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Abstract 

Vector architectures have long been the of choice for build- 
ing supercomputers. They first appeared in the early aeven- 
ties and had a long period of unquestioned dominance from 
the time the CRAY-1 was introduced in 1976 until the the 
appearance of “killer micros”, in 1991. They still have a 
foothold in the supercomputer marketplace, although their 
continued viability, in the face of micro-baaed parallel ays- 
tens, is being seriously questioned. We present a brief hia- 
tory of supercomputing and discuss the merits of vector ar- 
chitectures. Then we relate the advantages of vector archi- 
tectures with current trends in computer system and device 
technology. Although the viability of vector supercomputers 
is indeed questionable, largely because of coat issues, we ar- 
gue that vector architectures have a long future ahead of 
them - with new applications and commodity implementa- 
tions. Vector instruction sets have many fundamental ad- 
vantages and deserve serious consideration for implementa- 
tion in next generation computer systems, where graphics 
and other multimedia applications will abound. 

1 A Brief History of Supercomputing 

To better understand vector supercomputers, we begin with 
a brief history. And to provide broader perspective, we con- 
sider supercomputers in general; we don’t restrict ourselves 
to vector machines. 

1.1 The Six Hundreds: Roots of Supercomputing 

Although the term wasn’t coined until later, supercomput- 
ing probably began with the Control Data 6600 and 7600 [l]. 
The 6600 was rolled out in 1963, and the 7600 in 1969. 
They were scalar machines and were the first to use RISC 
instruction sets. James Thornton and Seymour Cray were 
co-developers of the 6600. Thornton went on to develop the 
STAR-100 [a], while Cray continued with the 7600 and the 
unfinished 8600 before leaving CDC to found Cray Research. 
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Although they were scalar machines, they had many 
characteristics of supercomputers. The 6600 and 7600 were 
focused on numerical processing. They implemented 60-bit 
floating point arithmetic and were constructed of what at 
the time were exotic technologies. Their clock cycles and 
overall performance levels were far superior to their clos- 
est competition, They had large memory capacity and very 
high I/O bandwidth. And their price tag was very high: 
many millions of dollars (in 1960s dollars). 

1.2 The Rise of Vector Supercomputers 

The first two vector supercomputers appeared in the early 
1970s. The two machines were remarkably similar. One was 
developed at Texas Instruments, the TI-ASC [3]. It was 
Texas Instruments’ only venture into large scale computers 
and only a handful were ever sold. The other was developed 
at Control Data Corporation, the STAR-loo. Only a few 
STAR-loos sold as well, but it was the beginning of a series 
of vector machines developed at CDC over the years. 

The ASC and the STAR-100 were centered around a very 
high-powered vector unit that took streams of operands from 
memory, operated on them, then sent the result streams 
back to memory, all in a single instruction. The primary 
job of the scalar unit was to service the vector unit - to 
do bookkeeping computation and do any scalar code that 
couldn’t be done with vectors. Because they were memory- 
to-memory vector machines, they were built with very ad- 
vanced, high bandwidth memory systems. A pipeline that 
stretched from memory, through the processor, and back to 
memory was very long and took many clock cycles to fill, 
but once it was filled, the throughput was tremendous. 

Both machines used instruction sets that would be cat- 
egorized as “CISC” today. For example, in a single vector 
instruction, the ASC could do a complete matrix multipli- 
cation. STAR-100 instructions operated on arrays of nu- 
merical data and on strings of characters and bits; STAR 
stood for STring ARray. The STAR-100 also had features 
to support sparse matrix operations. Many of the instruc- 
tions had so much semantic content, it is doubtful that a 
compiler would be able to use them as targets for automatic 
vectorization; they could most easily be used in assembly- 
coded library routines. 

Although they are remembered mostly for their ulti- 
mately unsuccessful memory-to-memory architectures, the 
ASC and STAR-100 also contained several innovations that 
have lived on until today. One example is the method they 
used for implementing conditional operations, i.e. bit masks 
for control. Data movement operations implemented with 
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stride and gather/scatter memory accesses are still used to- 
day. They could split their pipelines to double performance 
on 32-bit dat,a. The ASC could be upgraded by adding ad- 
ditional vector pipelines, up to a total of four. And the 
STAR-100 also supported multiple vector pipes, although 
their functions were not identical. 

Both machines had relatively poor scalar performance, 
and Amdahl’s law took its toll. The CDC 7600, a scalar-only 
contemporary of the STAR-loo, was generally much faster 
on all but very highly vectorized problems. In the case of 
the ASC, there were probably business decisions that also 
led to its demise; this simply wasn’t TI’s market. 

