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Abstract

Network processors (NPs) are an emerging field of programmable processors that are optimized to implement data

plane packet processing networking functions. Unlike the general-purpose CPUs that rely heavily on caching for im-

proving performance, the lack of locality in packet processing and need for high-performance I/O have forced designers

to come up with innovative architectures that can hide memory latency while still processing packets at high data rates.

Most of these NPs use some type of multiprocessing in combination with a hierarchy of memory types to achieve high

performance. In addition, to keep up with packets arriving at high data rates over multiple incoming media interfaces,

an NP must perform fast I/O and memory operations such as packet storage, table lookup, and extraction of fields in

packet headers. We describe an architecture that uses a combination of distributed memory architecture and one or

more multithreaded processors to achieve the necessary performance. We describe the challenges in programming such

a processor including the issues related to consistency and maintaining packet ordering. We also present a programming

model for generic network applications that uses software pipelines. We then demonstrate the use of the programming

model in implementing two applications, namely, mapping traffic management algorithms onto a multithreaded ar-

chitecture and an implementation of a media gateway based on voice-over-AAL2.
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1. Introduction

Network processors (NPs) are an emerging

class of programmable processors used as a

building block for implementing packet process-

ing applications in networking systems such as

switches and routers. They are highly optimized

for fast packet processing and I/O operations.

They are typically characterized by distributed,

multiprocessor, multithreaded architectures de-

signed for hiding memory latencies in order to

scale up to very high data rates. They tend to have

multiple fast path forwarding engines with access

to a slow path exception handler. With all these

characteristics, NPs usually pose interesting chal-
lenges to programmers.

In this paper, we provide an overview of the

hardware architecture for Intel�s second genera-

tion NPs. We describe the challenges involved in

programming these processors. We then present an
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overview of a programming model for imple-

menting networking applications on these proces-

sors. Finally, we show how the NPs can be used

to solve practical problems, by describing an im-

plementation of ATM based traffic management

algorithms and an ATM AAL2-based media gate-
way application using the programming model.

The rest of the paper is organized as follows.

Section 2 provides an overview and motivation for

the IXP hardware architecture. In Section 3, we

describe the challenges involved in implementing

networking applications on a distributed, multi-

processor architecture of the IXPs. In Section 4,

we then describe a suitable programming model
designed to meet such challenges. Section 5 de-

scribes how a voice-over-ATM application is im-

plemented for a media gateway and Section 6

provides the details of an implementation of the

ATM traffic management algorithms.

2. Hardware architecture overview

In this section, we first provide an overview of

the architecture of Intel network processors with

the IXP2400 as an example.

2.1. IXP2400 architecture

The overall architecture of an IXP2400 is

shown in Fig. 1 [3].

2.1.1. Motivation

The two major parts of the IXP architecture are

the Intel Xscale� processor core (referred to as the

Xscale� core) and a number of RISC processing

engines called microengines (MEs). The network

processing unit (NPU) architecture is motivated by

the need to provide a silicon building block for

packet processing. In any packet processing ap-
plication, two types of operations must be per-

formed, namely, so-called fast-path operations and

slow-path operations. The fast-path operation is

performed typically on each packet and must be

completed as quickly as possible to keep up with

the line rate. An example of a fast-path operation

includes IPv4 forwarding which involves looking

up the destination IP address in a forwarding table
to determine the outgoing interface over which an

IP datagram must be sent, updating the IPv4

protocol header, and then sending out the packet

on the specified outgoing interface. On the other

hand, a slow-path operation is needed only in an
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Fig. 1. The block diagram of an IXP 2400.
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exceptional case and takes much longer to perform

than a fast-path operation. An example of a slow-

path operation occurs when a network device

receives an IPv4 datagram with certain header

options turned on. This happens rarely and pro-

cessing header options requires a lot more time
than the usual fast-path operation.

Apart from the packet processing operations,

every network device or line card needs to execute

some control plane protocols such as routing

protocols and signaling protocols. These protocols

run in the background and must process incoming

control packets such as routing protocol updates

or signaling requests for call establishment.
The IXP architecture�s two main building

blocks are designed to support both packet pro-

cessing and control protocol processing. The

Xscale� core is designed for slow-path processing

and control protocol processing whereas the MEs

are designed for fast-path packet processing.

2.1.2. Slow-path and control plane processing

Each IXP includes an XScalee core. The Intel�

XScalee core is a general purpose 32-bit RISC

processor (ARM* Version 5 Architecture compli-

ant) used to initialize and manage the NP, and

used for exception handling, slow-path processing

and other control plane tasks. The Intel� XScalee

microarchitecture incorporates an extensive list of

architecture features that allows it to achieve high
performance. The Intel� XScalee microarchitec-

ture implements a 32-Kbyte, 32-way set associative

instruction cache with a line size of 32 bytes.

A mechanism to lock critical code within the

cache is also provided. The microarchitecture

also implements a 32-Kbyte, 32-way set associative

data cache and a 2-Kbyte, 2-way set associative

mini-data cache. Each cache has a line size of 32
bytes, and supports write-through or write-back

caching.

2.1.3. Fast-path processing

The fast-path packet processing part of the ar-

chitecture is motivated by the following observa-

tions:

• Multithreaded MEs: As processing speeds have

increased, memory access speeds and latencies

have not kept pace. When an NPU must pro-

cess an incoming stream of packets at line rate,

it must complete processing a packet within a

short amount of time. For example, at OC-48

line rate, a minimum size POS packet arrives
approximately every 100 cycles. However, even

simple processing requires some lookup opera-

tions and other memory accesses. With a

SRAM access latency estimate of roughly 80–

100 cycles and SDRAM access latency estimate

of 150–200 cycles, it is not possible to complete

processing a packet before the next one arrives.

The IXP architecture uses multiple processing
engines (microengines) where each ME has

eight hardware threads. Assigning each packet

to a separate thread on one or more MEs allows

processing of multiple packets in parallel. Thus,

the first packet does not have to finish process-

ing in 100 cycles as long as there are enough

threads to process subsequent packets before

the first packet is completely processed. The
IXP2400 network processor has eight MEs

working in parallel on the fast packet-process-

ing path. Both the Xscale core and the MEs

run at 600 MHz clock frequency.

• Distributed, shared memory hierarchy: Packet

processing typically involves table lookups to

match fields in the packet header against values

stored in lookup tables and also involves buffer
management as packets are stored first and then

forwarded after they undergo processing. The

processor has distributed, shared memory ar-

chitecture. For example, it supports two types

of external memories, QDR SRAM for low-

latency access to smaller data structures used

in lookup operations and DDR SDRAM for

larger storage needed for packet buffers and
bulk data transfers. Both SRAM and SDRAM

address spaces are shared among all MEs and

the data in those memories is accessible to each

ME thread on an equal basis. In addition, the

processor includes an on-chip SRAM (16 KB)

that is shared among all the MEs and a small

amount (640 32-bit words) of local memory

per ME. The on-chip SRAM is designed to pro-
vide fast access to the processing state, packet

headers, or meta-data shared among the code

running on different MEs whereas the local
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memory in ME is useful to cache data needed

by multiple threads within a ME.

• Special-purpose units: MEs are fully pro-

grammable, general-purpose engines and can

be programmed to implement any, arbitrary
packet processing (or other) functions. How-

ever, packet processing functions involve some

well-defined, commonly needed functions such

as hashing, CRC, crypto, etc. To avoid imple-

menting such standard functions from scratch,

the IXP includes on-chip, special-purpose hard-

ware units for hashing and CRC computation.

In addition, a variant of IXP includes DES, 3-
DES [7], and AES [6] blocks for bulk encryption

and authentication functions.

