
66

In the past two years, several multi-
ple data path and pipelined digital signal
processors have been introduced to the mar-
ketplace. This new generation of DSPs takes
advantage of higher levels of integration than
were available for their predecessors. It also
incorporates multiple execution units on a sin-
gle core as well as deep execution pipelines.
For an introduction to recent trends in DSPs
see Eyer and Bier,1 and for comprehensive
analysis on DSP chips see the DSP buyer’s
guide2 and Levy.3

Here, we describe a new parallel DSP archi-
tecture called TigerSHARC.4,5 We focus on
the computational aspects of its core and on-
chip memory architecture. To sustain the high
computation rates of cores with multiple exe-
cution units, memory subsystems must scale
proportionately. We based our solution to the
high-bandwidth demands of this parallel DSP
core on a memory architecture characterized
by what we call short-vector processor tech-
niques. These techniques are essentially small-
width vector processor interfaces.

In addition to the architectural description,
we also present an application example of a
finite-length impulse response, or FIR, filter.
We use this example to illustrate a technique
used to map this class of algorithms to a par-
allel, vector-oriented processor. The FIR fil-

ter is a representative member of a large class
of DSP algorithms, namely any structure with
delay lines such as infinite-length impulse
response, or IIR, structures, equalizers, and
multirate filters, all of which share similar
solutions. (Two-dimensional extensions of
these algorithms, such as 2D filtering and con-
volution used in imaging, can also be solved
using extensions to the techniques presented
here.) To efficiently map this class of algo-
rithms to this parallel DSP, we must address
two related problems: the distribution of com-
putation among several execution units, and
the provision of adequate alignment between
data and filter coefficients.

To map the delay line structure of the FIR,
we apply an algorithmic transformation to the
algorithm, and, as a result, expose its paral-
lelism in a form suited to the target architec-
ture. This algorithmic transformation
produces a high efficiency implementation by
relying only on aligned short-vector memory
accesses. This example also shows that the
conventional single-instruction, multiple-data
(SIMD) dispatch mechanism, although very
effective in simple linear algebra and matrix
operations, may be overly restrictive when
applied to this class of DSP algorithms. And,
as a result, non-SIMD execution is required
to achieve high efficiency.

Jose Fridman
Zvi Greenfield

Analog Devices, Inc.

0272-1732/00/$10.00  2000 IEEE

THE TIGERSHARC DSP
ARCHITECTURE

THIS HIGHLY PARALLEL DSP ARCHITECTURE BASED ON A SHORT-VECTOR

MEMORY SYSTEM INCORPORATES TECHNIQUES FOUND IN GENERAL-PURPOSE

COMPUTING. IT PROMISES SUSTAINED PERFORMANCE CLOSE TO ITS PEAK

COMPUTATIONAL RATES OF 900 MFLOPS (32-BIT FLOATING-POINT) OR 3.6 BOPS

(16-BIT FIXED-POINT).

TigerSHARC
The first implementation of

the TigerSHARC architecture
is in a 0.25-micron, five-level
metal process at 150-MHz
core clock speed. It delivers
900 Mflops (109 floating-point
operations per second) of sin-
gle-precision floating-point
performance, or 3.6 GOPS
(109 operations per second) of
16-bit arithmetic performance.
It sustains an internal data
bandwidth of 7.2 Gbytes/sec.

This TigerSHARC imple-
mentation (the ADSP-TS001)
has several mechanisms found
in general-purpose computing.
To the best of our knowledge,
this is the first time that all
these techniques have been
combined in a real-time
embedded processor. Some of the most signif-
icant aspects of this new DSP are

• a register-based load-store architecture with
a static superscalar dispatch mechanism in
which instruction-level parallelism, or ILP,
is determined prior to runtime under com-
piler and programmer control;

• highly parallel, short-vector-oriented
memory architecture;

• support for multiple data types, includ-
ing 32-bit IEEE single-precision floating
point and 16-bit fixed point, with partial
support for 8-bit fixed point;

• parallel arithmetic instructions for two
floating-point multiply-accumulate
(MAC) operations or for eight 16-bit
MACs per cycle, with a SIMD execution
mechanism;

• eight-stage, fully interruptible pipeline
with a regular two-cycle delay on all
arithmetic and load/store operations, and
a 128-entry, four-way set-associative
branch target buffer, or BTB; and

• 128 architecturally visible, fully interlocked
registers in four orthogonal register files.

Architectural description
Figure 1 shows a block diagram with the

major components of the architecture as well
as the primary data buses. Each of the two

computation blocks on the figure’s lower left
(CompBlock X and Y, or CBX and CBY) con-
sists of a 32-entry general-purpose register file
(XRF and YRF), ALU, multiplier, and shifter.
The two computation blocks constitute the
primary data path of the processor. Each com-
putation block has two 128-bit ports that con-
nect to the three internal 128-bit buses.

