
Vector Architectures: Past, Present and Future

Roger Espasa, Mateo Valero* James E. Smith+

Computer Architecture Dept. Dept. of Electrical & Computer Engr.

U. Politbcnica de Catalunya-Barcelona University of Wisconsin-Madison

{roger,mateo}@ac.upc.es Madison, WI 53706

http:/ /www.ac.upc.es/hpc jes@ece.wisc.edu

Abstract

Vector architectures have long been the of choice for build-
ing supercomputers. They first appeared in the early aeven-
ties and had a long period of unquestioned dominance from
the time the CRAY-1 was introduced in 1976 until the the
appearance of “killer micros”, in 1991. They still have a
foothold in the supercomputer marketplace, although their
continued viability, in the face of micro-baaed parallel ays-
tens, is being seriously questioned. We present a brief hia-
tory of supercomputing and discuss the merits of vector ar-
chitectures. Then we relate the advantages of vector archi-
tectures with current trends in computer system and device
technology. Although the viability of vector supercomputers
is indeed questionable, largely because of coat issues, we ar-
gue that vector architectures have a long future ahead of
them - with new applications and commodity implementa-
tions. Vector instruction sets have many fundamental ad-
vantages and deserve serious consideration for implementa-
tion in next generation computer systems, where graphics
and other multimedia applications will abound.

1 A Brief History of Supercomputing

To better understand vector supercomputers, we begin with
a brief history. And to provide broader perspective, we con-
sider supercomputers in general; we don’t restrict ourselves
to vector machines.

1.1 The Six Hundreds: Roots of Supercomputing

Although the term wasn’t coined until later, supercomput-
ing probably began with the Control Data 6600 and 7600 [l].
The 6600 was rolled out in 1963, and the 7600 in 1969.
They were scalar machines and were the first to use RISC
instruction sets. James Thornton and Seymour Cray were
co-developers of the 6600. Thornton went on to develop the
STAR-100 [a], while Cray continued with the 7600 and the
unfinished 8600 before leaving CDC to found Cray Research.

‘This work was supported by the Ministry of Education of Spain
under contract 0429/95 and by the CEPBA.

tThis work was supported in part by NSF Grant MIP-9505853.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICS 98 Melbourne Australia
Copyright ACM 1998 0-89791-998-x/98/ 7...$5.00

Although they were scalar machines, they had many
characteristics of supercomputers. The 6600 and 7600 were
focused on numerical processing. They implemented 60-bit
floating point arithmetic and were constructed of what at
the time were exotic technologies. Their clock cycles and
overall performance levels were far superior to their clos-
est competition, They had large memory capacity and very
high I/O bandwidth. And their price tag was very high:
many millions of dollars (in 1960s dollars).

1.2 The Rise of Vector Supercomputers

The first two vector supercomputers appeared in the early
1970s. The two machines were remarkably similar. One was
developed at Texas Instruments, the TI-ASC [3]. It was
Texas Instruments’ only venture into large scale computers
and only a handful were ever sold. The other was developed
at Control Data Corporation, the STAR-loo. Only a few
STAR-loos sold as well, but it was the beginning of a series
of vector machines developed at CDC over the years.

The ASC and the STAR-100 were centered around a very
high-powered vector unit that took streams of operands from
memory, operated on them, then sent the result streams
back to memory, all in a single instruction. The primary
job of the scalar unit was to service the vector unit - to
do bookkeeping computation and do any scalar code that
couldn’t be done with vectors. Because they were memory-
to-memory vector machines, they were built with very ad-
vanced, high bandwidth memory systems. A pipeline that
stretched from memory, through the processor, and back to
memory was very long and took many clock cycles to fill,
but once it was filled, the throughput was tremendous.

Both machines used instruction sets that would be cat-
egorized as “CISC” today. For example, in a single vector
instruction, the ASC could do a complete matrix multipli-
cation. STAR-100 instructions operated on arrays of nu-
merical data and on strings of characters and bits; STAR
stood for STring ARray. The STAR-100 also had features
to support sparse matrix operations. Many of the instruc-
tions had so much semantic content, it is doubtful that a
compiler would be able to use them as targets for automatic
vectorization; they could most easily be used in assembly-
coded library routines.

Although they are remembered mostly for their ulti-
mately unsuccessful memory-to-memory architectures, the
ASC and STAR-100 also contained several innovations that
have lived on until today. One example is the method they
used for implementing conditional operations, i.e. bit masks
for control. Data movement operations implemented with

425

stride and gather/scatter memory accesses are still used to-
day. They could split their pipelines to double performance
on 32-bit dat,a. The ASC could be upgraded by adding ad-
ditional vector pipelines, up to a total of four. And the
STAR-100 also supported multiple vector pipes, although
their functions were not identical.