• Built-in media interfaces: The processor has a

flexible 32-bit media switch interface configura-

ble as 1 � 32-bit or 2 � 16-bit or 4 � 8 bit or

1 � 16 þ 2 � 8 bit interfaces. Each interface is

configurable as media standard SPI-3 or

CSIX-L1 or Utopia 1/2/3 interfaces.

2.2. Microengine

The MEs do most of the per-packet processing

in an IXP. In IXP 2400, there are eight MEs,

connected in two clusters of four ME as shown in

Fig. 1. The MEs have access to all shared resources

(SRAM, DRAM, MSF, etc.) as well as private
connections between adjacent MEs (referred to as

‘‘next neighbors’’). The next-neighbor connections

are only one-way as shown in Fig. 1 creating a

pipeline of MEs (one through eight) in terms of

nearest-neighbor communication.

The ME provides support for software con-

trolled multithreaded operation. Given the dis-

parity in processor cycle times vs. external memory
times, a single thread of execution will often block

waiting for the memory operation to complete.

Having multiple threads available allows for

threads to interleave operation––there is often at

least one thread ready to run while others are

blocked. This improves the usage of the ME re-

sources.

Control store

The control store is a RAM, which holds the

program that the ME executes. It holds 4096 in-

structions, each of which is 40-bits wide. It is ini-

tialized by the Intel� XScalee core.

Contexts

There are eight hardware contexts (or threads)

available in each ME. To allow for efficient con-

text swapping, each context has its own register

set, program counter, and context specific local

registers. Having a copy per context eliminates the

need to move context-specific information to/from
shared memory and ME registers for each context

swap. Fast context swapping allows a context to

do computation while other contexts wait for I/O

(typically external memory accesses) to complete

or for a signal from another context or hardware

unit.

Data path registers

Each ME contains four types of 32-bit data

path registers:

1. 256 general purpose registers (GPRs),

2. 512 transfer registers,
3. 128 next neighbor (NN) registers,

4. 640 32-bit words of local memory (LM).

GPRs are used for general programming pur-

poses. They are read and written exclusively under

program control. GPRs, when used as a source in

an instruction, supply operands to the execution

data path. When used as a destination in an in-
struction, they are written with the result of the

execution data path. The specific GPRs selected

are encoded in the instruction.

Transfer registers (abbreviated Xfer registers)

are used for transferring data to and from the ME

and locations external to the ME (for example

DRAM, SRAM, etc.). There are four types of

transfer registers. Typically, the external units ac-
cess the transfer registers in response to instruc-

tions executed by the MEs. However, it is possible

for an external unit to access a given ME�s trans-

fer registers either autonomously, or under con-

trol of a different ME, or the Intel� XScalee core,

etc.

Next neighbor (NN) registers, when used as a

source in an instruction, supply operands to the
execution data path. NN registers in an ME can be

written either by an adjacent ME or the same ME.
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This is a fast, optimal way of communication be-

tween the two MEs.

Special hardware features in the ME

The ME also provides the following special

hardware blocks to assist in various packet-

processing tasks:

• CRC unit––compute 16b and 32b CRC. This

accelerates the performance of ATM AAL5
SAR applications.

• Pseudo-random number generator––assists in

supporting QoS algorithms for congestion

avoidance, e.g., WRED [8] and RED.

• Time-stamp, timer––assists in supporting me-

tering, policing, rate shaping functionality

required in IP DiffServ and ATM traffic man-

agement services.
• Multiply unit––assists in QoS blocks such as

policing, congestion avoidance.

• CAM––each ME includes a 16-entry CAM

(content addressable memory) that is used to

cache per-connection state that is shared among

multiple instances of a function running in par-

allel on threads within an ME.

2.3. DDR DRAM

IXP2400 supports a single 64-bit channel (72 bit

with ECC) of DRAM. DRAM sizes of 64, 128,

256, 512 MB and 1 GB are supported. An address

space of 2 GB is allocated to DRAM. The memory
space is guaranteed to be contiguous from a soft-

ware perspective. If less than 2 GB of memory is

present, the upper part of the address space is

aliased into the lower part of the address space and

should not be used by software.

2.4. QDR SRAM

The IXP2400 network processor has two inde-

pendent SRAM controllers, each of which support

pipelined QDR synchronous static RAM (SRAM)

and/or a coprocessor that adheres to QDR sig-

naling. Any or all controllers can be left unpopu-

lated if the application does not need to use them.

SRAM is accessible by the MEs, the Intel�

XScalee core, and the PCI Unit (external bus

masters and DMA).

Queue data structure commands

The ability to enqueue and dequeue data buffers

at a fast rate is key to meeting line-rate perfor-

mance. This is a difficult problem as it involves

dependent memory references that must be turned

around very quickly. The SRAM controller in-

cludes a data structure (called the Q_array) and
associated control logic in order to perform effi-

cient enqueue and dequeue operations. The

Q_array has 64 entries, each of which can be used

in one of the following ways:

• Linked-list queue descriptor.

• Cache of recently used linked-list queue descrip-

tors (the backing store for the cache is in
SRAM).

• Ring descriptor.

2.5. Scratchpad and hash unit

The scratchpad unit provides 16 KB of on-chip

SRAM memory that can be used for general-

purpose operations by the Intel� XScalee core
and the ME. The scratch also provides 16 hard-

ware rings that can be used for communication

between MEs and the core.

The hash unit provides a polynomial hash ac-

celerator. The Intel� XScalee core and MEs can

use it to offload hash calculations in applications

such as ATM VC/VP lookup and IP 5-tuple clas-

sification.

3. Programming challenges

Network processing applications are targeted at

specific data rates. In order to meet these

throughput requirements, a NP must complete the

packet processing tasks on a given packet before
another packet arrives. The absolute worst-case

throughput requirements would typically be for

minimum sized packets arriving back-to-back. For

example, at OC-48 (or 2.4 Gbps) rate, a minimum

size packet (46 bytes) will arrive every 100 cycles.

To keep up with the back-to-back arrival of mini-

mum size packets at the line rate, the NPU must
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complete processing the packet in 100 cycles. Such

a constraint and potential solutions to meet the

constraint pose some interesting programming

challenges:

• Achieving a deterministic bound on packet pro-

cessing operations: The constraint to keep up

with the back-to-back packets arriving at line

rate affects the programming significantly since

the time to process a packet on each ME would

now be the time it takes to transmit the mini-

mum sized packet on the wire. This means we

need to design the software in such a way that

the number of clock cycles to process the packet
on each ME does not exceed an upper bound.

This is particularly hard for applications like

schedulers, where we may have a lot of queues

in the system and a search for the queue that

is eligible for scheduling needs to be performed.

This search could be extremely variable if one

has to walk through all the queues in a linear

fashion. We will not be able to meet the line
rates in such a case. Hence it is important that

the software uses the right kind of data struc-

tures and is designed in such a way that it meets

the targeted upper bound on the processing

cycles per packet.

• Masking memory or I/O latency through multith-

reading: Even if the data structures and process-

ing blocks are designed to complete processing
within a definite time interval, it is not sufficient

to meet the line-rate processing requirements

because a programmer must still deal with

memory and I/O latencies that are much higher

than the amount of processing budget available

to each packet. Therefore, another important

challenge in programming a NP is to utilize

the multiple hardware threads effectively to
mask the I/O latencies. Several techniques such

as pipelining and multiprocessing can be em-

ployed to effectively hide the I/O latencies as ex-

plained in the next section.

• Ensuring consistency of shared data: Once one

uses multithreading to process multiple packets

in parallel, it is important to maintain consis-

tency of the updates to shared data. This can
be achieved by using locks in memory or by en-

suring that the threads operate in strict order on

a timeline making sure at most one thread ac-

cesses shared data at any time. Use of locks is

easier but tends to be very slow whereas strict

thread ordering avoids the latencies involved

in memory-based locking. However, the latter
approach suffers from a drawback that the rate

at which an ME operates is limited by the

thread that requires the longest time to process

the packet.