1.3 The Golden Era of Vector Supercomputers 

It wasn’t until the introduction of the CRAY-1 in 1976 that 
vector supercomputing became successful [4]. The CRAY-1 
was designed with a different philosophy than the STAR-100 
and ASC. In a sense it was centered around scalar process- 
ing. The scalar unit was similar to the CDC 7600, an earlier 
Seymour Cray-designed machine, and was capable of much 
higher scalar performance than any of its contemporaries. 
The only substantial hardware added for supporting vector 
operations was the vector registers and interconnect paths 
for moving data between the vector registers and the func- 
tional units. The memory path was capable of only one load 
or store per cycle - all that was needed for scalar operation, 
and vector registers were added to maximize the use of this 
rather limited memory bandwidth. The large scalar floating 
point functional units were shared by the vector instructions 
- with slightly longer latencies for vector processing. 

The CRAY-I was the beginning of a “Golden Era” of 
vector supercomputers - and supercomputing in general, for 
that matter. This era spans approximately 15 years from 
1976 until 1991. This period can be characterized as a time 
when a vector supercomputer had a major, unquestioned 
performance advantage over microprocessors in all aspects: 
faster clock cycles, more operations per cycle, higher mem- 
ory bandwidth, and much more I/O capacity. 

Cray Research, by far the most successful supercomputer 
vendor, continued its development of vector machines fol- 
lowing two parallel lines. Seymour Cray went on to design 
the multiprocessor CRAY-2 as a follow-on to the CRAY-1. 
The CRAY-2 resembled the CRAY-1 in many ways. For ex- 
ample, it had a single memory port and one set of parallel 
functional units in each vector processor. Some interesting 
innovations appeared, as well. The GRAY-2 had 16K words 
(64-bit words, of course), of local memory which had to be 
explicitly managed by the compiler/programmer. At the 
same time the CRAY-2 was designed, another group at Cray 
Research developed the CRAY X-MP system. The emphasis 
in the X-MP was on multiprocessing, and the memory band- 
width per processor was expanded to four words per cycle 
(three for processing, and one for I/O). It was with huge suc- 
cess of the X-MP and the follow-on Y-MP that grew Cray 
Research into a large company. 

Meanwhile, Control Data continued the development of 
vector machines based on the STAR-100 architecture. The 
Cyber 200 series machines continued with memory-to-memory 
vector operation, but had considerably improved scalar ca- 
pability. Eventually, the Cyber 200 series was followed by 
the ETA-10 [5, 61, when ETA spun out of CDC. And the 
line ceased when ETA went out of business in 1989. 

During this time period the Japanese manufacturers also 
entered the vector supercomputer market with several de- 
signs. In the early eighties, NEC, Fujitsu and Hitachi each 

introduced a line of parallel vector computers. Using their 
expertise in chip technology and emphasizing multiple vec- 
tor pipelines per processor, all three manufacturers succeeded 
in developing very fast vector machines. As our later graphs 
will show, the vector processors used in these machines are 
the most powerful uniprocessors ever built (see the NEC 
SX-3 at 5.5 Gflops, for example). 

Following the success of the big iron vendors, in the early 
1980’s several start-up companies designed and sold ‘mini- 
supercomputers’. These were small vector machines, with 
slower clocks than the big supercomputers and less process- 
ing power per vector unit. The most successful example 
was Convex Computer Corporation. It’s first machine, the 
C-l, was introduced in 1985 with a clock rate of 1OMhz 
(much slower than a contemporary 16OMhz SX-2). The sell- 
ing point of these mini-supers was that they provided limited 
supercomputing capabilities at a much more affordable price 
(typically 0.5201 million dollars versus 5to30 million). 

1.4 Killer Micros and the Emergence of large Parallel 
Systems 

In the early nineties, advances in CMOS VLSI technology 
introduced a radical change in the computer industry. Many 
more transistors could be fit in a single die and, moreover, 
the die could be clocked faster as feature sizes shrank. No 
longer was it true that breaking the 1OOMhz barrier re- 
quired expensive ECL technology. Since then, microproces- 
sors have continued to evolve at an impressive pace. Indeed, 
peak microprocessor performance has been improving at a 
rate of 1.6X per year, rapidly approaching the performance 
of vector supercomputers. 

Perhaps the DEC Alpha family is the best example of 
the so-called “killer micros”. Introduced in 1992 at an as- 
tonishing 15OMhz (reminiscent of the astonishing CDC and 
Cray clock cycles of their generation), successive processors 
in the Alpha family have seen rapidly improving clock cy- 
cles to the point that they now surpass the cycle times of 
the fastest supercomputers (see fig. 2). As early as 1994, 
the Alpha 21164 already was clocked faster (300Mhz) than 
the contemporary CRAY C90 (240Mhz). Since then, clock 
frequency has been steadily increasing and the new Alpha 
21264 [7] clock will be at least 1.5 times faster than the Cray 
T90 (45oMhz). 