Both machines had relatively poor scalar performance,
and Amdahl’s law took its toll. The CDC 7600, a scalar-only
contemporary of the STAR-loo, was generally much faster
on all but very highly vectorized problems. In the case of
the ASC, there were probably business decisions that also
led to its demise; this simply wasn’t TI’s market.

1.3 The Golden Era of Vector Supercomputers

It wasn’t until the introduction of the CRAY-1 in 1976 that
vector supercomputing became successful [4]. The CRAY-1
was designed with a different philosophy than the STAR-100
and ASC. In a sense it was centered around scalar process-
ing. The scalar unit was similar to the CDC 7600, an earlier
Seymour Cray-designed machine, and was capable of much
higher scalar performance than any of its contemporaries.
The only substantial hardware added for supporting vector
operations was the vector registers and interconnect paths
for moving data between the vector registers and the func-
tional units. The memory path was capable of only one load
or store per cycle - all that was needed for scalar operation,
and vector registers were added to maximize the use of this
rather limited memory bandwidth. The large scalar floating
point functional units were shared by the vector instructions
- with slightly longer latencies for vector processing.

The CRAY-I was the beginning of a “Golden Era” of
vector supercomputers - and supercomputing in general, for
that matter. This era spans approximately 15 years from
1976 until 1991. This period can be characterized as a time
when a vector supercomputer had a major, unquestioned
performance advantage over microprocessors in all aspects:
faster clock cycles, more operations per cycle, higher mem-
ory bandwidth, and much more I/O capacity.

Cray Research, by far the most successful supercomputer
vendor, continued its development of vector machines fol-
lowing two parallel lines. Seymour Cray went on to design
the multiprocessor CRAY-2 as a follow-on to the CRAY-1.
The CRAY-2 resembled the CRAY-1 in many ways. For ex-
ample, it had a single memory port and one set of parallel
functional units in each vector processor. Some interesting
innovations appeared, as well. The GRAY-2 had 16K words
(64-bit words, of course), of local memory which had to be
explicitly managed by the compiler/programmer. At the
same time the CRAY-2 was designed, another group at Cray
Research developed the CRAY X-MP system. The emphasis
in the X-MP was on multiprocessing, and the memory band-
width per processor was expanded to four words per cycle
(three for processing, and one for I/O). It was with huge suc-
cess of the X-MP and the follow-on Y-MP that grew Cray
Research into a large company.

Meanwhile, Control Data continued the development of
vector machines based on the STAR-100 architecture. The
Cyber 200 series machines continued with memory-to-memory
vector operation, but had considerably improved scalar ca-
pability. Eventually, the Cyber 200 series was followed by
the ETA-10 [5, 61, when ETA spun out of CDC. And the
line ceased when ETA went out of business in 1989.

During this time period the Japanese manufacturers also
entered the vector supercomputer market with several de-
signs. In the early eighties, NEC, Fujitsu and Hitachi each

introduced a line of parallel vector computers. Using their
expertise in chip technology and emphasizing multiple vec-
tor pipelines per processor, all three manufacturers succeeded
in developing very fast vector machines. As our later graphs
will show, the vector processors used in these machines are
the most powerful uniprocessors ever built (see the NEC
SX-3 at 5.5 Gflops, for example).

Following the success of the big iron vendors, in the early
1980’s several start-up companies designed and sold ‘mini-
supercomputers’. These were small vector machines, with
slower clocks than the big supercomputers and less process-
ing power per vector unit. The most successful example
was Convex Computer Corporation. It’s first machine, the
C-l, was introduced in 1985 with a clock rate of 1OMhz
(much slower than a contemporary 16OMhz SX-2). The sell-
ing point of these mini-supers was that they provided limited
supercomputing capabilities at a much more affordable price
(typically 0.5201 million dollars versus 5to30 million).

1.4 Killer Micros and the Emergence of large Parallel
Systems

In the early nineties, advances in CMOS VLSI technology
introduced a radical change in the computer industry. Many
more transistors could be fit in a single die and, moreover,
the die could be clocked faster as feature sizes shrank. No
longer was it true that breaking the 1OOMhz barrier re-
quired expensive ECL technology. Since then, microproces-
sors have continued to evolve at an impressive pace. Indeed,
peak microprocessor performance has been improving at a
rate of 1.6X per year, rapidly approaching the performance
of vector supercomputers.

Perhaps the DEC Alpha family is the best example of
the so-called “killer micros”. Introduced in 1992 at an as-
tonishing 15OMhz (reminiscent of the astonishing CDC and
Cray clock cycles of their generation), successive processors
in the Alpha family have seen rapidly improving clock cy-
cles to the point that they now surpass the cycle times of
the fastest supercomputers (see fig. 2). As early as 1994,
the Alpha 21164 already was clocked faster (300Mhz) than
the contemporary CRAY C90 (240Mhz). Since then, clock
frequency has been steadily increasing and the new Alpha
21264 [7] clock will be at least 1.5 times faster than the Cray
T90 (45oMhz).