• Maintaining packet ordering in spite of parallel

processing: The other significant challenge in

programming the NPs is to maintain packet

ordering. This is extremely critical for applica-
tions like media gateways and traffic manage-

ment, where we should not re-order packets

on a voice call and cells on a VC. Packet order-

ing can be guaranteed using a couple of tech-

niques:

� Using sequence numbers for packets being

processed.

� Use strict thread ordering: If we make sure
that threads operate in a strict order, then

packets are assigned to threads in order of

their arrival and, therefore, the packet will

complete processing and will go out in order.

Thus, a combination of processing of packets

using multiple threads running in parallel and

strict thread ordering can meet the challenges de-
scribed above. A programming model based on

this approach is described in the next section.

4. Microengine programming model

Fast path packet processing functions are im-

plemented on the IXP2400 microengines. The MEs
provide hardware support for up to eight threads

and present a RISC instruction set that is opti-

mized for packet processing tasks. A variety of

programming models can be employed on the

MEs. The choice of a programming model de-

pends mainly on the performance requirements of

the application. This section explores a few com-

mon programming models and evaluates the pros
and cons of each model.

The first step in developing the application is to

break down the application into a series of packet
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processing tasks that can be run in parallel. The

second step is to determine how these tasks can be

allocated to the array of MEs taking into account

the performance requirement for each task. Sup-

pose that, for a given packet processing applica-

tion, the worst case inter-arrival time of packets is
represented by Ta. The worst-case inter-arrival

time corresponds to the maximum rate at which

packets can be expected to arrive for the given

application. In most cases, this corresponds

directly to the arrival rate for minimum sized

packets.

4.1. Multithreading

The most common method of using an ME is to

perform the same task or set of tasks in parallel on

different packets. The hardware support for multi-

threading in an ME, allows the processing of up

to eight packets in parallel. Fig. 2 shows how

multithreading is employed to process packets in

parallel. Each packet is assigned to one thread
which executes the packet processing task on that

packet. When a thread swaps out waiting for any

I/O operation to complete (e.g., reading state from

external memory), the next thread executes the

same task on the next packet.

If a task is allocated to a single ME, then the

granularity of a task should be such that the worst-

case performance requirements for that task ‘‘fits’’
within the capacity of the ME. If f is the ME clock

frequency, Ta is the worst-case performance re-

quirement for the task, and I is the number of

instructions that must be executed for that task,

then the task fits within the capacity of the ME if

Ta > I=f . Because eight packets are processed in

parallel, each thread can take up to 8 � Ta cycles to

complete the processing task on a packet. This

time includes both the active execution time and

the time spent waiting for I/O operations to com-
plete. However, because all eight threads share the

ME processor, each thread can execute for at most

Ta time on any one packet.

One important consideration is to maintain

packet ordering in the presence of parallel pro-

cessing of packets. Packet ordering can be main-

tained using two different approaches. In the first

approach, threads are allocated packets in order
and are also forced to execute in the same order.

This approach is shown in Fig. 2. In this case, the

packet order is maintained as a byproduct of or-

dered thread execution. In the second approach,

threads are allowed to run asynchronously. But

packet order is maintained by using sequence

numbers. Packets are assigned sequence numbers

upon entry into an ME and exit the ME in the
order of increasing sequence numbers.

When the execution time for a fast path packet

processing application is greater than the capacity

of a single ME, multiple MEs must be used in

parallel to implement that application. A given set

of tasks can be assigned to MEs in two different

ways. The first way is to construct a pipeline of

MEs with each ME executing a particular task.
The second way is to use the MEs in a multipro-

cessor configuration where each ME executes all

the tasks. Both these approaches have different

pros and cons and typically a combination of the

Thread 0

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1

Packet n

Packet n+7
Packet n+6
Packet n+5
Packet n+4
Packet n+3
Packet n+2
Packet n+1

Execution Time = 8 X Ta

Ta

Fig. 2. Parallel processing of packets using multithreading within an ME.
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two approaches is used to implement a fast path

packet processing application.

4.2. Pipelining

In the pipelined approach, each function (or
task) of a packet processing application is allo-

cated to a different ME. As shown in Fig. 3, MEs

are arranged in the form of a pipeline. Each packet

traverses the pipeline of MEs.

As explained in the previous section, the total

processing time for a function allocated to an ME

is given by 8 � Ta. Each ME in the pipeline has the

same amount of total processing time allocated to
it. The total processing time for a pipeline of n
MEs is given by 8 � n� Ta.

The advantages of using a pipelined approach

are:

• The state for a given function that is persistent

across packets (e.g., flow tables) can be held

local to the ME in local memory or the local
CAM. This eliminates the latency of accessing

the state in external memory. This also elimi-

nates the complexities associated with sharing

the state with multiple MEs.

• The entire ME program memory space can be

dedicated to a single function. This is impor-

tant when a function supports many variations

that can result in a large program memory foot-
print.

The disadvantages of using a pipelined approach

are:

• The state that is ‘‘local’’ to a packet (e.g., up-

dated packet headers) must be communicated

from each ME in the pipeline to the next. This

results in an undesirable amount of communi-

cation overhead if the packet state is large.

• Each function in the packet processing applica-

tion must ‘‘fit’’ the worst-case performance re-
quirements for that application. This may

make partitioning the application into functions

more difficult.

4.3. Multiprocessing

In the multiprocessing approach, each ME ex-

ecutes all the functions of the packet processing

application. An array of MEs is used in parallel to

simultaneously process packets as shown in Fig. 4.

In this approach, each packet is only handled by

one ME.
In a multiprocessing configuration with n MEs,

the total processing time for the sequence of func-

tions executed by the ME is given by 8 � n� Ta. Of

this time, the total time for active execution of each

thread is given by n� Ta.
The advantages of using a multiprocessing ap-

proach are:

• Packet state can be held locally to an ME. This

allows all the functions local access to the pack-

et state and eliminates the latency of communi-

cating this state between MEs.

• Each function need not fit the worst-case per-

formance requirement for the application. The

performance requirement on a given ME is for

all the functions taken together. This allows
some functions to take more time and use pro-

cessing time from other functions that execute

faster. This leads to a better overall utilization

of the ME execution time.

ME 0

Function 0

ME n

Function n

ME 1

Function 1

Pipeline
Stage 0

Pipeline
Stage 1

Pipeline
Stage n

8 X Ta 8 X Ta 8 X Ta

Fig. 3. Parallel processing using a pipeline of MEs.
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The disadvantages of using a multiprocessing ap-

proach are:

• The ME program memory space must be
shared between multiple functions and can be-

come a bottleneck when many functions are in-

volved.

• Function state that is persistent across packets

is kept in external memory. This makes access-

ing that state and maintaining the state coher-

ency more costly.

4.4. Elasticity buffers

A combination of pipelining and multiproces-

sing is typically used to implement a packet pro-

cessing application. When a packet must be passed

from one ME to the next, an elasticity buffer

(implemented as a circular queue) is used. This

elasticity buffer allows asynchronous execution

between different parallel processing stages and

accommodates jitter in packet processing. So if a

processing stage falls behind in execution, due to a

system anomaly such as an unusually high utili-
zation of a memory unit over a short time period,

the elasticity buffer will allow the packets to be

processed by that stage to be buffered so that the

previous stages are not stalled waiting for the next

stage to complete. Statistically, the stage that falls

behind will be able to catch up with its processing

and system state will normalize.