In the upper part of Figure 1 there are two
integer units (JALU and KALU, collectively
called the IALU). They function as generalized
addressing units; each one includes a 32-entry
general-purpose register file. Although used pri-
marily for addressing, the IALU also supports
general integer arithmetic and pointer manip-
ulation. One of four masters (JALU, KALU,
sequencer, or external port) produces address-
es, and one of five slaves (CBX, CBY, M0, M1,
or M2) consumes them. Each data bus has an
associated address bus, which for clarity is not
shown here. This figure also shows three inter-
nal SRAM banks (M0, M1, and M2), each
with a 128-bit connection to the bus system.

The sequencer appears in the figure’s upper
left, along with a 128-entry, four-way set-
associative branch target buffer. The sequencer,
two IALUs, and the external port block are the
four masters of the internal bus system and sup-
ply addresses and control to the memory banks.

The three internal buses provide a direct
path for instructions into the sequencer. They

67JANUARY–FEBRUARY 2000

128 bits

128 bits

128 bits

Sequencer

128-entry
BTB

CompBlock X

ALU

Multiplier

Shifter
XRF

xr0
xr1

xr31

128 bits
128 bits

CompBlock Y

ALU

Multiplier

Shifter
YRF

yr0
yr1

yr31

32 bits

JALU

JRF j0
j1

j31

32 bits

KALU

KRF k0
k1

k31

M0 M1 M2
Internal
memory
banks

External
port

DMA

…

… …

…

Figure 1. Top-level block diagram showing the major DSP subsystems and the data buses.
Each data bus has associated 32-bit address and control buses. BTB: branch target buffer.

also provide two independent paths that may
connect each memory block with each com-
putation block, where a path can carry up to
four 32-bit words per cycle.

Figure 2 shows in greater detail the inter-
nal components and busing of the computa-
tion blocks. The register file supplies up to
four operands to the multiplier, ALU, and
shifter, and accepts three operands. On the
side of the memory interface, the register file
can either accept two operands from two load
operations or accept one load and provide one
store operand. Also shown in Figure 2 is the
data alignment buffer, or DAB, which pro-
vides data steering for load operations.

Table 1 summarizes the peak computation
rates achievable by this DSP at 150 MHz.
“Mflops” represents 106 32- and 40-bit float-
ing-point operations per second, and
“MOPS” represents 10616-bit operations per
second. A 16-bit complex MAC has native
support. It consists of four real multiplica-
tions, one real addition and real subtraction
to form the complex number, and two real
additions for the accumulation.

Sequencing and instruction flow
We based the sequencing mechanism on a

static superscalar approach in which one to four
instructions execute each cycle in an instruction
line. Code generation tools or a programmer
determines the instruction-level parallelism
prior to runtime; the executable binaries con-
tain this information. (In other processors,
instruction lines are also referred to as instruc-
tion groups or bundles.) An instruction line may
contain from one to four instructions, and the
processor has a throughput of one instruction
line per cycle. The idea of exposing instruction-
level parallelism to the compiler comes from the
very long instruction word (VLIW) approach.
However, the sequencing in this DSP is a more
general mechanism that avoids some of the

shortcomings of conventional
VLIW. Hennessy and Patter-
son6 provides general overview
material of VLIW. For the use
of VLIW-related methods spe-
cific to DSP and media algo-
rithms, see Faraboschi, Desoli,
and Fisher.7

With the recent prolifera-
tion of processors that are
statically scheduled by the

compiler, VLIW has become so broad a term
that it is virtually a synonym for any type of
statically scheduled processor. However, most
of these processors are in fact significantly dif-
ferent than raw VLIW. As a matter of nomen-
clature, we refer to the particular type of
sequencing implemented in the TigerSHARC
as static superscalar, because it is a statically
scheduled multiple-issue processor. In addi-
tion, the sequencer supports the following
three non-VLIW mechanisms: fully inter-
locked register files; all computation and
memory access instructions with a regular
two-cycle delay pipeline; and computation
block instructions with optional SIMD capa-
bility in which a single instruction can be
issued to two units in parallel.

Interlocking register files (similar to gener-
al-purpose superscalar processors) support a
programming model that is functionally well
defined at instruction line boundaries. That
is, when the result of a computation or load is
not available at the next instruction cycle, the
processor stalls until that data becomes avail-
able. This contrasts with the VLIW model in

68

TIGERSHARC

IEEE MICRO

64

64

Multiplier

ALU

Shifter

32-entry register file

Memory interface crossbar

Data alignment buffer
128

128

128128 128

Figure 2. Internal block diagram for the computation blocks. The three inter-
nal buses of the system are at the bottom of this figure.

Table 1. Peak computation rates at 150 MHz.

Operation Arithmetic operations per cycle Rate at 150 MHz

IEEE floating-point arithmetic 2 multiplications, 2 additions, 2 subtractions 900 Mflops
Floating-point MACs 2 multiplications, 2 additions 600 Mflops
16-bit arithmetic 8 multiplications, 8 additions, 8 subtractions 3,600 MOPS
16-bit MACs 8 multiplications, 8 additions 2,400 MOPS
16-bit complex MACs 2 complex MACs 2,400 MOPS

which the compiler directly controls all aspects
of scheduling, including instruction timing
(that is, scheduling an operation before all its
source operands are available results in wrong
data used as input).