The introduction of fast microprocessors substantially
changed the supercomputing market. Due to their much
higher volumes, microprocessors offer very low prices per
processor. As soon as cheap and powerful processors ap-
peared in the market, the idea of building supercomputers
using many of these processors spread rapidly. Before long,
supercomputer customers were talking in terms of Mflops
per dollar, rather than absolute peak performance.

Parallel machines built of microprocessors are offered as
an attractive alternative to vector supercomputers (we will
call them scalar-parallel machines, to distinguish them from
parallel vector supercomputers -PVPs). Smaller scalar-parallel
machines can be built around a bus with uniform memory
access delays to give a symmetric multiprocessor (SMP), or
many more processors can be combined with direct intercon-
nection networks to form massive parallel systems (MPP).
The success of scalar-parallel machines has been based mostly
on leveraging CMOS microprocessor technology and DRAM
main memory systems, yielding computers that have a high
performance at a low cost. Although each node in a scalar-
parallel system is less powerful than a vector processor, these
machines are built with the ability to scale to large numbers

426

01 , , , , , , , (,
12 4 6 16 32 64 126 256 512

Num. Processors

Figure 1: Performance on the TRIAD operation for several
supercomputers (source: [8]).

Figure 2: Evolution of clock frequency over the years for vec-
tor supercomputers and for several microprocessors (source:
vendor information).

of nodes. Therefore, at their best, by using parallel pro-
gramming and compilation techniques the processing power
of each processor can be magnified by orders of magnitude in
a large parallel system. On the other hand, some problems
are difficult to program in parallel or have memory access
patterns that make distributed memory parallel systems less
effective than their vector counterparts.

To illustrate the importance of memory systems, figure 1
presents sustained performance of several PVPs, MPPs, and
SMPs. This figure plots data gathered using the STREAM [8]
benchmark. In particular, we present the performance of the
TRIAD operations (performance is measured in Gigabytes
per second). The core of the TRIAD benchmark consists of
the following operation: u(i) = b(i) + q x c(i).

chine, indicating that each of its main vector resources is
replicated four times. Finally, columns “Flops/Cycle” and
“Words/Cycle” indicate the peak number of floating point
operations per cycle and the maximum data transfer rate
(also per cycle) between the register file and main memory.
For machines having asymmetric load/store ports, the fol-
lowing notation is used. For the SX-2, with one load-only
port and one load/store port, the maximum transfer rate
is 8 words when performing loads and 4 words when doing
stores. This situation is noted as “8 or 4”. For machines
with independent load/store ports, such as the Y-MP, the
notation “2+1” indicates that it can perform 2 loads and 1
store per cycle.

Figure 1 shows that even when using large numbers of
processors, top-of-the-line parallel vector processors still out-
perform large MPPs like the T3E. Even the relatively mod-
est J90 sustains much larger bandwidths than most paral-
lel servers. The memory accessing patterns of the TRIAD
benchmark are designed to have relatively low temporal lo-
cality. However, not all applications match the needs of the
TRIAD operation. In fact, there is a significant number of
cache-friendly scientific applications that run very well on
parallel machines.

Performance Trends

Figures 2 through 4 illustrate the historical trends of three
key aspects of vector architectures: clock frequency (fig. 2),
peak MFLOPS (fig. 3) and peak memory-to-register band-
width (fig. 4). The three figures also include data for typical
microprocessors, including the Intel x86 line, the MIPS line,
and the more recent DEC Alpha family.

Commercial Vector Supercomputers

As shown in figure 2, beginning with the CRAY-I in 1976
and continuing until 1991, the clock frequency of vector su-
percomputers was between 7 to 10 times faster than con-
temporary microprocessors. For example, in 1978, the clock

Table 1 summarizes the main characteristics of the major ratio between a CRAY-1 and an x86 w-as about a factor of 8.

vector supercomputers built and sold from 1972 until 1996. Eight years later, in 1986, the CRAY-2 (245Mhz) when com-

For each machine in the table we indicate the year of pared with the recently introduced R2000 (25 Mhz) yields

introduction and the basic cycle time of the machine (in ns a factor of almost 10. As late as 1990, the NEC SX-3

units). The next column, labeled “LD/ST paths” indicates (340Mhz) compared very favorably against a 40-50Mhz R3000.