The IXP2400 processor supports multiple
methods for implementing elasticity buffers for

communication between the pipe stages:

• SRAM/scratch rings: These are multiproducer,

multiconsumer message passing queues main-

tained by hardware.

• Next neighbor rings: These are single producer–

single consumer optimized message passing
queues between adjacent MEs.

4.5. Critical sections

An important consideration in the design of a

packet processing application is the identification

and implementation of critical sections. A critical

section is a section of code where one ME thread

has exclusive modification privileges for a global

resource (such as a location in memory) at any

one time. Different mechanisms are used to im-

plement critical sections between the threads
within the same ME and threads across different

MEs.

Critical sections between threads in a ME

A critical section involves three steps:

• Reading shared data.

• Modifying the data.

• Writing back the modified data.

If the shared data is held local to an ME (e.g., in

local memory), then the critical section is provided
by the fact that threads� execution is non-pre-

emptive. A thread executing a critical section can

Function 0
Function 1

…
Function n

ME 0

Function 0
Function 1

…
Function n

ME 1

Function 0
Function 1

…
Function n

ME n

8 X n X Ta

Fig. 4. Parallel processing using MEs in a multiprocessing

configuration.
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swap out after it has completed the execution of

that critical section thereby ensuring consistency of

data.

If the shared data is held in external memory, a

latency penalty will be incurred if each thread

reads the data from external memory, modifies it,
and writes the data back in sequence. This negates

the benefits of multithreading because a thread

cannot execute a critical section when a previous

thread in the same critical section is waiting for an

I/O operation to complete. To reduce this latency

penalty associated with the read and write, the ME

threads can use the CAM to fold multiple reads

and updates to shared data into a sequence of
‘‘single read, multiple modifications and a single

write’’ operations. The CAM is used to implement

software controlled caching of shared data. Typi-

cally the first thread to enter the critical section

fetches the shared data into local memory. Other

threads use the CAM to determine that the shared

data is in local memory and read and modify the

data locally. The last thread evicts the data from
local memory to external memory. The advantage

of using the CAM is that the latency penalty for

one read and write of the shared data is amortized

over 8 (or more, depending on the cache hit rate)

updates to that data. A second advantage of this

approach is that this allows packet processing to

be effectively performed in parallel even in the

presence of high contention for shared state which
can occur with a burst of packets belonging to the

same flow.

Critical sections between threads across different

MEs

To ensure exclusive modification privileges be-

tween threads across different MEs, the following

requirements must be met:

• Only one ME must be executing a function with

a critical section at one time. Within the ME

that is executing the critical function, multiple

threads can use the CAM as explained above

to maintain coherency.

• The granularity of the function with the critical

section must be such that this function fits the
worst-case packet processing requirements for

the application.

In the pipelined approach, each ME is assigned

a different function and each function is sized to

meet the performance requirements of the appli-

cation. Therefore, mutual exclusion between MEs

is not an issue.

In the multiprocessing approach, an ME should
not begin executing a function with a critical sec-

tion unless it can be ensured that its ‘‘previous’’

ME has transitioned out of the critical section.

This can be accomplished by placing a fence

around the critical section using inter-thread sig-

naling. When all threads in a given ME are fin-

ished executing a critical section, the first thread of

the next ME is signaled to begin executing the
critical section.

In summary, several programming models are

available to the application developer to develop

the fast path packet processing applications on the

IXP2400. A combination of the multithreading,

pipelining and multiprocessing approaches can be

used to implement the application on the array of

MEs. One of several hardware-provided mecha-
nisms can be used for elasticity buffers. Critical

sections are realized using the ME CAM to im-

plement software controlled caching. Packet order

can be maintained using ordered thread execution

or using packet sequence numbers. When a fast

path application is mapped onto the IXP2400

microengines, the choice of the programming

model should be guided by an objective to mini-
mize the amount of state communicated between

different parallel processing stages. This has the

benefit that stages can run in parallel without too

much synchronization between them and also the

added benefit that the load on the system resources

in the IXP2400 is minimized.

5. Example application: media gateway using TDM

over AAL2

In this section we describe the design and im-

plementation of a media gateway application on

the IXP2400 and discuss some of the software

challenges presented by this application. A media

gateway is responsible for internetworking be-
tween the circuit-switched TDM voice network

and the packet-switched network. The packet-
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switched network can be either an ATM network

or an IP network. The example application dis-

cussed in this section, assumes an ATM network.

However, the design is equally applicable to a

media gateway that interfaces with an IP network.

As shown in Fig. 5, an ATM media gateway
connects the circuit-switched TDM network with

the cell-switched ATM network. Several TDM

voice circuits are aggregated onto an ATM virtual

circuit using the AAL2 adaptation layer (called an

AAL2 trunk). Several media gateways can be in-

terconnected using a mesh of AAL2 trunks.

The packet processing flow in an ATM media

gateway is shown in Fig. 6. The packet processing
tasks are performed in two different domains. An

array of media signal processors (MSPs––which

are DSPs specialized for the task of processing

voice [2]) handle the conversion of circuit-switched

TDM into voice packets. The MSPs are responsi-

ble for the termination of TDM circuits, aggrega-

tion of TDM voice samples into voice packets at

specific sampling intervals (e.g., 5, 10 ms, etc.), and

voice signal processing for compression, echo

cancellation, etc. The NP handles the aggregation

of multiple voice channels into an ATM virtual
circuit. As shown in Fig. 6, the NP is responsible

for converting voice packets received from the

MSPs into AAL2 CPS layer packets and multi-

plexing them onto an AAL2 trunk. In the reverse

direction, the NP is responsible for creating voice

packets, smoothing out the network induced jitter

and playing back the voice packets to the MSPs at

the specified sampling interval. The Fig. 6 shows
the transformation of TDM voice into ATM cells.

TDM voice channels are packetized into per-

channel voice packets by the MSPs. The MSP adds

a header to each voice packet to enable the NP to

identify the voice channel and voice encoding

TDM Network

TDM Network

TDM Network

ATM Network

Media
Gateway

Media
Gateway

Media
Gateway

AAL2 Trunk

AAL2 Trunk
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Fig. 5. Overview of a media gateway operation.
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Fig. 6. Packet processing flow in an ATM media gateway.

M. Venkatachalam et al. / Computer Networks 41 (2003) 563–586 573



information. Each voice packet is mapped into one

AAL2 CPS packet by the NP. Multiple, CPS

packets are multiplexed into one ATM cell.

In the next two sections, we focus on the NP

and explain in detail how the ATM media gateway

application was implemented on the IXP2400
network processor.

5.1. MSP to ATM processing design

Fig. 7 illustrates the major components, data

structures and control and data flow for the MSP

to ATM direction. Thin dotted lines within the

figure represent a relationship between data items.
Solid lines represent data flow, and thick dashed

lines represent control flow.

The MSP Rx component receives voice packets

from the MSPs. It reads the header that is created

by the MSP and extracts the channel-specific in-

formation that describes the voice packet. The

SSCS Tx component implements the ITU-T

I366.2 AAL2 SSCS layer specification [5] for voice.

It accesses two main data structures in performing

this processing. First, it looks up the entry in the

SSCS Channel Table that corresponds to the

AAL2 channel over which the voice packet is to be

transported. The SSCS Channel Table contains an
entry for each SSCS channel. Each entry contains

the CID of this channel, the VC within which it

exists, the profile for this call, and the SSCS se-

quence number. Next, the SSCS Tx component

searches the profile table that describes the profile

used for this channel for the entry that correspond

to this voice packet. The profile tables are read-

only tables that describe the UUI field encoding,
sequence number interval, and length for each

audio encoding algorithm that can be used within

the profile. Within a profile table there is an entry

for each encoding algorithm supported in the

profile. Each voice packet must match one of the

entries with the profile. A profile table exists for

every profile supported by the application.

