms
- Circuits
- VLSI design
- Software tools and applications

$G_{c}(m, n)=\alpha(m) \sum_{i=0}^{N-1}\left[\alpha(n) \sum_{k=0}^{N-1} g(i, k) \cos \frac{\pi(2 k+1) n}{2 N}\right] \cos \frac{\pi(2 i+1) m}{2 N}$

Advancing CMOS Technologies

- Moore's "Law" (Observation) was made in 1965 and notes that transistor density \sim doubles every year (every 1.5 years now)
- "Cramming more components onto integrated circuits," Gordon Moore, Electronics, April 19, 1965.

The experts look ahead

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore
Director, Research and Deveviopnent Laboratories, Faitchild Seniconductor
division of Fa ich hild Camen and Instrument Corp.

Moore's Law - The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Number of Processors on a Single Die vs. Year

Note: Each processor capable of independent program execution

Today

- Course details
- Lab, Policies, Schedule (web page)
- Course objective and strategies
- My background
- Chapter 1
- Digital systems
- Number systems
- Binary (base 2) arithmetic
- Chapter 2
- Boolean algebra

Consumer Products' Trends

- Analog based \rightarrow Digital based
- Music
- Video
- Telephony
- Television
records, tapes
VHS, 8mm analog mobile (1G) \rightarrow digital (4G, LTE,...) NTSC/PAL $\quad \rightarrow$ digital (DVB, ATSC, ISDB, ...)
\rightarrow CDs, MP3s
\rightarrow DVD, Blu-ray, H.264, H. 265
- Many products use digital data and "speak" digital: computers, networks, digital appliances

YouTTuhe

Consumer Products'

 Trends- Analog based vs. Digital based
- iphone apps???

Updates

UPDATE

Two things. 1) We're gauging interest from the community in subscribing to an analog version of Yelp. Each copy will weigh roughly 60 metric tons. Shipping will not be included. 2) We fixed some bugs.

Version 12.11.0•142.4 MB

iTunes U

May 17, 2018
UPDATE

This update includes minor stability improvements.

(-) Uber $\begin{aligned} & \text { May 16, } 2018\end{aligned}$
We update the app as often as possible to make it faster and more reliable for yc more

Pandora Music

Future Applications

- Very limited power budgets
- Require significant digital signal processing

