

# **Design Metrics**

- Metrics to evaluate performance of a digital circuit (at any level; e.g. gate, block, ...)
  - Energy to perform a function
  - Performance (clock maximum operating frequency, workload throughput, workload latency)
  - **Cost** (cost is a strong function of chip area)
  - Design time
  - Power dissipation (often peak power is of greatest concern)
  - Scalability
  - Reliability
- Relative cost depends on the application, for example:
  - Heart pacemaker (reliability, energy most important)
  - RFID (cost, energy most important)
  - PC graphics processor (speed most important)

# Cost of Integrated Circuits

- cost/chip = fixed cost per design + variable cost per chip
  - Cost varies tremendously depending on the number of chips sold
- Fixed costs per design, NRE (non-recurrent engineering)
  - Design time and effort (designers and designer support)
  - Mask generation
  - CAD (computer aided design) software tools
  - Company costs (sales, marketing, building,...)
- Recurrent costs are costs for each chip
  - Some cost reductions with higher volumes
  - Silicon processing
    - Cost is strongly tied to chip area
  - Chip packaging and test

## **NRE Cost is Increasing**



Modern ASICs (Application-Specific Integrated Circuits) are said to cost on the order of \$50 million to design and require 18 to 24 months of effort by a large and talented design team [ITRS 2009]

### Die Cost



## **Cost per Transistor**



## Area Equations



Dies per wafer = 
$$\frac{\pi \times (\text{wafer diameter}/2)^2}{\text{die area}} - \frac{\pi \times \text{wafer diameter}}{\sqrt{2 \times \text{die area}}}$$

### Defects





- Alpha is roughly proportional to the number of "mask layers" (discussed next lecture)
- Alpha = 3 approximately for modern CMOS processes
- 0.5 1 defects/cm<sup>2</sup> typical for modern CMOS process

$$DieCost = \frac{WaferCost}{NumGoodDiesPerWafer}$$
$$DieCost = \frac{WaferCost}{Dies per wafer \times DieYield}$$
$$DieCost = f(DieArea^{4})$$

## Some Examples (1994)

| Chip         | Metal<br>layers | Line<br>width | Wafer<br>cost | Def./<br>cm <sup>2</sup> | Area<br>mm <sup>2</sup> | Dies/<br>wafer | Yield | Die<br>cost |
|--------------|-----------------|---------------|---------------|--------------------------|-------------------------|----------------|-------|-------------|
| 386DX        | 2               | 0.90          | \$900         | 1.0                      | 43                      | 360            | 71%   | <b>\$4</b>  |
| 486 DX2      | 3               | 0.80          | \$1200        | 1.0                      | 81                      | 181            | 54%   | \$12        |
| Power PC 601 | 4               | 0.80          | \$1700        | 1.3                      | 121                     | 115            | 28%   | \$53        |
| HP PA 7100   | 3               | 0.80          | \$1300        | 1.0                      | 196                     | 66             | 27%   | \$73        |
| DEC Alpha    | 3               | 0.70          | \$1500        | 1.2                      | 234                     | 53             | 19%   | \$149       |
| Super Sparc  | 3               | 0.70          | \$1700        | 1.6                      | 256                     | 48             | 13%   | \$272       |
| Pentium      | 3               | 0.80          | \$1500        | 1.5                      | 296                     | 40             | 9%    | \$417       |

#### Matlab Example Die Yields with *alpha*=3, 0.5 defects/cm<sup>2</sup>



#### Example Matlab Code to Plot Yield vs. Chip Size

```
% Chip yield plot generator
2
% 2019/10/09 Updated (BB)
8
% Copy & paste this code into a example.m file and try it yourself!
clear;
alpha = 3;
                                         % 0.5 defects/cm^2
defects = 0.5;
alimits = 0.05:0.05:7;
for x = alimits * 20,
  x = round(x);
                                          % remove VERY small roundoff errors
  a = alimits(x);
                                          % die area
  y1(x) = (1+defects*a/alpha)^-alpha;
                                          % "original" size die: blue
end
clf;
plot(alimits, y1, 'b');
hold on;
xlabel('Chip area (cm^2)');
ylabel('Yield');
                                          % prints X tick marks every 0.5
set(gca, 'XTick', [0:0.5:7])
set(gca, 'YTick', [0:0.1:1])
                                          % prints Y tick marks every 0.1
%legend('Reference chip');
axis([0 max(alimits) 0 1]);
grid on;
                                         % sets font size of axis
set(gca, 'FontSize', 16)
disp('Die yields with alpha=3 and 0.5 defects/cm^2');
print -dtiff example.tiff
```