The introduction of fast microprocessors substantially 
changed the supercomputing market. Due to their much 
higher volumes, microprocessors offer very low prices per 
processor. As soon as cheap and powerful processors ap- 
peared in the market, the idea of building supercomputers 
using many of these processors spread rapidly. Before long, 
supercomputer customers were talking in terms of Mflops 
per dollar, rather than absolute peak performance. 

Parallel machines built of microprocessors are offered as 
an attractive alternative to vector supercomputers (we will 
call them scalar-parallel machines, to distinguish them from 
parallel vector supercomputers -PVPs). Smaller scalar-parallel 
machines can be built around a bus with uniform memory 
access delays to give a symmetric multiprocessor (SMP), or 
many more processors can be combined with direct intercon- 
nection networks to form massive parallel systems (MPP). 
The success of scalar-parallel machines has been based mostly 
on leveraging CMOS microprocessor technology and DRAM 
main memory systems, yielding computers that have a high 
performance at a low cost. Although each node in a scalar- 
parallel system is less powerful than a vector processor, these 
machines are built with the ability to scale to large numbers 
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Figure 1: Performance on the TRIAD operation for several 
supercomputers (source: [8]). 

Figure 2: Evolution of clock frequency over the years for vec- 
tor supercomputers and for several microprocessors (source: 
vendor information). 

of nodes. Therefore, at their best, by using parallel pro- 
gramming and compilation techniques the processing power 
of each processor can be magnified by orders of magnitude in 
a large parallel system. On the other hand, some problems 
are difficult to program in parallel or have memory access 
patterns that make distributed memory parallel systems less 
effective than their vector counterparts. 

To illustrate the importance of memory systems, figure 1 
presents sustained performance of several PVPs, MPPs, and 
SMPs. This figure plots data gathered using the STREAM [8] 
benchmark. In particular, we present the performance of the 
TRIAD operations (performance is measured in Gigabytes 
per second). The core of the TRIAD benchmark consists of 
the following operation: u(i) = b(i) + q x c(i). 

chine, indicating that each of its main vector resources is 
replicated four times. Finally, columns “Flops/Cycle” and 
“Words/Cycle” indicate the peak number of floating point 
operations per cycle and the maximum data transfer rate 
(also per cycle) between the register file and main memory. 
For machines having asymmetric load/store ports, the fol- 
lowing notation is used. For the SX-2, with one load-only 
port and one load/store port, the maximum transfer rate 
is 8 words when performing loads and 4 words when doing 
stores. This situation is noted as “8 or 4”. For machines 
with independent load/store ports, such as the Y-MP, the 
notation “2+1” indicates that it can perform 2 loads and 1 
store per cycle. 

Figure 1 shows that even when using large numbers of 
processors, top-of-the-line parallel vector processors still out- 
perform large MPPs like the T3E. Even the relatively mod- 
est J90 sustains much larger bandwidths than most paral- 
lel servers. The memory accessing patterns of the TRIAD 
benchmark are designed to have relatively low temporal lo- 
cality. However, not all applications match the needs of the 
TRIAD operation. In fact, there is a significant number of 
cache-friendly scientific applications that run very well on 
parallel machines. 

Performance Trends 

Figures 2 through 4 illustrate the historical trends of three 
key aspects of vector architectures: clock frequency (fig. 2), 
peak MFLOPS (fig. 3) and peak memory-to-register band- 
width (fig. 4). The three figures also include data for typical 
microprocessors, including the Intel x86 line, the MIPS line, 
and the more recent DEC Alpha family. 

Commercial Vector Supercomputers 

As shown in figure 2, beginning with the CRAY-I in 1976 
and continuing until 1991, the clock frequency of vector su- 
percomputers was between 7 to 10 times faster than con- 
temporary microprocessors. For example, in 1978, the clock 

Table 1 summarizes the main characteristics of the major ratio between a CRAY-1 and an x86 w-as about a factor of 8. 

vector supercomputers built and sold from 1972 until 1996. Eight years later, in 1986, the CRAY-2 (245Mhz) when com- 

For each machine in the table we indicate the year of pared with the recently introduced R2000 (25 Mhz) yields 

introduction and the basic cycle time of the machine (in ns a factor of almost 10. As late as 1990, the NEC SX-3 

units). The next column, labeled “LD/ST paths” indicates (340Mhz) compared very favorably against a 40-50Mhz R3000. 