SSCS Channel
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Fig. 7. MSP-to-ATM packet processing design.
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The CPS Tx implements the ITU-T I363.2

specification [4] for the AAL2 CPS layer. It en-

capsulates SSCS packets in CPS packets and packs

CPS packets into AAL2 cells. The packing of CPS

packets into AAL2 cells is driven by the arrival of

SSCS packets from the SSCS Tx component and
also by the firing of the CU timer for the virtual

circuit. The Timer_CU component implements the

CU timer functionality. It accepts requests to set,

cancel, and reset the timer for specific VCs. It is

also responsible for firing the individual CU timers

that are set (and canceled) for individual VCs. The

CU Timer Structure is a calendar queue data

structure used to store the CU timer entries for
active VCs. The timers are stored in buckets,

where each bucket is associated with a time inter-

val. The Timer_CU component wakes up at the

end of each time interval and sends CU timer ex-

pired messages to the CPS Tx component for each

VC that had a CU timer set to go off during the

previous time interval. Finally, the ATM Tx

component performs the ATM header processing
and transmits the cell.

5.2. ATM to MSP design

Fig. 8 illustrates the major components, data

structures, and control and data flow in the ATM

to MSP direction. The ATM and CPS Rx com-

ponent receives ATM cells. The ATM and CPS Rx

component reads the contents of the ATM cell

into the ME and steps through the CPS packets

contained within. It copies each CPS packet into a

packet buffer, maps the VPI/VCI and CID fields to

the channel id, and queues each packet buffer for
the SSCS Rx component to process. If a CPS

packet is split across ATM cells, the ATM and

CPS Rx component stores the reassembly context

in the VC context, in order to allow the packet to

be completed when the next cell for this VC ar-

rives.

The SSCS Rx component performs the SSCS

processing. It uses the channel id to access the
SSCS Connection Context for this channel. The

context contains the sequence number of the pre-

viously received SSCS packet and a pointer to the

table that describes the profile for this connection.

This profile table entry specifies the encoding al-

gorithm that was used, and information used to

determine the expected sequence number and

corresponding timestamp for this packet. SSCS Rx
checks the sequence number against the one re-

ceived in the packet and generates the time stamp.

If there are no errors, the packet is passed to the

SSCS2MSP component. The SSCS2MSP com-

ponent creates the MSP packet header from the

information that the ATM and CPS Rx and SSCS

Rx components have extracted from the packet
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and profile table. It then passes the packet to the

jitter buffer component.

The jitter buffer component enqueues the packet

into a per-channel queue. The purpose of the jitter

buffer component is to eliminate some of the jitter

introduced into the voice packet stream in the
ATM network. It does this by placing packets into

proper time sequential order, applying a specified

jitter delay, and playing them back at the proper

rate (with jitter removed).

The MSP Tx Scheduler component is respon-

sible for scheduling the transmission of MSP

packets to the farm of MSPs. The transmission

of MSP packets is triggered by periodic re-
quests received from the farm of MSPs for voice

packets from a specific channel. For each re-

quested channel, the MSP Tx Scheduler compo-

nent asks the jitter buffer component to dequeue a

packet from the jitter buffer. Finally the MSP Tx

component transmits voice packets to the MSP

farm.

5.3. Challenges

In this section we discuss some of the challenges

that must be surmounted in developing a media

gateway application on a NP.

5.3.1. Processing asynchronous inputs within many

contexts

The ATM media gateway application must

support a large number of AAL2 virtual circuits

(VCs). There is a requirement that within each VC,

cells/packets be processed in the order in which

they were received. (In the MSP to ATM direction,

voice packets destined for a VC should be pro-

cessed in order, while in the ATM to MSP direc-

tion, ATM cells received on a VC must be
processed in order.). The data rates within VCs

can be fairly small, so at any given moment the

application is holding/processing cells/packets

from a small subset of this total number of VCs.

Because there are many VCs, the packets that the

application is processing/holding at a given time

are most likely all from different VCs, although

this is not guaranteed and cannot be assumed by
the application. The challenge is how to serialize

the processing of cells/packets within each VC,

while allowing cells/packets from different VCs to

be processed in parallel.

Another problem is that the CPS Tx component

must process voice packets received by the system

as well as react to the expiration of the CU timer.

CU timer expiration events are neither regular nor
predictable, since they are a function of the traffic

patterns on individual VCs. The amount of pro-

cessing required to process a packet that has ar-

rived is much larger than that required to react to

the expiration of the CU timer.

We solve the problem of having to serialize the

processing of packets/cells within each VC by dy-

namically binding VCs to threads. A thread re-
ceives a packet or message, determines which VC it

belongs to, checks to see if any other thread is

already processing packets/messages for that VC,

and locks the VC if it is not already locked by

another thread. The thread then processes the

packet or message. When it has completed pro-

cessing the packet or message, it checks to see if

any other packets or messages have been queued
for it to process (associated with this same VC).

The thread processes any packets or messages that

have been queued, and when there is none left, it

unlocks the VC. On the other hand, if another

thread has already locked the VC, the packet or

message is queued for this other thread to process.

The process of locking a VC, unlocking a VC,

and checking to determine if a VC is locked must
be performed in an atomic fashion in order to

ensure that two threads do not lock the same VC.

In our design the entire component is implemented

within a single ME, so we use a built-in CAM for

storing the identity of the VC that is locked by

each thread, allowing the operations of locking,

unlocking, and checking to see if a VC is locked, to

be performed in one operation.
We found that the IXP2400 provides good

support for the asynchronous programming model

used in the ATM media gateway application.

Central to this support are the CAM and local

memory that are included in each ME. The

IXP2400 also provides the basic support required

to distribute this type of processing across multiple

MEs. It provides atomic test and set operations in
the shared SRAM, which can be used to imple-

ment locks.
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5.3.2. Bit- and byte-level memory access

The CPS header and AAL2 cell are tightly

packed structures, where fields are not aligned on

4-, 8-, or even 1-byte boundaries. This means that

the VoAAL2 application must read and write
from/to arbitrary bit and byte addresses as it cre-

ates/parses CPS packet headers and packs/unpacks

CPS packets from AAL2 cells. This presents a

challenge for any processor because memory sys-

tems generally support reads/writes of 4- or 8-byte

chunks of data, addressed on 4- or 8-byte bound-

aries.

Our implementation utilizes specialized byte
alignment hardware of the IXP2400 processor to

merge and align the CPS packets as we pack/

unpack them into/from AAL2 cells. Bit fields are

accessed utilizing masks and shift operations pro-

vided by the arithmetic logic unit (ALU). Efficient

support for such data access is critical to support

applications such as VoAAL2, where packets are

small and protocol overhead must be minimized.
The problem of having to access unaligned data

is solved by some combination of providing spe-

cialized hardware instructions and simply provid-

ing sufficient processor speed to allow the

applications to perform the required data manip-

ulations within the required time budget. We

found that the IXP2400 provides a reasonable

combination of processing speed and specialized
instructions to support this application.

5.3.3. Jitter buffer

The purpose of the jitter buffer is to receive

voice packets, place them in proper time sequential

order, provide a specified jitter delay, and then

present them for transmission. The jitter buffer

must be large enough so that the slowest packets
can arrive in time to be played out in the correct

sequence. On the other hand, the jitter buffer must

be small enough such that the delay introduced is

minimized. In order to address these conflicting

requirements, the jitter buffer can be dynamically

resized based on measurements of actual network

jitter. On lightly loaded paths, this allows for a

minimum jitter delay and a higher quality of
speech with less noticeable turnaround delay. On

congested paths, the jitter delay can be increased

so that fewer packets are missed or dropped due to

the irregularity of their timing but with a more

noticeable turnaround delay.