the number of ports connecting the memory system to the During the golden era, vector machines not only had

vector register files. There are three kinds of ports: an “I,” much faster clocks, but also performed many more opera-

by itself indicates a stand-alone load port. An “S” by itself tions per clock cycle. Referring to table 1 we see that vector

indicates a stand-alone store port, while an “Ls” indicates units can perform from 2 to 16 floating point operations per
a bidirectional port that can do both loads and stores. For cycle. Typical micros perform either 1 or 2 floating point op-

example, the SX-2 had 2 different ports: one port was a erations per cycle at most (the Power and R8000 chips being

load-only port while the other was a bidirectional load/store the most notable exceptions). Figure 3 plots the evolution
port. Similarly, the Cray C90 has three ports: two load-only of peak MFLOPS per processor from 1976 to 1998. The
ports and one store-only port (this does not include the I/O combination of fast clocks and multiple operations per cycle
port). The table also includes the number of vector registers yielded machines with peak performance that was between
and their sizes, as well as the number and type of functional 16 and 70 times better than contemporary microprocessors.
units. For example, the SX-3, with its 5.5 Gflops, had around 68

Column “Pipes” indicates the number of replicated vec- times more Mflops than an 8OMflops R3000.
tor pipes existing in the maximum configuration of each The third important measure for high performance com-

machine. For example, the Fujitsu VP2600 is a 4-pipe ma- puting is memory bandwidth, that is, peak number of bytes

427

Machine
intro

TI-ASC 1972
STAR-100 1973
CRAY-1 1976
Fbjitsu VP200 1982
Cray X-MP 1983
Hitachi SSlO/ZO 1983
NEC SX-2 1984
CRAY-2 1985
Hitachi S820/80 1987
Cray Y-MP 1988
Fujitsu VP2600 1989
NEC SX-3 1990
Cray C90 1992
NEC SX-4 1996

7.0 LS,LS
9.5 LW

19.0 L,L,L,LS
6.0 L,LS
4.1 LS
4.0 L,LS
6.3 L,LS
3.2 LS,LS
2.9 LW
4.0 L&S
8.0 1 LS,LS

Vector Elements/
Registers Register

8 64
256-8 1024-32

8 64
32 256

8+8K 256/64-256
8 64

32 512
8 64

2048-64 64-2048
8+16K 256/64-256

8 128
8+16K 256/64-256 I

Functional Pipes 1 Flops/ Words/
Units
A/M
AjD/L, A/M
WWAW
A/LM,D
.W,WLWP
A/L,A/L,M/DtA,MtA
4WD,W
-Wf/WQ,LL
A/L,MtA,D
A,M/LW,W,P
MtA/LMtA/W
Al%.W,WLWL
.%WL~J,LV-’
A/S,WD,L

4
1
1
2
1
2
4
1
4
1
4
4
2
8

cycle cycle
4 4 (32th)
2 3
2 1
4 4
2 2-l-l
12 8 or 2
16 8 or 4
2 1

12 8 or 4
2 2t1

16 8
16 8+4
4 4+2
16 16

Table 1: Functional unit and register file characteristics of several vector supercomputers. Legend: A=FP-Add, D=FP-Divide,
I=Integer-Add, L=Logical, M=FP-Multiply, P=Population Count/Parity, R=Reciprocal Approximation, Q=Reciprocal
Square Root, S=Shift. Independent functional units are separated by commas. Functional units that perform several opera-
tions are indicated using a slash mark (A/S, for example). Cascaded units, that is units that hang off other functional units,
are indicated using a “+” sign (for example, “,+A”).

Figure 3: Evolution of peak MFLOPS over the years for vec-
tor supercomputers and for several microprocessors (source:
vendor information).

transferred between main memory and the register file. Fig-
ure 4 shows the peak memory bandwidths for several vector
supercomputers. Also included in the graph are the memory
bandwidths for Alpha workstations. For microprocessors
such as the Alpha, determining peak memory bandwidth is
not easy. We have included two different measures. First,
peak bandwidth between the first level cache and the register
file (curve Ll). Second, peak memory bandwidth between
main memory and the second or third level caches (curve
Mem).

Again, vector supercomputers have a very large advan-
tage in memory bandwidth over microprocessors. Even when
considering the most recent and fastest microprocessor, the
Alpha 21264, peak memory bandwidth comparisons can be
misleading. The 21264 can provide about lOGB/s to its LP
cache, only a factor of 1.6 smaller than a single SX-4 proces-
sor. However, the 21264’s Ll cache can only hold 64KBytes
of data. Meanwhile, the SX-4 offers 16GB per second to a
main memory of 8 Gigabytes. Multiplying bandwidth times
memory size being accessed (IoGB/s times 64KBytes and
lGGB/s times 8GB) we get an aggregate measure of the abil-
ity to access data. Comparing the two numbers, we see that
the SX-4 has an aggregate bandwidth 200,000 times larger
than the Alpha 21264. Clearly, the Alpha will only match

sx-3
.

- - -X - - Alpha (Ll)
-o- Alpha (Mem)

Gray-TQO
VP2600 .

S02Ol80 sx-4
. 8

Cray-C90
sx-2 n

7
es

Figure 4: Evolution of peak main memory bandwidth for
vector supercomputers and for an Alpha-based Workstation.
The values for the Alpha main memory bandwidths are de-
rived using the 33Mhz 21072 and 21172 chipsets [9].

the SX-4 performance on applications where most data fits
entirely in the Ll cache.