the number of ports connecting the memory system to the During the golden era, vector machines not only had 

vector register files. There are three kinds of ports: an “I,” much faster clocks, but also performed many more opera- 

by itself indicates a stand-alone load port. An “S” by itself tions per clock cycle. Referring to table 1 we see that vector 

indicates a stand-alone store port, while an “Ls” indicates units can perform from 2 to 16 floating point operations per 
a bidirectional port that can do both loads and stores. For cycle. Typical micros perform either 1 or 2 floating point op- 

example, the SX-2 had 2 different ports: one port was a erations per cycle at most (the Power and R8000 chips being 

load-only port while the other was a bidirectional load/store the most notable exceptions). Figure 3 plots the evolution 
port. Similarly, the Cray C90 has three ports: two load-only of peak MFLOPS per processor from 1976 to 1998. The 
ports and one store-only port (this does not include the I/O combination of fast clocks and multiple operations per cycle 
port). The table also includes the number of vector registers yielded machines with peak performance that was between 
and their sizes, as well as the number and type of functional 16 and 70 times better than contemporary microprocessors. 
units. For example, the SX-3, with its 5.5 Gflops, had around 68 

Column “Pipes” indicates the number of replicated vec- times more Mflops than an 8OMflops R3000. 
tor pipes existing in the maximum configuration of each The third important measure for high performance com- 

machine. For example, the Fujitsu VP2600 is a 4-pipe ma- puting is memory bandwidth, that is, peak number of bytes 
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Machine 
intro 

TI-ASC 1972 
STAR-100 1973 
CRAY-1 1976 
Fbjitsu VP200 1982 
Cray X-MP 1983 
Hitachi SSlO/ZO 1983 
NEC SX-2 1984 
CRAY-2 1985 
Hitachi S820/80 1987 
Cray Y-MP 1988 
Fujitsu VP2600 1989 
NEC SX-3 1990 
Cray C90 1992 
NEC SX-4 1996 

7.0 LS,LS 
9.5 LW 

19.0 L,L,L,LS 
6.0 L,LS 
4.1 LS 
4.0 L,LS 
6.3 L,LS 
3.2 LS,LS 
2.9 LW 
4.0 L&S 
8.0 1 LS,LS 

Vector Elements/ 
Registers Register 

8 64 
256-8 1024-32 

8 64 
32 256 

8+8K 256/64-256 
8 64 

32 512 
8 64 

2048-64 64-2048 
8+16K 256/64-256 

8 128 
8+16K 256/64-256 I 

Functional Pipes 1 Flops/ Words/ 
Units 
A/M 
AjD/L, A/M 
WWAW 
A/LM,D 
.W,WLWP 
A/L,A/L,M/DtA,MtA 
4WD,W 
-Wf/WQ,LL 
A/L,MtA,D 
A,M/LW,W,P 
MtA/LMtA/W 
Al%.W,WLWL 
.%WL~J,LV-’ 
A/S,WD,L 

4 
1 
1 
2 
1 
2 
4 
1 
4 
1 
4 
4 
2 
8 

cycle cycle 
4 4 (32th) 
2 3 
2 1 
4 4 
2 2-l-l 
12 8 or 2 
16 8 or 4 
2 1 

12 8 or 4 
2 2t1 

16 8 
16 8+4 
4 4+2 
16 16 

Table 1: Functional unit and register file characteristics of several vector supercomputers. Legend: A=FP-Add, D=FP-Divide, 
I=Integer-Add, L=Logical, M=FP-Multiply, P=Population Count/Parity, R=Reciprocal Approximation, Q=Reciprocal 
Square Root, S=Shift. Independent functional units are separated by commas. Functional units that perform several opera- 
tions are indicated using a slash mark (A/S, for example). Cascaded units, that is units that hang off other functional units, 
are indicated using a “+” sign (for example, “,+A”). 

Figure 3: Evolution of peak MFLOPS over the years for vec- 
tor supercomputers and for several microprocessors (source: 
vendor information). 

transferred between main memory and the register file. Fig- 
ure 4 shows the peak memory bandwidths for several vector 
supercomputers. Also included in the graph are the memory 
bandwidths for Alpha workstations. For microprocessors 
such as the Alpha, determining peak memory bandwidth is 
not easy. We have included two different measures. First, 
peak bandwidth between the first level cache and the register 
file (curve Ll). Second, peak memory bandwidth between 
main memory and the second or third level caches (curve 
Mem). 

