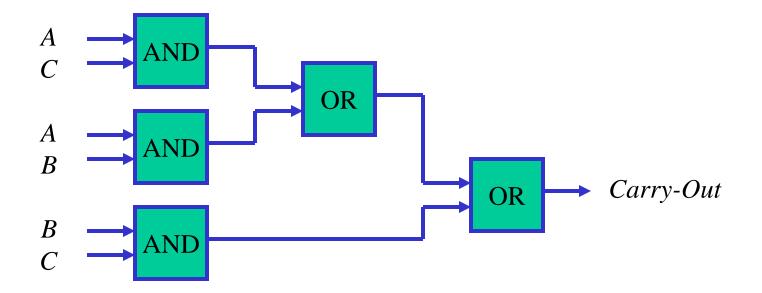

ABSTRACTION OF COMPLEXITY

Abstraction of Design Complexity

- Design complexity
 - Typically tens of transistors in analog circuits
 - Each is normally hand crafted along with placement and wiring
 - Hundreds of transistors
 - Each can be hand crafted
 - Thousands to 100s of thousands of transistors
 - Must find regularity in structure and exploit it (re-use cells)
 - Ex: memory
 - Millions to billions of transistors
 - Must find high-level regularity in structure and exploit it (reuse modules and subsystems)
 - Ex: System on Chip (SOC)

Design Abstraction Levels



Abstraction of Design Complexity

- Levels
 - Devices and Wires
 - Circuits, for example simulated by Spice
 - Gates, for example simulated by a digital simulator
 - Modules and functional units (e.g., adder, memory, etc.)
 - Sub-systems (e.g., processor, display driver, network interface, etc.)
- Methods to *abstract* complexity
 - Sophisticated Computer-Aided-Design (CAD) tools
 - Standard cell libraries

Hierarchical Abstraction

• Example: While designing at the gate level, we do not consider the circuit inside each gate

Why Should We Learn About Circuits and Layout Then?

- The best designers can:
 - Build model abstractions
 - Understand limitations of models
 - Wire or interconnect performance
 - Changes with technology scaling
- Abstractions limit maximum attainable performance and energy-efficiency
 - Multi-disciplinary view needed
- Troubleshooting
 - Malfunctions are often at interfaces:
 - Interfaces between modules
 - Unexpected interactions between levels of abstraction; e.g., an abstracted module was used in a way never anticipated

Examples of Design Aspects that "Defy Hierarchy"

- Clock distribution
 - Skew in the timing of active clock edges between different clock signals
 - Worst case result: unfixable faults due to signals passing through two registers in one clock cycle
- Power distribution
 - Sufficient current handling is required for proper operation
 - Adequate noise suppression in the power and ground grids
 - Worst case result: unfixable faults due to power and ground grid droops resulting in outcomes such as:
 - Memory element erasure
 - Unacceptably slow performance (critical in real-time systems)