Current status of vector supercomputers

Since the early nineties, supercomputers based on the vector
paradigm have lost their dominance of the supercomput-
ing market. Consider the “Top500 Supercomputer Sites”
list [lo], published every 6 months since 1993. The list in-
cludes the sites that have the world’s 500 most powerful com-
puter systems installed. In June 1993, of the top 500 com-
puters, 310 were parallel-vector machines. All the machines
included in the list at that time totaled a peak computing
power of 1.8 Teraflops. The 310 vector systems represented
roughly 43% of all that computing power. Four and a half
years later, in November 97, the same list reports that only
108 PVP’s are still in the top-500 systems. Moreover, the
total peak power of all systems listed had sky-rocketed to
24.2 Teraflops, but now the vector machines only accounted
for 17% of this power.

Why have vector machines declined so fast in popularity?
What are the key factors that have helped in the rise of
parallel microprocessor based machines?

428

The short answer is cost. There are many problems that
are amenable to vectorization, yet very few users can afford
a full blown vector supercomputer. Why are vector super-
computers so much more expensive than MPPs or SMPs ?
There are several related reasons:

. Probably the most important reason is that scalar-
parallel systems use commodity parts. With com-
modity parts, design and non-recurring manufacturing
costs can be spread over a larger number of chips. If
a vector machine only sells a few dozen copies, then
design costs can easily be the dominant overall cost.

. The most expensive part of a computer (whether a PC,
workstation, or supercomputer) is usually the memory
system. Consider figure 4 again. Vector supercom-
puters provide high performance memory systems that
sustain very large bandwidths between main memory
and the vector registers. To achieve this bandwidth,
vector processors rely on high-performance, highly in-
terleaved memory systems (between 256 and 1024 mem-
ory banks depending on processor and configuration [II]).
Moreover, for a high performance machine, latency
also plays an important role. Therefore, vector super-
computers use the fastest memory technology avail-
able. Typically, a vector memory system will be com-
posed of SRAM/SSRAM memory modules [12] with
cycle times in the IO-20ns range; this allows keeping
main memory latency around 10 to 30 processor cycles.

l Another problem is how one packages a processor with
such high bandwidths. That is, consider a 20GB/s
memory system and a typical CMOS package that al-
lows its pins to operate at 133Mhz. A back-of-the-
envelope calculation indicates that 1200 pins (just for
data) would be needed to sustain a peak of 20GB/s
second. Such numbers of pins are difficult to imple-
ment. In the past, vector manufacturers have em-
ployed multi-chip designs. These designs tend to be
substantially more expensive than single-chip solutions.

l Another factor that keeps vector costs up is the base
technology used in these machines. Up to very re-
cently, most vector designs were based on ECL. While
this choice was adequate in the 1976-1991 time frame,
vector vendors apparently failed to realize the poten-
tial of CMOS implementations. Nor were they willing
to shift from gate array to custom design in order to
exploit the capabilities of CMOS. In the last 8 years,
CMOS chips have outperformed ECL in numbers of
transistors, speed, and reliability. Recently, most vec-
tor vendors have introduced CMOS-based vector ma-
chines (like the J90 or SX-4).

a Also important is the fact that users often have dif-
ficulty achieving peak performance on vector super-
computers [13, 14, 15, 161. Despite high performance
processors and high bandwidth memory systems, even
programs that are highly vectorized fall short of theo-
retical peak performance [17].

l Finally, it is important to note that there have been
relatively few architectural innovations since the CRAY-
1. The top of the line CRAY T90 still has only 8 vector
registers and has a relatively slow scalar microarchitec-
ture when compared to current superscalar micropro-
cessors. Meanwhile, superscalar microprocessors have
adopted many architectural features to increase per-
formance while still retaining low cost.

2 Future Vector Applications and Technologies

It is important to distinguish between vector instruction set
architectures (ISAs) and vector supercomputers. The previ-
ous section established several reasons we believe that vec-
tor supercomputers are in a period of diminished popularity.
However, we believe the architectural concept behind a vec-
tor supercomputer, its vector instruction set, remains very
viable.

Vector ISA’s have significant advantages for future tech-
nology. As feature size decreases and we rapidly approach
wire delay limitations, a vector ISA has major benefits in
providing ever-increasing levels of performance. In this sec-
tion we present the advantages of vector ISA’s and relate
them to current technology constraints. It is important to
stress that we are no longer talking only about supercom-
puters. We believe that vector ISA’s have a wide range of
application, from DSP’s and multimedia-oriented chips to
general purpose CMOS microprocessors.