The TigerSHARC architecture implements
a model where the program specifies instruc-
tion-level parallelism only, but hardware
dynamically resolves instruction timing.
(There are also DSPs that are fully dynami-
cally scheduled in which the processor deter-
mines instruction-level parallelism at runtime
with some compiler assistance. See Infineon’s
TriCore8 and ZSP Corp.’s ZSP16401.9)

The following are the benefits of an inter-
locked superscalar-like programming model:

• The processor supports a fully interrupt-
ible system, which is required in embed-
ded real-time computing, and significantly
simplifies the implementation of the inter-
rupt system. (This also includes precise
software exceptions.) A processor with no
interlocks may be unable to interrupt the
pipeline and hold all data that is in flight,
as more than one data value may be tar-
geted to a register.

• The architecture supports code compati-
bility across different processor imple-
mentations without the need for
recompilation, which conventional VLIW
processors typically are unable to support.

• The architecture simplifies and enhances
programmability. Code scheduling for the
processor pipeline is required for perfor-
mance only not to guarantee program cor-
rectness. Since the programming model
guarantees that all the instructions in the
same instruction line commit by the same
time, program correctness is preserved
despite code scheduling imperfections.
Simple programming models like this are
particularly important in embedded pro-
cessing where assembly programmers
develop large portions of time-critical code.

• There are no wasted instruction slots due
to vertical and horizontal no-ops,7 which
in conjunction with SIMD result in high
code density. Vertical no-ops come from
exposed operation latencies, and hori-
zontal no-ops come from unused instruc-
tion slots in the raw, horizontally
microcoded VLIW model.

An additional aspect of the programming
model related to code scheduling is that all
computation block instructions, as well as
memory load instructions, have a pipeline
delay of exactly two cycles. (That is, the results
of an instruction that executes at cycle i are
always available at cycle i + 2.) All IALU
address calculations have a single-cycle
pipeline delay, requiring no scheduling for
address and pointer calculations.

SIMD execution improves code density by
simultaneously issuing one computation block
instruction to two execution units. Next, we
present an example in which portions of an
algorithm exhibit a type of symmetry that can
be used to take advantage of SIMD execution
(namely, the adder chains of a vector product).
We also show that in other similar algorithms,
SIMD execution may be overly restrictive, and
a direct (non-SIMD) execution mechanism is
also required.

Types of parallelism
TigerSHARC has three distinct forms of

data parallelism:

• parallel computation by means of two
mechanisms: SIMD execution and sub-
word parallelism,

• a short-vector memory architecture, and
• a two-cycle-deep computational pipeline.

SIMD and subword parallelism. SIMD refers
to the method by which one instruction oper-
ates on more than one data item. This DSP
implements SIMD dispatch by optionally
issuing one computational instruction to both
CBX and CBY computational units. (All
computational instructions are encoded with
two bits that determine whether the target
computational box is CBX, CBY, or both.)

Subword parallelism is another distinct
architectural technique. It increases paral-
lelism at the data-element level by means of
partitioning a processor’s data path and per-
forming more than one parallel computation
on a single composite word. Subword paral-
lelism is also sometimes referred to as multi-
media extensions or packed operations.7,10

The literature often uses SIMD to denote
subword parallelism. However, although sub-
word parallelism is a specialized form of SIMD,
in this DSP it is very important to distinguish

69JANUARY–FEBRUARY 2000

between SIMD execution and subword paral-
lelism operations. The TigerSHARC architec-
ture makes use of both techniques, but in
different and quite distinct situations. General-
ly, computation at the 32-bit level is organized
with SIMD execution only (that is, one 32-bit
operation per computation block). However,
computation at the 16- and 8-bit level is orga-
nized with SIMD execution and subword par-
allelism (four packed, 16-bit operations per
computation block). Figure 3 illustrates this
conceptually, showing the two-way SIMD exe-
cution at the computation block level, and four-
way subword parallelism at the subword level.

As an example of SIMD, consider the fol-
lowing instruction line that consists of four
instructions. The first two instructions are
quadword direct loads: IALU address regis-
ters j0 and k0 point to two memory locations

and are post-incremented by 4. CBX registers
xr0 to xr3 (denoted xr3:0) hold the four 32-
bit data words loaded from the memory loca-
tion pointed to by j0 (Q denotes quadword
access) and similarly for the load to CBY. (See
Figure 1 for the location of the register files.)

The third instruction is a floating-point
SIMD multiplication: the contents of CBX
registers xr4 and xr5 are multiplied and stored
in register xr10; and in parallel, the contents
of these registers in CBY are multiplied. In
this case, the absence of an x or y prefix
denotes execution in both computation units,
and the f prefix denotes floating-point arith-
metic. The fourth is a floating-point SIMD
add and subtract, also executed in both com-
putation blocks. The four instructions in the
instruction line are separated by semicolons,
and instruction lines are separated by double
semicolons. All four instructions in this line
execute with a throughput of one cycle.