Again, vector supercomputers have a very large advan- 
tage in memory bandwidth over microprocessors. Even when 
considering the most recent and fastest microprocessor, the 
Alpha 21264, peak memory bandwidth comparisons can be 
misleading. The 21264 can provide about lOGB/s to its LP 
cache, only a factor of 1.6 smaller than a single SX-4 proces- 
sor. However, the 21264’s Ll cache can only hold 64KBytes 
of data. Meanwhile, the SX-4 offers 16GB per second to a 
main memory of 8 Gigabytes. Multiplying bandwidth times 
memory size being accessed (IoGB/s times 64KBytes and 
lGGB/s times 8GB) we get an aggregate measure of the abil- 
ity to access data. Comparing the two numbers, we see that 
the SX-4 has an aggregate bandwidth 200,000 times larger 
than the Alpha 21264. Clearly, the Alpha will only match 

sx-3 
. 

- - -X - - Alpha (Ll) 
-o- Alpha (Mem) 

Gray-TQO 
VP2600 . 

S02Ol80 sx-4 
. 8 

Cray-C90 
sx-2 n 

7 
es 

Figure 4: Evolution of peak main memory bandwidth for 
vector supercomputers and for an Alpha-based Workstation. 
The values for the Alpha main memory bandwidths are de- 
rived using the 33Mhz 21072 and 21172 chipsets [9]. 

the SX-4 performance on applications where most data fits 
entirely in the Ll cache. 

Current status of vector supercomputers 

Since the early nineties, supercomputers based on the vector 
paradigm have lost their dominance of the supercomput- 
ing market. Consider the “Top500 Supercomputer Sites” 
list [lo], published every 6 months since 1993. The list in- 
cludes the sites that have the world’s 500 most powerful com- 
puter systems installed. In June 1993, of the top 500 com- 
puters, 310 were parallel-vector machines. All the machines 
included in the list at that time totaled a peak computing 
power of 1.8 Teraflops. The 310 vector systems represented 
roughly 43% of all that computing power. Four and a half 
years later, in November 97, the same list reports that only 
108 PVP’s are still in the top-500 systems. Moreover, the 
total peak power of all systems listed had sky-rocketed to 
24.2 Teraflops, but now the vector machines only accounted 
for 17% of this power. 

Why have vector machines declined so fast in popularity? 
What are the key factors that have helped in the rise of 
parallel microprocessor based machines? 
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The short answer is cost. There are many problems that 
are amenable to vectorization, yet very few users can afford 
a full blown vector supercomputer. Why are vector super- 
computers so much more expensive than MPPs or SMPs ? 
There are several related reasons: 

. Probably the most important reason is that scalar- 
parallel systems use commodity parts. With com- 
modity parts, design and non-recurring manufacturing 
costs can be spread over a larger number of chips. If 
a vector machine only sells a few dozen copies, then 
design costs can easily be the dominant overall cost. 

. The most expensive part of a computer (whether a PC, 
workstation, or supercomputer) is usually the memory 
system. Consider figure 4 again. Vector supercom- 
puters provide high performance memory systems that 
sustain very large bandwidths between main memory 
and the vector registers. To achieve this bandwidth, 
vector processors rely on high-performance, highly in- 
terleaved memory systems (between 256 and 1024 mem- 
ory banks depending on processor and configuration [II]). 
Moreover, for a high performance machine, latency 
also plays an important role. Therefore, vector super- 
computers use the fastest memory technology avail- 
able. Typically, a vector memory system will be com- 
posed of SRAM/SSRAM memory modules [12] with 
cycle times in the IO-20ns range; this allows keeping 
main memory latency around 10 to 30 processor cycles. 

l Another problem is how one packages a processor with 
such high bandwidths. That is, consider a 20GB/s 
memory system and a typical CMOS package that al- 
lows its pins to operate at 133Mhz. A back-of-the- 
envelope calculation indicates that 1200 pins (just for 
data) would be needed to sustain a peak of 20GB/s 
second. Such numbers of pins are difficult to imple- 
ment. In the past, vector manufacturers have em- 
ployed multi-chip designs. These designs tend to be 
substantially more expensive than single-chip solutions. 

l Another factor that keeps vector costs up is the base 
technology used in these machines. Up to very re- 
cently, most vector designs were based on ECL. While 
this choice was adequate in the 1976-1991 time frame, 
vector vendors apparently failed to realize the poten- 
tial of CMOS implementations. Nor were they willing 
to shift from gate array to custom design in order to 
exploit the capabilities of CMOS. In the last 8 years, 
CMOS chips have outperformed ECL in numbers of 
transistors, speed, and reliability. Recently, most vec- 
tor vendors have introduced CMOS-based vector ma- 
chines (like the J90 or SX-4). 

a Also important is the fact that users often have dif- 
ficulty achieving peak performance on vector super- 
computers [13, 14, 15, 161. Despite high performance 
processors and high bandwidth memory systems, even 
programs that are highly vectorized fall short of theo- 
retical peak performance [17]. 

l Finally, it is important to note that there have been 
relatively few architectural innovations since the CRAY- 
1. The top of the line CRAY T90 still has only 8 vector 
registers and has a relatively slow scalar microarchitec- 
ture when compared to current superscalar micropro- 
cessors. Meanwhile, superscalar microprocessors have 
adopted many architectural features to increase per- 
formance while still retaining low cost. 