Advantages of Vector ISA’s

Advantages of vector ISA’s over scalar or VLIW ISA’s can
be placed in three broad categories. First, semantic ad-
vantages; that is, vector ISA’s tend to express programs
in a more concise and efficient way. Second, explicit paral-
lelism is encoded in each vector instruction, thus allowing for
highly parallel implementations. Third, the combination of
regularity in each vector instruction and explicit parallelism
allows for very aggressive design techniques, such as heavy
pipelining, functional unit replication and aggressive clock-
ing. Let’s look at each of these advantages in turn.

Number of instructions executed

The main difference between a vector and a scalar instruc-
tion is that a single vector instruction specifies a large num-
ber of operations. Thus, to perform a given task, a vector
program executes far fewer instructions than a scalar pro-
gram. The scalar program has to specify address compu-
tations, loop counter increments, and branch computations
that are typically implicit in vector instructions.

To illustrate this point, figure 5 presents a comparison of
the number of instructions executed on a vector machine
(a Convex C34) and on a superscalar machine (a MIPS
RlOOOO). We selected seven programs from the Specfp92
suite and compiled them on each machine. We then ran
each program on the two machines and counted the total
number of instructions executed. As can be seen, the differ-
ences are huge.

This instruction count difference translates into several
positive effects. First, instruction fetch bandwidth is greatly
reduced. Second, execution of branches can be hidden “un-
derneath” the execution of vector operations, thereby hiding
most branch misprediction latencies. Third, even a rela-
tively simple control unit that fetches and decodes just one
instruction per cycle can be enough to sustain a very large
computation rate. Overall, vector instruction sets allow im-
plementations with simple control units. In turn, control
simplicity can yield an aggressive clocking of the whole pro-
cessor.

Number of operations executed

The comparison in terms of instructions executed presented
in the previous section is very important for its overall effect
on the fetch engine. However, to correctly gauge the over-
head of a typical scalar ISA over a vector ISA we should
compare the total number of operations executed. Figure 6

429

g ‘-
J 8000

Figure 5: Number of instructions executed on the RlOOOO
and Convex C34 machines. On the RlOOOO we used the
hardware counters to gather the number of graduated in-
structions per program. On the Convex machine we used
the Dixie tracing tool [18] to gather instruction traces and
count total number of executed instructions.

2.0 -p

Figure 6: A comparison of the number of operations exe-
cuted on the RlOOOO and the Convex C34. The data pre-
sented is the ratio of RlOOOO operations over C34 operations.
Numbers above 1.0 indicate an advantage for the vector C34
machine.

presents such a comparison. For each program we compute
the ratio of operations executed on the Mips RlOOOO ma-
chine over the number of operations executed on the Con-
vex C34. For example, program nasa7 executes 1.7 more
operations when run on the scalar machine than when run
on the vector machine.

As Figure 6 shows, for all programs but one, the vec-
tor version of each program executes many fewer operations
than the scalar version. The one exception, mdljdpl? is due
to a combination of heavily nested IF constructs in the main
loop, high register pressure, and lack of support for multi-
ple vector mask registers. We believe that, if compiled on a
vector machine without these limitations, such as the SX-4,
mdljdp2 would also show fewer operations executed.

The overall conclusion is that a vector ISA expresses a
given program in many fewer operations than a scalar ISA
because many operations, such as address computations, are
implicit in vector instructions while they must be explicitly
coded in a scalar ISA.

Memory system performance

Due to the increasing gap between memory and processor
speeds, current superscalar micros need increasingly larger
caches to maintain performance improvements. Nonethe-
less, despite out-of-order execution, non-blocking caches, and
prefetching, superscalar micros do not make efficient use of
their memory hierarchies. The main reason for this comes
from the inherently predictive model embedded in cache de-
signs. Whenever a line is brought from the next level in
the memory hierarchy, it is not known whether all data will
be needed or not (and often it is not). Moreover, it is very
uncommon for superscalar machines to sustain the full band-
width that their first level caches can potentially deliver [19].
Since load/store instructions are mixed with computation
and setup code, dependencies and resource constraints pre-
vent a memory operation from being launched every cycle.

In contrast, the vector style of accessing memory has the
following advantages. First, every data item requested by
the processor is actually used. There is no implicit (some-
times wasted) prefetching due to cache lines. Second, infor-
mation about memory access pattern is conveyed directly
to the hardware through the stride value. This information
can be used in a variety of ways to improve memory system
performance.

When it comes to memory latency, a vector memory in-
struction can amortize long memory latencies over many el-
ements. Several studies [17, 20, 21, 181 have shown that by
using some superscalar-like techniques coupled with a vec-
tor engine, up to 100 cycles of main memory latency can be
tolerated with a very small performance degradation.

Regarding memory bandwidth, a vector machine can
make much more effective usage of whatever bandwidth it
is provided. While a superscalar processor requires extra is-
sue slots and decode hardware to exploit more ports to the
first level cache, a vector machine can request several data
items with a single memory address. For example, when
doing a stride-l vector memory access, a vector processor
need not send every single address to the memory system.
Simply sending every Nth address, a bandwidth of N words
per cycle can be achieved.