xr3:0=Q[j0+=4]; // load quad-word to regs.
//xr3:0 in CBX, update ptr. j0

yr3:0=Q[k0+=4]; // load quad-word to regs.
//yr3:0 CBY, update pointer k0

fr10=r4*R5; // 2 SIMD float multiplies in
//both CBX and CBY

fr9:8=r6+/-r7;; // 2 SIMD float adds, 2 float
//subtracts in CBX and CBY

As an example of both SIMD and subword
parallelism, consider the following instruction
line. The third instruction is an eight-way mul-
tiplication. In one compute block (CBY), regis-
ter pair yr5:4 holds four 16-bit input values, and
the four results are stored in register pair yr7:6.
The same occurs for CBX with register pairs
xr5:4 and xr7:6. The fourth instruction performs
a total of eight additions and eight subtractions.
The s prefix indicates that these instructions
operate on short-word (16-bit) data.

xr3:0=Q[j0+=4];
yr3:0=Q[k0+=4];
sr7:6=r5:4*r5:4;

// 8 16-bit multiplies, 4 in each comp block
sr11:10=r9:8+/-r9:8;;

// 8 16-bit adds, 8 16-bit subtracts

The examples presented in the remainder of
this article illustrate SIMD processing on 32-
bit data; for additional examples of 16-bit sub-

70

TIGERSHARC

IEEE MICRO

CBX CBY

Instruction Two-way SIMD
execution issue to
computation blocks

Two-, four-, and eight-
way SWP operations in
each computation block

Figure 3. SIMD execution and subword parallel operations.

CBX or CBY RF

xR0

xR1

xR2

xR3

a0

a1

a2

a3

CBX RF

xR0

xR1

xR2

xR3

a2

a3

CBY RF

yR0

yR1

yR2

yR3

a0

a1

xR0

xR1

xR2

xR3

a0

a1

a2

a3

yR0

yR1

yR2

yR3

a0

a1

a2

a3

Direct load

Split load

Broadcast

load

128-bit-wide

memory

a3 a2 a1 a0

 a4

Figure 4. Three access types for quadword loads: direct, split, and broadcast.

word parallelism program-
ming, see Fridman.11

Short-vector memory. To sus-
tain high core compute rates,
the memory architecture han-
dles transactions that carry
several words of data per
access (short-vector access). A
memory transaction can carry
from one to four words of
consecutive data, with up to
two simultaneous transactions
per cycle. A memory access
can move data from any one
of the three internal memory
blocks to and from any one of
the four register files.

The architecture supports
three types of memory access:
direct, split, and broadcast.
These accesses vary according
to the way a short vector is
routed to the computation
blocks or to the memory
blocks. Figure 4 gives an
example of direct, split, and
broadcast quadword loads, in
which {a3,a2,a1,a0} repre-
sents four consecutive 32-bit
words.

Arithmetic capability and
instruction set

Table 2 summarizes the
TigerSHARC instruction set,
and the diagram in Figure 5
(next page) illustrates the
peak ALU and multiplier
subword parallelism opera-
tions in each computation
block.

In addition to single- and
extended-precision floating-
point support, the instruction
set directly supports all 16-
and 32-bit fixed-point DSP, image, and video
data formats. They include fractional, inte-
ger, signed, and unsigned data types, with
additional partial support for 8-bit data types.
All fixed-point data formats have optional
support for saturation arithmetic. The
instruction set, rather than hardware modes,

directly supports all the combinations of data
types. For instance, there are three distinct
instructions for performing fixed-point addi-
tion: signed with saturation, unsigned with
saturation, and without saturation. Specify-
ing arithmetic data types by means of instruc-
tions rather than by hardware modes is

71JANUARY–FEBRUARY 2000

Table 2. Instruction set summary. B: byte; S: short; N: normal; L: long, F: float

Word width ALU operations Instruction

B S N L F Instruction description Syntax example
x x x x x Add or subtract two operands r0 = r1 + r2
x x x x x Absolute value of the sum or difference of

two operands r0 = ABS(r1 – r2)
x x x x x Sum or difference of two operands; divide

result by 2 r0 = (r1 + r2)/2
x x x x x Min or max r0 = MIN (r1, r2)
x x x x Increment or decrement r0 = INC r1
x x x x Add (or subtract) with carry r0 = r1 + r2 + CI
x x x x x Compare r0 = COMP (r1, r2)
x x x x x Clip r0 = CLIP r1 BY r2
x x x x x Absolute value r0 = ABS r1
x x x x x Negate r0 = -r1

x x Logical (AND, OR, XOR, NOT, AND-NOT) r0 = r1 AND r2
x x x Expand r1:0 = EXPAND sr1

x x Compact sr1 = COMPACT r1:0
x x Merge sr1:0 = MERGE r2, r3
x x Sideways sum r0 = SUM sr1

x x Count ones r0 = ONES r1
x x Sum of absolute values of differences pr0+=ABS (sr1:0 - sr3:2)
x x x x x Dual add-subtract r0=r1 + r2, r3=r1 – r2

x Reciprocal seed fr0 = RECIPS r3
x Reciprocal square root seed fr0 = RSQRTS r3

Shifter operations

x x x x Logical or arithmetic shift by operand or
immediate value r0 = ASHIFT r1 BY r2

x x Rotate by operand or immediate value r0 = ROT r1 BY r2
x x Field deposit/extract r0 += FDEP r1 BY r2
x x Apply mask r0 += MASK r1 BY r2
x x Bit-manipulation instructions: set, clear,

toggle, test r0 = BSET r1 BY r2
Multiplier operations

x x x Multiply r0 = r1 * r2
x x Multiply-accumulate mr1:0 += r1 * r2
x Complex MAC mr1:0 += r1 ** r2
x x Compact r0 = COMPACT mr1:0