2 Future Vector Applications and Technologies 

It is important to distinguish between vector instruction set 
architectures (ISAs) and vector supercomputers. The previ- 
ous section established several reasons we believe that vec- 
tor supercomputers are in a period of diminished popularity. 
However, we believe the architectural concept behind a vec- 
tor supercomputer, its vector instruction set, remains very 
viable. 

Vector ISA’s have significant advantages for future tech- 
nology. As feature size decreases and we rapidly approach 
wire delay limitations, a vector ISA has major benefits in 
providing ever-increasing levels of performance. In this sec- 
tion we present the advantages of vector ISA’s and relate 
them to current technology constraints. It is important to 
stress that we are no longer talking only about supercom- 
puters. We believe that vector ISA’s have a wide range of 
application, from DSP’s and multimedia-oriented chips to 
general purpose CMOS microprocessors. 

Advantages of Vector ISA’s 

Advantages of vector ISA’s over scalar or VLIW ISA’s can 
be placed in three broad categories. First, semantic ad- 
vantages; that is, vector ISA’s tend to express programs 
in a more concise and efficient way. Second, explicit paral- 
lelism is encoded in each vector instruction, thus allowing for 
highly parallel implementations. Third, the combination of 
regularity in each vector instruction and explicit parallelism 
allows for very aggressive design techniques, such as heavy 
pipelining, functional unit replication and aggressive clock- 
ing. Let’s look at each of these advantages in turn. 

Number of instructions executed 

The main difference between a vector and a scalar instruc- 
tion is that a single vector instruction specifies a large num- 
ber of operations. Thus, to perform a given task, a vector 
program executes far fewer instructions than a scalar pro- 
gram. The scalar program has to specify address compu- 
tations, loop counter increments, and branch computations 
that are typically implicit in vector instructions. 

To illustrate this point, figure 5 presents a comparison of 
the number of instructions executed on a vector machine 
(a Convex C34) and on a superscalar machine (a MIPS 
RlOOOO). We selected seven programs from the Specfp92 
suite and compiled them on each machine. We then ran 
each program on the two machines and counted the total 
number of instructions executed. As can be seen, the differ- 
ences are huge. 

This instruction count difference translates into several 
positive effects. First, instruction fetch bandwidth is greatly 
reduced. Second, execution of branches can be hidden “un- 
derneath” the execution of vector operations, thereby hiding 
most branch misprediction latencies. Third, even a rela- 
tively simple control unit that fetches and decodes just one 
instruction per cycle can be enough to sustain a very large 
computation rate. Overall, vector instruction sets allow im- 
plementations with simple control units. In turn, control 
simplicity can yield an aggressive clocking of the whole pro- 
cessor. 

Number of operations executed 

The comparison in terms of instructions executed presented 
in the previous section is very important for its overall effect 
on the fetch engine. However, to correctly gauge the over- 
head of a typical scalar ISA over a vector ISA we should 
compare the total number of operations executed. Figure 6 
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Figure 5: Number of instructions executed on the RlOOOO 
and Convex C34 machines. On the RlOOOO we used the 
hardware counters to gather the number of graduated in- 
structions per program. On the Convex machine we used 
the Dixie tracing tool [18] to gather instruction traces and 
count total number of executed instructions. 

2.0 -p 

Figure 6: A comparison of the number of operations exe- 
cuted on the RlOOOO and the Convex C34. The data pre- 
sented is the ratio of RlOOOO operations over C34 operations. 
Numbers above 1.0 indicate an advantage for the vector C34 
machine. 

presents such a comparison. For each program we compute 
the ratio of operations executed on the Mips RlOOOO ma- 
chine over the number of operations executed on the Con- 
vex C34. For example, program nasa7 executes 1.7 more 
operations when run on the scalar machine than when run 
on the vector machine. 

As Figure 6 shows, for all programs but one, the vec- 
tor version of each program executes many fewer operations 
than the scalar version. The one exception, mdljdpl? is due 
to a combination of heavily nested IF constructs in the main 
loop, high register pressure, and lack of support for multi- 
ple vector mask registers. We believe that, if compiled on a 
vector machine without these limitations, such as the SX-4, 
mdljdp2 would also show fewer operations executed. 

