University of California, Davis - Department of Electrical and Computer Engineering Lab 4: Latches, Flip-flops and Registers

Objective: The purpose of this lab is to investigate latches, flip-flops, and registers.
Pre-lab: Read Roth Sections 11.1-11.4 and other relevant sections of Unit 11.
Analyze the cross-coupled NOR gates of the Transparent (called "Gated" by Roth) SR Latch in Figure 1 with inputs R_g and $S _g$ and outputs Q and $Q N$. Construct a truth table with inputs $R _g(t), S _g(t)$ and $Q(t)$ and outputs $Q(t+\Delta t)$ and $\mathrm{QN}(\mathrm{t}+\Delta \mathrm{t})$, where $\Delta \mathrm{t}$ is the time required for a change of state to occur. Ignore the case when $\mathrm{S} _\mathrm{g}(\mathrm{t})=\mathrm{R} _\mathrm{g}(\mathrm{t})=1$.

Part I - Transparent SR Latch

Altera FPGAs include flip-flops that are available for implementing a user's circuit. We will show how to make use of these flip-flops in Part IV of this exercise. But first we will show how storage elements can be created in an FPGA without using its dedicated flip-flops. Figure 1 shows a transparent SR latch circuit built from gates.

Figure 1. A transparent SR latch circuit

Design Procedure

1. Create a new Quartus project (e.g., lab4a) for the SR latch following the same procedure as in earlier labs.
2. Draw the schematic shown in Figure 1.
3. Compile the circuit in Quartus.
4. Download the circuit to the DE10-Lite board and answer the following questions.

Q1. When the CLK (SW[0]) is high, does the output change when R and S are changed? If so, give examples.
Q2. When the CLK is low, does the output change when R and S are changed? If so, give examples.
Q3. Is there any case when $\mathrm{Q}=\mathrm{QN}$? (i.e. when LEDR[1] and LEDR[0] are either both ON or both OFF). Describe this case. Since Q and QN should always be complements, this case would be an illegal state for an SR latch.

Q4. When $\mathrm{R}=\mathrm{S}=0$, what happens to the output when the CLK is toggled?
Q5. When $\mathrm{R}=\mathrm{S}=1$ and CLK goes from 1 to 0 , what happens to the output? Explain why this happens. Is it what you expect?

Demonstrate your circuit to your TA and have him or her sign your verification sheet. (Since Parts I-III are short, you should get them all checked off at once.)

Part II - Transparent D Latch

Figure 2 shows the circuit for a transparent D latch. Notice that this circuit has been built using cross-coupled NAND gates instead of cross-coupled NOR gates as in the transparent SR latch in Part I. You could easily modify the circuit in Part I to make it into a transparent D latch.

Figure 2. Circuit for a transparent D latch

Design Procedure

1. Create a new project, lab4b, for your transparent D latch schematic. Enter the schematic into Quartus, compile and download the circuit to your DE10-Lite board. Answer the following questions:

Q6. When CLK is high, does changing the D input affect the output? If so, give examples.
Q7. When CLK is low, does changing the D input affect the output? If so, give examples.
Q8. Is there any case when $\mathrm{Q}=\mathrm{QN}$? (i.e. when LEDR[1] and LEDR[0] are either both ON or both OFF). Describe this case. Since Q and QN should always be complements, this case would be an illegal state for a D latch.

Demonstrate your circuit to your TA and have him or her sign your verification sheet.

Part III - Edge Triggered D Flip-flop

Figure 3 shows the circuit for an edge-triggered D flip-flop based on two transparent D-latches in master-slave configuration. The first D latch (connected to the D input) is the master latch and the second D latch (connected to the outputs) is the slave latch.

Figure 3. Edge-triggered D flip-flop

Design Procedure

1. Create a new project, lab4c, for your edge-triggered D flip-flop schematic.
2. Enter the schematic into Quartus. You will create a separate schematic and symbol a transparent D latch so that you can create a hierarchical design. Do not use the name Dlatch for your symbol since there is already a component by this name in the Altera libraries.
3. Compile and download the circuit to your DE10-Lite board. Answer the following questions:

Q9. When CLK is high, does changing the D input affect the output? If so, give examples.
Q10. When CLK is low, does changing the D input affect the output? If so, give examples.

Q11. When does the output change? How is this different from a transparent D latch
Demonstrate your circuit to your TA and have him or her sign your verification sheet.

Part IV - 12-bit Register and Hex-to-Seven Segment Converters

A register is a group of memory elements (typically edge-triggered flip-flops) which have their clock signal inputs tied together, and thus act as a single memory storage block operating on multiple bits of binary data (typically closely-related data such as bits within a word) at a time.

In this part, you will implement a memory / register circuit on the Intel DE10-Lite board. The circuit has the following specifications:

- The current value of switches SW[9..0] on the DE10-Lite board should always be displayed in hexadecimal on the three seven-segment displays HEX2-HEX0. This part of the circuit will be combinational logic.
- Create a symbol for your binary to hexadecimal circuit. This combinational circuit should take a 4 -bit binary input and output the seven-segment display driver signals so that the corresponding hexadecimal digit is displayed. (0 1 23456789 AbCdEF). Use buses for your inputs and outputs as shown in Figure 4.
- Create a 12-bit positive edge triggered register using the embedded D flip-flops in the Altera FPGA. (Use the DFF component in the Altera library). Create a symbol for your register. (You can also implement this using 4-bit registers, if you prefer). Again, use buses for your input and output to minimize wiring, as shown in Figure 4.
- Use KEY[0] as an active-low asynchronous reset and KEY[1] as the clock input of your 12-bit register.
- The contents of the 12-bit register should always be displayed in hexadecimal on the three seven-segment displays HEX5-HEX3.
- You can display the SW[] input signals on the red LEDs (LEDR[]), but this is not required. If you don't use the red LEDs, they should be turned off.

Design Procedure

1. Create a new Quartus project, lab4d, which will be used to implement the desired circuit on the Intel DE10-Lite board.
2. Create the schematic and symbol for the combinational circuit that does the binary to hexadecimal segment display driver conversion. Create a schematic and symbol for your 4-bit or 12-bit register. Finally, create a top-level schematic that has the FPGA I/O pins and uses your register and combinational logic circuits. Import the pin assignments.
3. Compile the circuit and verify that your register is implemented using the embedded D flip-flops in the Altera FPGA. (Check the Resource Usage Summary or the Flow Control.)
4. Program the FPGA and test the functionality of your design by toggling the switches and observing the output displays. Right after you program the FPGA board, the values of SW[9..0] should be displayed in HEX[2..0], while HEX[5..3] are turned off or display 0 s. Once you trigger the clock by pressing KEY[1] and release it, the values will be stored in the registers and displayed in HEX[5..3].
5. Demonstrate your working circuit to your TA and have your TA sign your verification sheet.

Figure 4. Top-level Schematic with Custom Symbols

Lab Report

Submit the following items:

1) Lab cover sheet with TA verifications for circuit verification for Parts I-IV.
2) Complete Quartus schematics for Parts I-IV.
3) Answers to all questions asked throughout this lab (Parts I - III)

Acknowledgement: This lab is based on a Laboratory Exercise developed by Altera Corp. Used by permission.

