THREE FABRICATION EXAMPLES

Fabrication Example 1

- The example shows a 2-D side view of the fabrication steps for the following
 - A single NMOS transistor
 - Metal1 contacts
 - Metal1 layer

Fabrication – Patterning of SiO₂

- Grow SiO₂ on Si by exposing to O₂
 - high temperature accelerates this process
- Cover surface with photoresist (PR)
 - Sensitive to UV light (wavelength determines feature size)
 - Positive PR becomes soluble after exposure
 - Negative PR becomes insoluble after exposure

Si - substrate

Fabrication – Patterning of SiO₂

- Photoresist removed with a solvent
- SiO₂ removed by etching (HF)
- Remaining photoresist removed with another solvent

NMOS Transistor Fabrication

- Thick field oxide grown
- Field oxide etched to create area for transistor
- Gate oxide (high quality) grown

NMOS Transistor Fabrication

- Polysilicon deposited (doped to reduce R)
- Polysilicon etched to form gate
- Gate oxide etched from source and drain
 - Self-aligned process because source/drain aligned by gate
- Si doped with donors to create n+ regions

EEC 116, B. Baas

NMOS Transistor Fabrication

- Insulating SiO₂ grown to cover surface/gate
- Source/Drain regions opened
- Aluminum evaporated to cover surface
- Aluminum etched to form metal1 interconnects

Fabrication Example 2

- The example shows a 3-D view of the fabrication steps for the following
 - A CMOS inverter
 - A single NMOS transistor
 - A single PMOS transistor
 - Metal1 contacts
 - Metal1 layer

- Inverter
 - Logic symbol
 - CMOS inverter circuit
 - CMOS inverter layout (top view of lithographic masks)

- N-wells created
- Thick field oxide grown surrounding active regions
- Thin gate oxide grown over active regions

- Polysilicon deposited
 - Chemical vapor deposition(Places the Poly)
 - Dry plasma etch(Removes unwanted Poly)

- N+ and P+ regions created using two masks
 - Source/Drain regions
 - Substrate contacts

- Insulating SiO₂ deposited using CVD
- Source/Drain/Substrate contacts exposed

- Metal (Al) deposited using evaporation
 - Meta1 contacts made with Aluminum here
- Metal patterned by etching

Fabrication Example 3

- The example shows a 2-D side view of the fabrication steps for the following
 - A CMOS inverter
 - A single NMOS transistor
 - A single PMOS transistor
 - Metal1 contacts
 - Metal1 layer
 - Metal2 vias
 - Metal2

(a) Base material: p+ substrate with p-epi layer

(b) After deposition of gate-oxide and sacrificial nitride (acts as a buffer layer)

(c) After plasma etch of insulating trenches using the inverse of the active area mask