Implementing a jitter buffer offers some new

challenges when compared to traditional first in,

first out (FIFO) queues. The jitter buffer is a sorted

queue based on the timestamps of arriving voice
packets. Therefore, packets can be inserted in the

middle of the jitter buffer. Packets can be dropped

from a jitter buffer for two reasons: (1) the buffer is

full or (2) the packet is received too late. When

packets are dropped because the queue is full, they

are dropped from the front of the queue (packets

with the oldest timestamp are dropped). Because

the queue is allowed to contain packets repre-
senting a fixed time interval (the jitter delay value),

the arrival of one voice packet may cause multiple

older voice packets to be dropped if the time dif-

ference between the newest packet�s timestamp and

the oldest packet�s timestamp is greater than the

jitter delay value. Packets with duplicate time-

stamps are dropped. A further challenge is that a

separate queue must be maintained for each of the
many thousands of voice channels that are han-

dled by the application.

Our implementation uses circular queues to

implement the jitter buffer. Each circular queue

has pointers to the packets with the oldest and

newest timestamps. The position into which a new

packet is inserted is a function of the difference

between the packet�s timestamp and the oldest
packet�s timestamp along with the coded interval.

To calculate this position we need to divide the

timestamp difference by the coded interval. We

implement this using fast reciprocal multiplication

utilizing the multiplier of the IXP2400 microen-

gines. Once the position is calculated, the insertion

of the packet into the jitter buffer is the same as an

insert into an array of the order O(1).
The circular queues may have ‘‘holes’’-positions

with no packets. When a packet must be removed

from the jitter buffer, it is necessary to quickly skip

over the holes to get to the position with a valid

packet. We implement this search for a valid

packet in O(1) time by making use of the Find

First-Bit Set (FFS) instruction provided by the

IXP2400 microengines. By maintaining a bit-mask
of positions in the circular queue with valid

packets, and using the FFS instruction, we can
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remove the next valid packet from the jitter buffer

in constant time.

In summary, the jitter buffer implementation

takes advantage of the hardware features pro-

vided by the IXP2400 network processor to im-

plement, insert, and remove operations in O(1)
time. This allows for an efficient jitter buffer im-

plementation that scales to a large number of voice

channels.

6. Example application: ATM traffic management

6.1. Application overview

Traffic management in ATM networks is spec-

ified by the ATM forum in the Traffic Manage-

ment Specification [9]. The TM4.1 specification

defines six service categories, which are used to

provide different levels of QoS guarantees to dif-

ferent types of traffic. Each service category is

defined in terms of the characteristics of the traffic
that can be afforded this service (called the traffic

contract) and the types of QoS to be provided to

the traffic in the category, provided the traffic

conforms to the specified traffic contract.

The key ATM service categories are as follows:

1. The constant bit rate (CBR) service category

provides a service similar to that provided by
a TDM circuit. CBR traffic is characterized by

a peak cell rate and cell delay variation toler-

ance. A conformant CBR traffic stream cannot

exceed its peak rate or a maximum cell delay

variation tolerance. The traffic is guaranteed

very low losses and a maximum cell transfer de-

lay. Voice and circuit emulation services are po-

tential users of this service.
2. The real-time variable bit rate (rtVBR) service

category provides loss and delay guarantees to

traffic whose bit rate is variable. The traffic is

characterized by a peak rate, a sustainable rate,

and a maximum burst size. A conformant traffic

stream must not exceed is sustainable rate over

long timescales and can burst at rates up to its

peak rate up to its maximum burst size. The
traffic is guaranteed very low losses and a max-

imum cell transfer delay. Real time applications

such as voice and video are potential users of

this service.

3. The nonreal-time variable bit rate (nrtVBR)

service category is intended for non-real time

applications with a bursty traffic pattern. The
traffic and conformance criteria for this service

are characterized in the same way for the rtVBR

service category. The network offers a loss guar-

antee, but no packet delay guarantees.

4. The unspecified bit rate (UBR), available bit

rate (ABR) and guaranteed frame rate (GFR)

service categories are intended for transport of

data traffic. Simple-UBR is a best effort service,
where no restrictions are placed on the traffic

and the network provides no guarantees. There

are other variations of UBR like UBR with

PCR shaping, UBR with Min desired cell rate

shaping and differentiated UBR that do provide

some minimal guarantees for the traffic. ABR pro-

vides a loss guarantee and utilizes closed loop

feedback control to throttle the traffic sources
in order to avoid losses in the network. Finally,

GFR is intended to provide a service similar to

that offered by Frame Relay for IP applications.

The TM4.1 specification describes a number of

mechanisms for implementing traffic management

within the network. Call admission control (CAC)

is used to determine whether the network has the
resources to support a connection and to reserve

these resources for the connection. Policing (UPC)

is performed at the edges of the network to make

certain that the traffic entering the network con-

forms to its traffic contract. Finally, shaping is

used to transform a traffic stream into one that

meets a different traffic contract.

The concept of policing and shaping are illus-
trated in the context of a DSL Access Multiplexer

(DSLAM) in Fig. 9. We have several customer

premises equipment (CPE) which connect to the

DSLAM on their unique virtual circuits (VC-1 to

VC-n). The number n can be very large depending

upon the number of CPEs. In the simplest case,

each of the CPEs will have a pre-negotiated, end-

to-end traffic contract for their VCs along with the
service category. Often, the CPEs do not adhere to

this traffic contract and burst cells at rates faster

than they are supposed to. The DSLAM imple-
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ments traffic shaping on the egress path, where it

needs to make sure that the traffic on the indi-
vidual VCs going out the wire toward the ATM

backbone conform to the traffic contract.

The end ATM node in the ATM backbone

monitors the cell arrival patterns on the individual

VCs. If the traffic shaping by the DSLAM does

not conform to the pre-negotiated traffic contract,

the policer at the ingress of the end ATM node

drops the cells that do not conform to the traffic
profile.

6.2. Implementation overview

Several ASIC-based traffic management solu-

tions exist today [1]. In this section, we describe an

implementation of traffic shaping on the IXP for

the basic service categories of CBR, VBR and
UBR. The basic algorithm used for shaping is the

generic cell rate algorithm (GCRA). GCRA has

two parameters T and s. The inverse of the first

parameter represents the rate allocated to the flow

by the network. The rate here could mean either

peak rate or average rate depending upon the

service category. The second parameter s repre-

sents the tolerance around the theoretical arrival
times of the cells in a flow. The goal of GCRA is

to make sure that the bandwidth used for the

traffic from the given flow never exceeds the

pre-configured rate and the traffic never violates

the tolerance limits in the cell arrival times. The

end result of shaping is the ‘‘earliest departure
time’’ for the cell being shaped.

The actual shaping algorithm, which we im-

plement in the ME software is as follows:

GCRA(T, s) on the arrival of a new

cell:

Working variables:

t ¼ actual cell arrival time

TAT ¼ theoretical cell arrival

time

t1 ¼ earliest departure time

If (t > TAT� s)

t1 ¼ t;
Else /*(t < TAT� s)*/

t1 ¼ TAT;
GCRA (T,s) on the departure of a cell:
Working variables:

td ¼ actual cell departure time

TAT ¼ theoretical cell arrival

time

If (td > TAT)

TAT ¼ td þ T;
Else /*(td <¼ TAT)*/

TAT ¼ TATþ T;

Once the earliest departure time is obtained for

a cell, we need to store these times in an efficient

manner and schedule the cells based on these
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Fig. 9. Concept of ATM traffic management in the context of a DSLAM.
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times. The key concept for the scalable imple-

mentation of such a data structure is the concept

of time queue, which we implement in software.