Memory load and store

128-bit move Quadword load/store direct xr3:0 = Q[IALU]
128-bit move Quadword load/store broadcast r3:0 = Q[IALU]
128-bit move Quadword load/store split r3:2 = Q[IALU]
32- or 64-bit move Normal or long load/store (direct, broadcast, split) r1 = [IALU]

important in enabling a compiler to make
effective use of DSP data types.

Application examples
The next two examples illustrate methods

that take advantage of the three types of par-
allelism present in this DSP architecture. The
techniques used to program the two-cycle
computational pipeline are conventional loop
unrolling and software pipelining.6 The tech-
niques used to distribute computation to mul-
tiple computation units (CBX and CBY) and

to a parallel memory system (using long-word
and quadword accesses) are based on data-
dependence analysis and high-level algorith-
mic transformations. The transformations
expose parallelism in an algorithm in forms
that are suitable for the target hardware. For
a general introduction to data-dependence
analysis, see Kumar et al.,12 and in the context
of DSP algorithms see Moldovan.13

Vector dot product
Figure 6 shows the memory organization

used for the vector product of two sequences,
A[n] and B[n], as well as the code sample of an
inner loop that implements the dot product.
In this memory diagram, IALU address regis-
ter j0 points to data element A[0], and k0
points to B[0]. To sustain a peak rate of two
MACs per cycle, we need a core-to-memory
bandwidth of 128 bits/cycle (since two MACs
consume four input data values). For this rea-
son, both data vectors can reside in the same
internal memory block (block M0 or M1 in
Figure 1). When the bandwidth required by an
application exceeds 128 bits/cycle, two mem-
ory banks can supply data to the core in the
conventional DSP model of two data blocks.

The vector product of two length-L
sequences is given by

P A k B k

k

L

=
=

−

∑ () ()
0

1

72

TIGERSHARC

IEEE MICRO

+++++ ++ +

++++

+

++

*

64 bits

32 bits

1 long

2 normal

4 short

1 normal

4 short

1 complex

8 byte
(a)

(b)

Figure 5. Peak ALU (a) and multiplier (b) subword parallelism operations per
cycle, for each computation block.

__loop:
r3:2=q[j2+=4];
r5:4=q[j0+=4];
r7:6=q[j2+=4];
if NLC0E, jump
r1:0=q[j0+=4];

fr10=r6*r4;
fr11=r7*r5;
fr10=r2*r0;
__loop;
fr11=r3*r1;

fr12=r12+r10;;
fr13=r13+r11;;
fr12=r12+r10;;

fr13=r13+r11;;

Column with SIMD multiplies.
Both computation units
(CBX and CBY) perform a
multiply on different data:
CBX operates on xr6*xr4,
and CBY on yr6*yr4.

Column with
SIMD adds
(CBX and CBY)

XR0 = A[2]
XR1 = A[3]

CBX

YR0 = A[0]
YR1 = A[1]

CBY

… A[6] A[5] A[4]

… B[6] B[5] B[4]

A[3] A[2]

B[3] B[2] B[1] B[0]

A[1] A[0]

128 bitsSplit
quad
load

J0

_ _A

_ _A+4

_ _B

_ _B+4

J2

Figure 6. Memory organization and inner-loop code for the vector product of A[n] and B[n].

The mapping of this algorithm to the two
computation blocks is given by

and

,

where P 0maps to CBX, and P1 to CBY.
The loop shown in Figure 6 has been

unrolled and pipelined; the computations of
one iteration are shown in bold type. (At the
end of the inner loop, an interblock transfer is
required to add the two partial results P 0 and
P 1.) Loop unrolling requires that four partial
results be maintained in registers xr12, xr13
(for P 0), and yr12, yr13 (for P 1). The multi-
plications and additions in this inner loop are
both issued with SIMD execution (denoted
by the absence of x and y prefixes). This exam-
ple shows that a simple algorithm with obvi-
ous symmetry can be directly implemented,
making full use of SIMD execution to improve
code density. This is generally not the case, as
illustrated in the following example.

FIR filters
FIR filters are related in structure to the vec-

tor product, but the data alignment patterns
required by the FIR are significantly different
than those of linear algebra algorithms. Vec-
tor techniques like the one used in the previ-
ous section (quadword memory accesses)
cannot be applied directly to the FIR. To map
this algorithm, we need to achieve proper
data-to-coefficient alignment, using either of
two approaches: algorithmic restructuring or
dedicated hardware support for misaligned
computation (data alignment buffer block
used for data alignment between register file
and internal buses in Figure 2.) In this exam-
ple we present a solution using an algorithmic
transformation. For an example of using hard-
ware for misaligned computation with sub-
word parallelism, see Fridman.11

The FIR filter is given by

where 0≤n<M. An obvious way to parallelize
this algorithm would be to split it into two

sequences:

and

Then, distribute the computations of
sequence b0(n) into one computation block,
and b1(n) into the other, similarly to the par-
titioning used for the vector product.