The overall conclusion is that a vector ISA expresses a 
given program in many fewer operations than a scalar ISA 
because many operations, such as address computations, are 
implicit in vector instructions while they must be explicitly 
coded in a scalar ISA. 

Memory system performance 

Due to the increasing gap between memory and processor 
speeds, current superscalar micros need increasingly larger 
caches to maintain performance improvements. Nonethe- 
less, despite out-of-order execution, non-blocking caches, and 
prefetching, superscalar micros do not make efficient use of 
their memory hierarchies. The main reason for this comes 
from the inherently predictive model embedded in cache de- 
signs. Whenever a line is brought from the next level in 
the memory hierarchy, it is not known whether all data will 
be needed or not (and often it is not). Moreover, it is very 
uncommon for superscalar machines to sustain the full band- 
width that their first level caches can potentially deliver [19]. 
Since load/store instructions are mixed with computation 
and setup code, dependencies and resource constraints pre- 
vent a memory operation from being launched every cycle. 

In contrast, the vector style of accessing memory has the 
following advantages. First, every data item requested by 
the processor is actually used. There is no implicit (some- 
times wasted) prefetching due to cache lines. Second, infor- 
mation about memory access pattern is conveyed directly 
to the hardware through the stride value. This information 
can be used in a variety of ways to improve memory system 
performance. 

When it comes to memory latency, a vector memory in- 
struction can amortize long memory latencies over many el- 
ements. Several studies [17, 20, 21, 181 have shown that by 
using some superscalar-like techniques coupled with a vec- 
tor engine, up to 100 cycles of main memory latency can be 
tolerated with a very small performance degradation. 

Regarding memory bandwidth, a vector machine can 
make much more effective usage of whatever bandwidth it 
is provided. While a superscalar processor requires extra is- 
sue slots and decode hardware to exploit more ports to the 
first level cache, a vector machine can request several data 
items with a single memory address. For example, when 
doing a stride-l vector memory access, a vector processor 
need not send every single address to the memory system. 
Simply sending every Nth address, a bandwidth of N words 
per cycle can be achieved. 

Datapath Control 

In order to scale current superscalar performance up to, say, 
20 instructions per cycle, an inordinate amount of effort is 
needed. The dispatch window and reorder buffers required 
for such a machine are very complex. The wakeup and se- 
lect logic grows quadratically with the number of entries, 
so the larger the window the more difficult is to build such 
an engine [22]. If current superscalars use 4-wide dispatch 
logic and barely sustain one instruction per cycle, a super- 
scalar machine that sustains 20 operations per cycle appears 
infeasible. 

On the other hand, a vector engine can be easily scaled 
to higher levels of parallelism by simply adding vector pipes 
and adding wider paths from the vector registers to the func- 
tional units. All this without increasing the complexity or 
the pressure on the decode unit. The semantic content of 
the vector instructions already includes the notion of parallel 
operations. 

low Power and Real-Time Performance 

For many future applications, low power and real-time per- 
formance will be major factors. And, as odd as it may seem, 
vector architectures have significant advantages for both. 

Vector instructions have the property of “localizing” com- 
putations. That is, once a vector instruction starts operat- 
ing, only the functional unit and register busses feeding it 
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need to be powered. The instruction fetch unit, the reorder 
buffer and other large power-hungry blocks of the proces- 
sor can be powered off until the vector instruction finishes 
execution. 

A designer using a vector ISA can easily balance perfor- 
mance against power consumption. For example, two vec- 
tor instructions could be working in parallel if needed to 
meet a certain performance goal. Or, alternatively, a single 
vector instruction could be executed twice as fast by using 
a double-pipe. In both alternatives, the extra power con- 
sumption is kept at the absolute minimum needed to run 
the extra functional units and busses. No power is wasted 
due to continuously re-fetching the same loop instructions, 
as it would happen in a superscalar implementation. 

Regarding real-time applications, vector machines can be 
constructed with both highly predictable and deterministic 
behavior. The CRAY-1 had extremely deterministic tim- 
ing - probably more so than any high performance system 
constructed before or since. With vectors, performance fea- 
tures that give real-time designer headaches, like caches and 
branch predictors, aren’t necessary for high performance. 
The highly structured character and natural latency-hiding 
features of vector architectures permit implementations that 
are both simple and deterministic, yet retain their potential 
for high performance. 

3 A Typical Vector Architecture of the Future 

There are a couple of directions in which vector architectures 
can evolve, as shown in figure 7. First, vector machines will 
continue to have a percentage of the high end supercomputer 
market, at least in the near-term. Second, superscalar archi- 
tectures and vector ISA’s will be merged to tackle the needs 
of multimedia applications. 