6.3. Time queues

Motivation

Traffic shaping based on TM4.1 is essentially a

non-work conserving scheduling policy. The cells

from the contract-based VCs like CBR-VCs and

VBR-VCs should not be scheduled simply because

there are cells available on the VCs and the out-

going link bandwidth is idle. Instead, the cells need

to wait in the transmission queues until the de-
parture time for these cells has arrived.

Each cell takes a fixed amount of time to go out

on the wire. We call this time, a cell transmission

slot. The infinitely long time axis can be viewed as

a sequence of endless cell transmission slots as il-

lustrated in Fig. 10. We can however only store a

certain number of these endless cell transmission

slots in memory. This finite number that we store
in memory at any given point in time is called the

time horizon. Once a cell transmission slot expires

in the current time horizon, it becomes the latest

cell transmission slot for the next time horizon. As

shown in Fig. 10, time slot a in the current time

horizon, upon expiry transforms to timeslot a0 for

the next time horizon.

In order to successfully implement conformant
traffic shaping functionality, we need to convert

the above concept of time horizon into the time

queue data structure.

What is a time queue?

Time queues are implemented in software and

are depicted in Fig. 11. Each time queue is nothing

but an aggregation of a programmable number

of cell transmission slots and hence represents

an interval in time. The aggregation is performed

to reduce the total number of time queues and

to efficiently handle the resulting data structure

complexity.
Each time queue holds all the cells that are in-

tended to depart the system during this time in-

terval. Thus, a set of time queues represents a long

time interval. As time passes, one time queue is

emptied of cells that get transmitted and the clock

advances to the next time queue. Eventually, the

clock will wrap around and the time queues will

get reused with each time queue representing a new
time interval in future. Some of the time queues

may have more cells queued up than what could be

transmitted in the time interval, since there is no

admission control mechanism devised for queuing

cells into the time queues. Further, each port has

two sets of time queues, in order to differentiate

the cells in terms of delay and loss properties of the

service categories. The scheduling of cells from
these two sets of time queues is in strict priority

order. The resulting data structure is illustrated in

Fig. 11.

The concept of aggregating the cell transmission

slots into a time queue has its own advantages and

disadvantages. The main advantages are that the

number of time queues is reduced and one can also

expect to see a good averaging behavior in terms
of the occupancies of these time queues. The dis-

advantage to aggregating cell slots into time

queues is that there would be non-determinism in

the departure times of the cells. A cell that needs to

depart later than time t, could depart as early as

(t � N þ 1), where N stands for the aggregation

factor of the time queue. If N is chosen properly,

Infinite Time Axis

Ti me Axis viewed as endless cell  tx slots

Finite Time Horizon Finite  Time Horizon

a              a'

Fig. 10. Concept of the time horizon.
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this amount of non-determinism in the departure

times can be kept within an acceptable limit. It is

also to be noted that setting N ¼ 1 would totally

eliminate this problem.

With the view of pros and cons of this approach

in mind, our implementation of the TM4.1 stan-

dard proposes that N be made programmable with
some default value.

There are a fixed number of time queues in the

system, that can be derived based on the link rate,

the slowest VC bit rate and the aggregation level of

the time queue. The sum total of all the time in-

tervals represented by the all time queues is noth-

ing but the time horizon. Here is an example: If the

slowest VC rate supported in the system is VCslow,

the aggregation level of each time queue is N and

the link rate is LR, then the number of time queues

is given by 2 � LR=ðVCslow � NÞ. The factor of 2 is

needed because we have two sets of time queues,

one for real time traffic and the other for non-real
time traffic. The real time traffic gets strict priority

over the non-real time traffic.

Given that each time queue has an aggregation

of N cell transmission slots, the architecture does

not provide a means to guarantee that no

more than N cells will be stored in that time queue.
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Instead each the time queue is implemented as a

linked list in software to accommodate the cases

where we could have more than N cells stored in a

time queue. This approach simplifies the design a

lot, avoiding unnecessary timers and state main-

tenance, and makes it highly scalable to a large
number of time queues (i.e., slower VC rates than

the slowest one assumed).

6.4. Software architecture for traffic management

Fig. 12 shows the overview of the architecture.

We have divided our traffic management solu-

tion in four modular blocks, namely, queue man-

ager (QM), shaper, writeout and scheduler.

The ATM cells flow through this pipeline as

follows (Fig. 12):

• The buffer management (BM––not part of the

TM4.1 blocks) module is responsible for decid-

ing whether to accept a cell or a frame (in case

of AAL5) based on a mechanism such as

Weighted RED [8] or simple tail-drop. For sim-

plicity, we will refer to each unit of data as a

packet (could be a single cell or a frame reas-

sembled out of multiple cells), If the packet is

accepted, the BM module passes it onto the

QM for queuing in the appropriate queue based
on the packet�s virtual circuit identifier.

• The QM is responsible for both enqueuing the

packet and dequeuing the cells of the packet.

The QM maintains a set of queues called the

virtual circuit queues (VCQ). Each ATM virtual

circuit will have a corresponding VCQ. The QM

lets the shaper know of all the enqueues and de-

queues in a transparent manner.
• The shaper operates in a slightly different man-

ner for the enqueues and dequeues that happen

via the QM. When there is a fresh enqueue into

a VCQ that has no data, the shaper applies

GCRA based shaping algorithm for the VCQ,

to obtain the earliest departure time of the head

of the line cell from the VCQ. It then communi-

cates this time to the writeout block. When there

is a dequeue from the VCQ, the shaper first up-

dates the cell theoretical arrival time, based on
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the departure time of the last cell. If there are

any cells present in the VCQ after the dequeue

happens, the shaper executes the GCRA shap-

ing algorithm and obtains the earliest departure

time of the head of the line cell and communi-

cates the time to the writeout block.

• The writeout block receives the earliest depar-

ture times of head of the line cells in the various

VCQs, from the shaper. It then computes the

time queue into which the cell has to be written
based on the earliest departure time and the ser-

vice category. If the traffic is rt-VBR or CBR,

the VCQ to which the cell belongs is written

into the highest priority time queue (called real

time time-queue). If the traffic is nrt-VBR, the

VCQ to which the cell belongs is written into

the second-priority time queue (called non-real

time time-queue). Once the write is completed,
the length of the corresponding time queue is

incremented. The way time queues are designed,

there could be many VCQ entries that get writ-

ten into the same time queue. We do not use

complicated timers to track the occupancies of

the various time queues.

• Shaper and writeout operations are invoked for

all traffic classes, except simple-UBR.
• The scheduler simply traverses the time

queues and schedules cells for transmission by

reading the VCQ entries from the two sets of

time queues per port, based on the current time.

If there are no entries available for scheduling

on that port for that time-slot, the scheduler

then checks the simple-UBR queues for that

port. There are a configurable number of
simple-UBR queues per port and the sched-

uler schedules from them in priority order.

Whenever there is flow control asserted on a

particular port, no cell is transmitted from that

port.

• Once the scheduler determines the VCQ from

which the cell needs to be scheduled, it informs

the QM of this VCQ. The QM then goes ahead
and dequeues the pointer to the buffer descriptor

for the head of the line cell for this VCQ. It then

communicates this pointer to the transmit block.

• The transmit block does the actual transmission

of the cell payload onto the wire through the

media switch fabric.

Problems with very high bit rate VCs

The basic algorithm described above runs into

some problems for high bit rate VCs, the config-

ured rates for which are comparable to the line

rate. The reason for this is as follows:
The head of the line cell of each VC is written

into the time queue. Once this cell is scheduled out

from the time queue, the next cell from this VC is

shaped and written into the time queue and so on.