However, this partitioning can result in sig-
nificantly suboptimal results for two reasons:
1) It does not solve the underlying alignment
problem. 2) To terminate the computation of
every output value, we must perform a final
addition of b0(n) + b1(n) outside the inner loop.
This problem is severe for short filters, but
affects medium to large filters as well. Note also
that the bounds of the summation have been
reduced by half. Any scheduling imperfection
in the inner loop of this algorithm is magnified
by a factor of two, since the number of inner-
loop iterations has been reduced by half.

An alternate approach is to split computa-
tion as

and

Now, rather than create two sequences of par-
tial results, we assign all the computations of
output value b(n) to a computation block,
and computations of b(n + 1) to the other,
hence avoiding final partial result additions.
This approach is an improvement over the
former, but still does not fully resolve quad-
word alignment.

To provide full quadword alignment, we
express the FIR as the four output equations

(Note that N = 4n′). Here, the data array is
only accessed by a stride of four. For instance,

b n i c k a n k i

i n M
k

L

4 4

0 4 0 4
0

1

′ +() = () ′ − +()
≤ < ≤ ′<

=

−

∑ ,

, /for

b n c k a n k

k

L

() () ()+ = − +
=

−

∑1 1
0

1

b n c k a n k

k

L

() () ()= −
=

−

∑
0

1

b n c k a n k

k L

L
1

2

1

() () ()
/

= −
=

−

∑

b n c k a n k

k

L
0

0

2 1

() () ()
/

= −
=

−

∑

b n c k a n k

k

L

() () (),= −
=

−

∑
0

1

P A k B k

k L

L
1

2

1

=
=

−

∑ () ()
/

P A k B k

k

L
0

0

2 1

=
=

−

∑ () ()
/

73JANUARY–FEBRUARY 2000

n′ = k = and 0 ≤ i < 4 define the quadword
vector consisting of the four adjacent data val-
ues a(0),a(1),a(2),a(3). These four data val-
ues can be combined with the single
coefficient, c(0). Subsequently, the four out-
puts, b(i),0 ≤ i < 4, are computed this way.
(The assembly code in Figure 7 illustrates how
four data values are combined with a single
coefficient.) The computation of any four out-
put sets b(4n′ + i),0 ≤ i < 4 can be carried out
with only four-element vector accesses.
Hence, this partitioning distributes compu-
tations to CBX and CBY, and provides prop-
er data-to-coefficient alignment. These
equations are expressed in algorithmic form
in Figure 7.

An additional benefit of this partitioning is
that it reduces the data traffic between the
memory system and the register files, as input
data elements are reused for more than out-
put computation. This results in a reduction
of overall power consumption, showing the
important effect of software on system power.

The downside of this technique is that it
requires sufficient registers to hold all inter-
mediate results and input data, and can only
operate on sequences of a length that is a mul-
tiple of four. In addition, it can result in longer
inner loops as compared to other solutions
that use hardware support for data alignment.4

Figure 8 shows the memory organization of
data and coefficients. In this implementation,
prior to the computation of four output sam-
ples, four data values are loaded into a buffer
that holds the internal state of the FIR filter.

This follows the standard convention that
allows the invocation of an FIR routine by sup-
plying a coefficient with an internal filter state.

Figure 9 shows the assembly code segment
for this FIR routine. This code segment is
organized as four columns, zero through
three. Column zero in the inner loop con-
sists of data loads (using data pointer j1
guarded with circular buffering) and coeffi-
cient loads (using pointer j2). Both of these
memory accesses are the quad-word broad-
cast type illustrated in Figure 8. The regis-
ters shown in bold type indicate four
adjacent data values that are loaded as one
quadword (into registers r3:0). These four
data values are consumed at different times,
depending on which output computation is
taking place. Inside the rectangle we show
that these four data values are combined with
a single coefficient that resides in registers
xr11 and yr11. For reasons of space, we
abbreviated the inner-loop epilog.

Columns one and two have multiplications
in CBX and CBY, respectively. To provide
appropriate data-to-coefficient alignment, this
code segment issues multiplications with dif-
ferent source registers to each computation
block in the same instruction line. (For
instance, the first instruction line inside the rec-
tangle is multiplying the contents of register
xr2 times xr11 in CBX, but yr0 times yr11 in
CBY.) We see that these multiplications need to
override the SIMD mechanism. In general, full
SIMD execution can often be overly restrictive
and can result in performance loss. The vector

74

TIGERSHARC

IEEE MICRO

for(n=0; n<M/4−1; n+=4){
 for(k=0; k<L−1; k++){
 b0[n] += c[k]*a[n−k];
 b0[n+1] += c[k]*a[n−k+1];
 b0[n+2] += c[k]*a[n−k+2];
 b0[n+3] += c[k]*a[n−k+3];
 }
}

Figure 7. C algorithm with quadword-
aligned data. Note the stride of four for
data a[n].