High-End Supercomputer Market 

We think vector architectures will continue in the high-end 
supercomputer market, to cover a certain subset of scientific 
applications that do not fit the SMP or MPP architecture 
model. However, the critical issue is whether there will be 
enough customers and enough machines sold to recover the 
development costs of these specialized and expensive ma- 
chines. As defended in a previous paper, a possible path 
of evolution of these high-end machine could be the mix- 
ture of all high performance paradigms used today: vector 

processing, superscalar processing and multithreaded pro- 
cessing [23]. 

High performance microprocessors 

The other path links the future of vector architectures to the 
evolution of today’s commodity microprocessors. As noted 
elsewhere [24], in fewer than 10 years application execution 
times will be dominated by multimedia tasks. That is, it is 
very likely that video and audio processing, image rendering, 
etc., will be the dominant portion of future applications. 
As the human-computer interface improves, there will be 
more demand for high quality 3D graphics, regardless of the 
particular application at hand. Thus, processors will have 
to evolve to accommodate the tremendous bandwidth and 
computation needs of these types of applications. 

Today, we already see in the major microprocessor fam- 
ilies a set of extensions targeting the multimedia market 
(MMX [25], VIS [26], etc.). These multimedia extensions 
are simple vector-like instructions that operate on parts of 
a 64-bit word. Extending these limited vector instructions 
into more general ones, like those found in modern vector 
ISAs is relatively simple. 

Research performed on traditional vector architectures 
shows a couple of promising directions for fully integrating 
a vector and a scalar processor. First, adding out-of-order 
execution to a vector processor, the ability to tolerate large 
memory latencies is increased and performance improves 
substantially [18]. Second, once the large memory latency 
problem is more or less solved, one can reduce the length of 
each vector register from 128 elements to 8 or 16 [27]. This 
reduction in register length leads to two very interesting con- 
sequences: first, the area occupied by the vector register file 
can fit into a microprocessor without compromising other 
critical components (such as instruction and data caches or 
branch predictor). Second, a single vector register looks a 
lot like a cache line from the second level cache. That is, 
today’s L2 caches have line sizes in the 128 to 256 bytes 
range. A 16 element vector occupies 16 x 8 = 128 bytes. 
One can use this property to devise a cache hierarchy that 
fits these small vector registers. A possible example of such 
architecture is shown in figure 8. It is a narrow-width out- 
of-order superscalar enhanced with a powerful vector unit. 
The vector unit has 16 to 64 short vectors (8 or 16 elements 
each) and functional units that can do three types of oper- 
ations: integer, floating point and multimedia. There is a 
wide path (1024 bits wide) between the vector-cache and the 
vector registers, so that a full register can be loaded with a 
cache line, if properly aligned, in a single cycle. The vector- 
cache only holds stride-l vector memory accesses, while the 
scalar-cache holds scalar data and non-unit stride vector ac- 
cesses. We believe this architecture can perform very well on 
media-intensive and floating point codes. For scalar codes, 
its performance would be roughly equal to a conventional 
superscalar machine. 

4 Conclusions 

When thinking about vector architectures, it is natural to 
envision huge liquid-cooled mainframes, built out of ECL 
components packed together using exotic technologies and 
extremely expensive memory systems. If this is all they 
are, they could easily vanish in the next decade. However, 
we believe that vector architectures when implemented with 
commodity components have great potential for the future. 
They have substantial advantages for future generation com- 
puter systems. As technology progresses and processor ar- 
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Figure 8: A possible future implementation of a micro-vector 
processor. 

chitects are faced with the challenge of extracting more par- 
allelism from programs, we believe that vector architectures 
with their many inherent advantages and suitability for fu- 
ture applications will come to the fore. 

Vector instruction sets provide natural way to express 
data-level parallelism. This parallelism can be used in sev- 
eral ways: to improve performance by executing operations 
in parallel, to aggressively clock a design by deeply pipelin- 
ing it, or to reduce power consumption by turning off all 
units not needed during the execution of a long-running 
vector instruction. Moreover, vector instructions express 
a program in a more compact way, which means fetch and 
decode bandwidths are more effectively utilized. Finally, 
accessing memory using vectors has many advantages: only 
useful data is requested, spatial locality can be exploited by 
requesting multiple data items with a single address, and 
stride information can be used by the hardware to optimize 
memory accesses. 

All these features combined make vector instruction sets 
ideal for the next round of high performance microproces- 
sors. They can provide high performance at a low com- 
plexity and are very well suited for tomorrow’s applications: 
bandwidth hungry multimedia programs are the perfect fit 
for vector architectures. 
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