Datapath Control

In order to scale current superscalar performance up to, say,
20 instructions per cycle, an inordinate amount of effort is
needed. The dispatch window and reorder buffers required
for such a machine are very complex. The wakeup and se-
lect logic grows quadratically with the number of entries,
so the larger the window the more difficult is to build such
an engine [22]. If current superscalars use 4-wide dispatch
logic and barely sustain one instruction per cycle, a super-
scalar machine that sustains 20 operations per cycle appears
infeasible.

On the other hand, a vector engine can be easily scaled
to higher levels of parallelism by simply adding vector pipes
and adding wider paths from the vector registers to the func-
tional units. All this without increasing the complexity or
the pressure on the decode unit. The semantic content of
the vector instructions already includes the notion of parallel
operations.

low Power and Real-Time Performance

For many future applications, low power and real-time per-
formance will be major factors. And, as odd as it may seem,
vector architectures have significant advantages for both.

Vector instructions have the property of “localizing” com-
putations. That is, once a vector instruction starts operat-
ing, only the functional unit and register busses feeding it

430

m MicroVector

High End -----
Mid-Range
Servers

Figure 7: Possible evolution of vector architectures

need to be powered. The instruction fetch unit, the reorder
buffer and other large power-hungry blocks of the proces-
sor can be powered off until the vector instruction finishes
execution.

A designer using a vector ISA can easily balance perfor-
mance against power consumption. For example, two vec-
tor instructions could be working in parallel if needed to
meet a certain performance goal. Or, alternatively, a single
vector instruction could be executed twice as fast by using
a double-pipe. In both alternatives, the extra power con-
sumption is kept at the absolute minimum needed to run
the extra functional units and busses. No power is wasted
due to continuously re-fetching the same loop instructions,
as it would happen in a superscalar implementation.

Regarding real-time applications, vector machines can be
constructed with both highly predictable and deterministic
behavior. The CRAY-1 had extremely deterministic tim-
ing - probably more so than any high performance system
constructed before or since. With vectors, performance fea-
tures that give real-time designer headaches, like caches and
branch predictors, aren’t necessary for high performance.
The highly structured character and natural latency-hiding
features of vector architectures permit implementations that
are both simple and deterministic, yet retain their potential
for high performance.

3 A Typical Vector Architecture of the Future

There are a couple of directions in which vector architectures
can evolve, as shown in figure 7. First, vector machines will
continue to have a percentage of the high end supercomputer
market, at least in the near-term. Second, superscalar archi-
tectures and vector ISA’s will be merged to tackle the needs
of multimedia applications.

High-End Supercomputer Market

We think vector architectures will continue in the high-end
supercomputer market, to cover a certain subset of scientific
applications that do not fit the SMP or MPP architecture
model. However, the critical issue is whether there will be
enough customers and enough machines sold to recover the
development costs of these specialized and expensive ma-
chines. As defended in a previous paper, a possible path
of evolution of these high-end machine could be the mix-
ture of all high performance paradigms used today: vector

processing, superscalar processing and multithreaded pro-
cessing [23].

High performance microprocessors

The other path links the future of vector architectures to the
evolution of today’s commodity microprocessors. As noted
elsewhere [24], in fewer than 10 years application execution
times will be dominated by multimedia tasks. That is, it is
very likely that video and audio processing, image rendering,
etc., will be the dominant portion of future applications.
As the human-computer interface improves, there will be
more demand for high quality 3D graphics, regardless of the
particular application at hand. Thus, processors will have
to evolve to accommodate the tremendous bandwidth and
computation needs of these types of applications.

Today, we already see in the major microprocessor fam-
ilies a set of extensions targeting the multimedia market
(MMX [25], VIS [26], etc.). These multimedia extensions
are simple vector-like instructions that operate on parts of
a 64-bit word. Extending these limited vector instructions
into more general ones, like those found in modern vector
ISAs is relatively simple.

Research performed on traditional vector architectures
shows a couple of promising directions for fully integrating
a vector and a scalar processor. First, adding out-of-order
execution to a vector processor, the ability to tolerate large
memory latencies is increased and performance improves
substantially [18]. Second, once the large memory latency
problem is more or less solved, one can reduce the length of
each vector register from 128 elements to 8 or 16 [27]. This
reduction in register length leads to two very interesting con-
sequences: first, the area occupied by the vector register file
can fit into a microprocessor without compromising other
critical components (such as instruction and data caches or
branch predictor). Second, a single vector register looks a
lot like a cache line from the second level cache. That is,
today’s L2 caches have line sizes in the 128 to 256 bytes
range. A 16 element vector occupies 16 x 8 = 128 bytes.
One can use this property to devise a cache hierarchy that
fits these small vector registers. A possible example of such
architecture is shown in figure 8. It is a narrow-width out-
of-order superscalar enhanced with a powerful vector unit.
The vector unit has 16 to 64 short vectors (8 or 16 elements
each) and functional units that can do three types of oper-
ations: integer, floating point and multimedia. There is a
wide path (1024 bits wide) between the vector-cache and the
vector registers, so that a full register can be loaded with a
cache line, if properly aligned, in a single cycle. The vector-
cache only holds stride-l vector memory accesses, while the
scalar-cache holds scalar data and non-unit stride vector ac-
cesses. We believe this architecture can perform very well on
media-intensive and floating point codes. For scalar codes,
its performance would be roughly equal to a conventional
superscalar machine.