XR0 = a[0]
XR1 = a[1]
XR0 = a[2]
XR1 = a[3]

YR0 = a[0]
YR1 = a[1]
YR0 = a[2]
YR1 = a[3]

… a[6] a[5] a[4]

c[L−1] c[L−2] … c[L−4]

a[3] a[2] a[1] a[0]

c[3] c[2] c[1] c[0]

128 bitsBroadcast
quad
load

J1 aligned
pointer to data

_ _A

_ _A+4

_ _C

_ _C+4

J2 aligned pointer
to coefficients

CBX CBY

Figure 8. Memory organization for FIR filter.

dot product mentioned earli-
er is an example of an algo-
rithm that can take advantage
of SIMD execution. Howev-
er, the FIR example shows that
DSP algorithms may not
exhibit the precise type of
symmetry required to fully use
SIMD, and it is necessary to
provide flexible execution
mechanisms to realize high
efficiency.

Column three in Figure 9
shows that the add instruc-
tions are issued in SIMD.
Each one of the add instruc-
tions specifies two floating-
point additions, one in each
computation block. The four
outputs are computed in reg-
isters xr18, xr19, yr18, and
yr19. Note also that at the
conclusion of the inner loop,
these four outputs are imme-
diately available and do not
require final accumulations or
inter-block transfers.

The efficiency of this exam-
ple for filters in the range of 50
taps is 90% relative to the peak
MAC rate of 2 MACs/cycle.
This figure accounts for all
software overheads such as
loop prolog and epilog, ini-
tialization code, as well as
branch misprediction losses.

Application benchmarks
summary

Table 3 (next page) lists the
benchmarks for the fast Fourier transform
(FFT) radix-2 algorithm with full bit reversal
and for the FIR filter, both floating-point and
16-bit data types. In peak MAC rates, the 32-
bit FIRs achieve an average efficiency of 90%
(1.8 MACs/cycle, given a theoretical maxi-
mum of 2 MACs/cycle), and the 16-bit FIR,
an average efficiency of 88% (7.1
MACs/cycle, given a maximum of 8
MACs/cycle). The complex FIR filters are
programmed using native hardware support
for complex 16-bit MACs.

The TigerSHARC architecture solves a
number of problems in very high per-

formance DSP computation by applying par-
allelism at the data element level and at the
instruction level. The first implementation of
this architecture is intended to support appli-
cations that use floating-point data types, for
example, in radar, imaging, and medical com-
puter graphics. This first implementation will
also support applications that use 16-bit,
fixed-point data types, primarily in telecom-
munications infrastructure. MICRO

75JANUARY–FEBRUARY 2000

LC1 = DATA_SIZE/4;;
j3 = output_pointer;; /* pointer to output buffer */
j2 = __C;; /* circular pointer to coefficeients */
j10 = -4;; /* coeff pointer increment */
j0 = input_data_pointer;;
j1 = __A;; /* pointer to data state */
__outer:
xr3:0 = q[j0+=4];; /* move quad input data into state buffer */
cb q[j1+=0x4] = xr3:0;; /* state is circularly addressed (cb) */
LC0 = FILTER_SIZE/8;;
r11:8 = q[j2+=j10];; /* coefficient quad load */
r3:0 = cb q[j1+=4;; /* data quad load */
 xfr20=r2*r11; yfr20=r0*r11;;
r7:4 = cb q[j1+=4]; xfr21=r3*r11; yfr21=r1*r11;;
 xfr16=r3*r10; yfr16=r1*r10;;
 xfr17=r4*r10; yfr17=r2*r10;;
 xfr16=r4*r9; yfr16=r2*r9;; fr18=r20+r16;;
 xfr17=r5*r9; yfr17=r2*r9;; fr19=r21+r17;;
__inner:
r15:12 = q[j2+=j10]; xfr16=r5*r8; yfr16=r3*r8; fr18=r18+r16;;
 xfr17=r6*r8; yfr17=r4*r8;; fr19=r19+r17;;
 xfr17=r5*r15; yfr16=r4*r15;; fr18=r18+r16;;
r3:0 = cb q[j1+=4]; xfr17=r7*r15; yfr17=r5*r15; fr19=r19+r17;;
 xfr16=r7*r14; yfr16=r5*r14; fr18=r18+r16;;
 xfr17=r0*r14; yfr17=r6*r14; fr19=r19+r17;;
 xfr16=r1*r13; yfr16=r6*r13; fr18=r18+r16;;
 xfr17=r1*r13; yfr17=r7*r13; fr19=r19+r17;;
r11:8 = q[j2+=j10]; xfr16=r1*r12; yfr16=r7*r12; fr18=r18+r16;;
 xfr17=r2*r12; yfr17=r0*r12; fr19=r19+r17;;
r7:4 = cb q[j1+=4]; xfr16=r2*r11; yfr16=r0*r11; fr18=r18+r16;;
 xfr17=r3*r11; yfr17=r1*r11; fr19=r19+r17;;
 xfr16=r3*r10; yfr16=r1*r10; fr18=r18+r16;;
 xfr17=r4*r10; yfr17=r2*r10; fr19=r19+r17;;
 xfr17=r4*r9; yfr16=r2*r9; fr18=r18+r16;;
 if NLC0E, jump__inner;
 xfr17=r5*r9; yfr17=r3*r9; fr19=r19+r17;;
/* INNER LOOP EPILOG (ABBREVIATED) */
 xfr17=r2*r12; yfr17=r0*r12; fr19=r19+r17;;
 fr18=r18+r16;;
 fr19=r19+r17;;
if NLC1E, jump__outer;
 q[j1+=4] = r19:18;; /* four output samples store */

Four data points (in r3:0) combine
with one coefficient (in r11) to
form four output partial results.