Since the time queues are stored in SRAM, there is

a certain amount of latency involved in writing

and reading from the time queues and providing

feedback for the next cell to be shaped on this VC.
If this feedback latency happens to be greater than

the inter-departure times of the cells of the VC

(which is very small for high bit rate VCs), we will

not be able to guarantee the QoS for this VC.

Hence the SRAM time queues have a problem for

very high bit rate VCs, whose cell inter-departure

times are comparable to the inherent read-write

latencies of the NP.

Solution for high bit rate VCs

The solution for high bit rate VCs is to use the

local memory extensively, knowing that the turn-

around times of such VCs are very small and hence

can be fit into local memory.

The idea is to maintain a separate time queue

for high bit rate VCs in local memory. This time
queue is a static schedule of high bit rate VC

transmission slots that wrap around in a circular

fashion. The number of entries in this time queue

is governed by the rate of the ‘‘slowest’’ high bit

rate VC. Each slot of this time queue is pre-com-

puted with a VC entry. The length of the high bit

rate VCs is also stored in local memory. At the

beginning of every cell transmission slot, the high
bit rate time queue is examined to see which high

bit rate VC is eligible to be transmitted. If there are

no cells to be transmitted from this queue, cells are

transmitted from the SRAM time queues or the

UBR queues.

6.5. Details of the software blocks

Queue manager

The QM block maintains all the VCQs in

the system. The VCQs are stored in SRAM. The
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payload enqueued in the VCQ is actually stored in

DRAM. The QM enqueues and dequeues the

pointer to this payload into the VCQs in SRAM.

The SRAM offers hardware support for efficient

enqueing and dequeing payload pointers from the

VCQs by providing a 64-entry queue array cache.
The number of VCQs can be very large, and

hence the QM operates by caching the state of the

16 most recently used queues in the hardware

queue array of the SRAM controller. It can then

enqueue and dequeue into the cached queues using

single instruction commands. There are no inher-

ent scalability limits on the number of queues than

can be stored in the QM due to this approach.
The main function of the QM is to enqueue

frames or cells into the VCQs and to dequeue cells

from the VCQs. Whenever a new frame or a cell

needs to be enqueued, the pointer to this payload

is provided to the QM along with the VCQ into

which the cell has to be enqueued. The queue

manager checks its local CAM to see if the VCQ is

cached as a hardware queue. If not, it evicts the
LRU queue from the hardware cache and brings in

the required VCQ. Once the required VCQ is

available in the hardware cache, the QM enqueues

the frame or the cell using a single instruction

enqueue command.

The dequeue operation happens on the same

lines. The key point to note however is: the QM

can effectively virtually chunk up a frame into
constituent cells (needed for AAL5) by the concept

of ‘‘cell dequeue’’, without spending computes on

physically chunking up the frame. In order to

achieve this, the QM maintains a count of the

number of cells in the enqueued frame. It then

dequeues the pointer to this frame until this count

reaches zero.

The QM also communicates all the enqeue/de-
queue information to the shaper along with the

queue state transition information––i.e., whether

the queue cell count went empty after a dequeue

operation on the VCQ or whether it became non

empty after an enqueue into the VCQ.

Shaper block

The TM4.1 shaper receives input from the QM
upon enqueue and dequeue. In addition, it receives

the number of cells enqueued and also information

on whether there has been a queue state transition

for this queue.

By looking at the VC number, the shaper gets to

know whether the VC is high bit rate or low bit

rate. For low bit rate VCs, the shaper determines if

there has been a transition of the queue state (from
empty to non-empty or vice versa) from the mes-

sage. If there has been a transition, and the mes-

sage was a enqueue message or if there has been no

transition and the message was dequeue message,

the shaper invokes the GCRA shaping function.

The shaping function computes the earliest de-

parture time for the cell using the GCRA algo-

rithm. It passes on the earliest departure time and
the VC number to the TM4.1 writeout block.

For high bit rate VCs, the length of the VCQ

and the VCQ are communicated to the writeout

block.

Writeout block

For the low bit rate VCs, the write out block

computes the time queue into which the cell needs

to be written based on the earliest departure time

that it receives from the shaper. It writes out the

cell into the real time time-queue if the traffic is

CBR or rt-VBR and the non-real time time-queue
if the traffic is nrt-VBR.

For high bit rate VCs the, writeout updates the

cell count of this VC queue in the local memory.

Write-out and scheduler blocks exist on the

same ME so that they can share common state like

the lengths of the high bit rate VCs.

Scheduler block

The scheduler maintains two data structures––

the real time departure queue (RTDQ) and the

non-real time departure queue (NRTDQ). These

two data structures are maintained as software

rings in the local memory. As real time ticks and
cells are transmitted, every N cell transmission

slots, the cells of the current real-time time queue

in SRAM move to the RTDQ and the cells of the

current non-real time time-queue move to the

NRTDQ. RTDQ has a higher priority over

NRTDQ. Note that cells do not have to be phys-

ically moved from the TQ to the DQ––moving the

TQ pointer into the DQ would be sufficient.
The scheduler block schedules out cells from the

departure queues and the simple-UBR queues. It is
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essentially a priority mechanism with the highest

priority for the high bit rate time queue, followed

by RTDQ, NRTDQ and the simple-UBR queues.

Other alternatives that could be implemented for

scheduling among the simple-UBR queues are

weighted fair queuing, round robin scheduling, etc.

6.6. Key challenges and conclusions

In the previous few sub-sections, we described

the implementation of an ATM TM4.1 based

traffic shaping algorithm. The following is the

summary of the key challenges that need to be

addressed for such an implementation:

1. Scalability with the number of VCs: In a realistic

ATM traffic management system, one could

have several thousand VCs. Care should be

taken to ensure that all the components of the

traffic management system are scalable with

the number of VCs. We address this challenge

by making the queue manager inherently scal-
able to any number of VCs. Also, the time

queue data structure is not dependent of the

number of VCs, but just the slowest VC in the

system.

2. Scalability with the VC rates: The solution

needs to be scalable to a single VC running at

the output wire rate and at the same time down

to several VCs running at a preconfigured min-
imum VC rates. We address this challenge by

making sure that the time horizon of the system

covers the cell inter-departure times of the slow-

est VCs. For scalability to high bit rate VCs, we

have a solution that bypasses the feedback loop

latencies between the shaper and the scheduler

blocks.

3. Cell order maintenance: We need to ensure that
the traffic management system does not re-order

cells on each of the VCs. Cell re-ordering can

have disastrous effect on the application per-

formance and throughput at the end hosts.

This challenge is addressed by following the

hyper task chaining programming model (Sec-

tion 4).

4. Achieving required performance: The traffic
management system needs to guarantee the tar-

geted performance. In other words, the traffic

management software needs to be able to han-

dle cells arriving back to back at the wire rate.

In such a scenario, we need to make sure that

each of the ME finishes its processing every cell

arrival time and hands off the cell to the next
ME. The cell arrival time translates to a fixed

number of processing cycle budget per ME.

We make sure that the layout of the software

blocks on the MEs is determined by the pro-

cessing cycles requirement for each of the

blocks and the sum total of the cycle require-

ments of the blocks mapped onto an ME is less

than the processing budget available on the
ME.

7. Conclusions

NPs are an emerging field of programmable

processors that are optimized to implement packet

processing functions in networking devices. The
programmable nature of NPs also brings its own

challenges. To handle multiple media interfaces

and/or to handle data units arriving back-to-back

at high data rates, an NP must perform fast I/O

and memory operations such as packet storage,

table lookup, and extracting fields in packet

headers. This paper provides an overview of Intel�s
second-generation NPs, the programming model
involved, and describes how to use the model

to implement two applications on a distributed

multiprocessor architecture. The programming

model and examples of applications demonstrate

the power and flexibility of the distributed, multi-

processor architecture of the IXP 2000 series

family.
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