Figure 9. Code sample for a FIR filter. Shown in bold type are the four data values of a one
quadword load.

Acknowledgments
The material presented in this article rep-

resents the work of a very large group of peo-
ple at Analog Devices, including the software
tools, product engineering, Israel design
teams, and in particular Doug Garde.

References
1. J. Eyre and J. Bier, “DSP Processors Hit the

Mainstream,” Computer, Vol. 31, No. 8,
Aug. 1998.

2. Buyer’s Guide to DSP Processors, 3rd ed.,
Berkeley Design Technology, 2107 Dwight
Way, Second Floor, Berkeley, CA, 94704;
http://www.bdti.com.

3. M. Levy, “EDN’s 1998 DSP-Architecture
Directory,” EDN, Apr. 23, 1998; http://www.
ednmag.com.

4. O. Wolf and J. Bier, “Sharc Attack: Analog
Devices Discloses New High-End DSP,”
Microprocessor Report, Dec. 7, 1998,
MicroDesign Resources, Sebastopol, Calif.,
pp. 12-15.

5. J. Fridman and W. Anderson, “A New Par-
allel DSP With Short-Vector Memory Archi-
tecture,” Proc. IEEE Int’l Conf. Acoustics,
Speech, and Signal Processing, IEEE Press,
Piscataway, N.J., 1999.

6. J. Hennessy and D. Patterson, Computer
Architecture, A Quantitative Approach, 2nd
ed., Morgan Kaufmann Publishers, San Fran-
cisco, Calif., 1996.

7. P. Faraboschi, G. Desoli, and J. Fisher, “The
Latest Word in Digital and Media Process-
ing,” IEEE Signal Processing, Vol. 15, No. 2,
Mar. 1998.

8. J. Eyre and J. Bier, “Infineon’s TriCore Tack-

les DSP,” Microprocessor Report, Apr. 19,
1999, MicroDesign Resources, pp. 12-14.

9. ZSP16401, ZSP Corporation; http://www.
zsp.com/Products/Notes/pn-16401-06.html.

10. A. Peleg, S. Wilkie, and U. Weiser, “Intel
MMX for Multimedia PCs,” Communica-
tions of the ACM, Vol. 40, No. 1, Jan. 1997,
pp. 25-38.

11. J. Fridman, “Data Alignment for Sub-Word
Parallelism in DSP,” Proc. IEEE Workshop
on Signal Processing Systems, SiPS 99,
IEEE Press, 1999, pp. 251-260.

12. V. Kumar et al., Introduction to Parallel Com-
puting: Design and Analysis of Parallel Algo-
rithms, Addison-Wesley Publishing Co.,
Melbourne, Australia, 1994.

13. D. Moldovan, Parallel Processing: From
Applications to Systems, Morgan Kaufmann
Publishers, 1993.

Jose Fridman is a DSP architect at Analog
Devices, Norwood, Massachusetts, where he is
involved in developing next-generation DSP
architectures. His current interests are in the
area of DSP processors and systems. Fridman
received the MS and BS degrees in electrical
engineering from Boston University and a PhD
degree in electrical and computer engineering
from Northeastern University. He is a member
of the IEEE and the IEEE Design and Imple-
mentation of Signal Processing Systems
(DISPS) and IEEE Industry DSP (IDSP) com-
mittees.

Zvi Greenfield is principal manager of archi-
tecture and design verification for Analog
Devices TigerSHARC DSPs. He has also
worked with National Semiconductors, Israel
Design Center, where he was involved in the
development of the NS32000 microprocessors
and in the architecture and design of digital sig-
nal processors for modem, fax, and digital
answering machine applications. Greenfield
holds a BS degree in electronic engineering
with a specialization in computer hardware,
software, and communications from Technion,
Israel Institute for Technology, Haifa.

Direct comments concerning this article to
Jose Fridman, Analog Devices, One Technol-
ogy Way, Norwood, MA, 02062; jose.
fridman@analog.com.

76

TIGERSHARC

IEEE MICRO

Table 3. DSP benchmarks at 150 MHz.

“1k” represents 1,024 samples.

Execution Clock

Operation time cycles

Floating point:
1k complex FFT, radix 2 68.0 µs 10,300
50-tap FIR on 1k samples 183 µs 27,500
Single FIR MAC 3.6 ns 0.55

16-bit fixed point:
256-point complex FFT, radix 7.3 µs 1,100
50-tap FIR on 1k samples 48.0 µs 7,200
Single FIR MAC 0.92 ns 0.14

Single complex FIR MAC 3.76 ns 0.57