4 Conclusions

When thinking about vector architectures, it is natural to
envision huge liquid-cooled mainframes, built out of ECL
components packed together using exotic technologies and
extremely expensive memory systems. If this is all they
are, they could easily vanish in the next decade. However,
we believe that vector architectures when implemented with
commodity components have great potential for the future.
They have substantial advantages for future generation com-
puter systems. As technology progresses and processor ar-

431

L2 Cache

t t
S-Cache V-Cache

(scalars & 3 (unit stride
non-unit - g - vectors)
stride) Y3

(SKb, 32B/line) &.

A
2 words

Figure 8: A possible future implementation of a micro-vector
processor.

chitects are faced with the challenge of extracting more par-
allelism from programs, we believe that vector architectures
with their many inherent advantages and suitability for fu-
ture applications will come to the fore.

Vector instruction sets provide natural way to express
data-level parallelism. This parallelism can be used in sev-
eral ways: to improve performance by executing operations
in parallel, to aggressively clock a design by deeply pipelin-
ing it, or to reduce power consumption by turning off all
units not needed during the execution of a long-running
vector instruction. Moreover, vector instructions express
a program in a more compact way, which means fetch and
decode bandwidths are more effectively utilized. Finally,
accessing memory using vectors has many advantages: only
useful data is requested, spatial locality can be exploited by
requesting multiple data items with a single address, and
stride information can be used by the hardware to optimize
memory accesses.

All these features combined make vector instruction sets
ideal for the next round of high performance microproces-
sors. They can provide high performance at a low com-
plexity and are very well suited for tomorrow’s applications:
bandwidth hungry multimedia programs are the perfect fit
for vector architectures.

Acknowledgments

We would like to thank Francisca Quintana for providing
the data on the RlOOOO instruction and operation numbers.

References

[I] J. E. Thornton. Design of a Computer-The Control Data 6600.
Scott, Foresman, Glenview, Ill., 1970.

[2] R. G. Hinta and D. P. ‘Pate. Control data STAR-100 processor
design. In Proc. Compcon 72, pages 1-4, New York, 1972. IEEE
Computer Society Conf. 1972, IEEE.

[3] W. Watson. The TI-ASC, A highly modular and flexible super
computer architecture. Proc. AFIPS, 41, pt. 1:221-228, 1972.

. [4] R. M. Russell. The CRAY-1 computer system. Communications
of the ACM, 21(1):63-72, January 1978.

151

161

PI

DOI

Pll

[121

[I31

[I41

[I51

P61

[I71

PI

Dennis Fazio. It’s really much more fun building a supercom-
puter than it is simply inventing one. In SPRING COMP-
CON’87, pages 102-105, San Francisco, USA, February 23-27
1987. IEEE Computer Society Press.

R. A. Fatoohi. Vector performance analysis of three supercom-
puters: Cray 2, tray Y-MP, and ETA 10-Q. In Proceedings of
the Supercomputing 89, pages 779-788, Rena, NV USA, 1989.
ACM Press , New York, NY , USA.

Jim Keller. The 21264: A Superscalar Alpha Processor with Out-
of-Order Execution. In Microprocessor Forum, October 1996.

John D. McCalpin. Memory Bandwidth and Machine Balance in
Current High Performance Computers. IEEE TCCA Newslet-
ter, December 1995.

Digital Equipment Corporation, Maynard, Massachusetts. DEC-
chip 21071 and DECchip 21072 Core Logic Chipsets -Data
Sheet, EC-QAEMB-TE edition, January 1996.

Jack K. Dongarra, Hans W. Meuer, and Erich Strohmaier.
TOP500 Supercomputer Sites. In IEEE SC97 Conference,
November 1997.

Margaret L. Simmons, Harvey J. Wasserman, Olaf M. Lubeck,
Christopher Eoyang, Raul Mendea, Hiroo Harada, and Misako
Ishiguro. A performance comparison of four supercomputers.
Communications of the ACM, 35(3):116-124,1992.

Betty Prince. High Performance Memories. Wiley & Sons, Ltd.,
1996.

Willi Schijnauer and Hartmut Hiifner. Supercomputers: Where
are the lost cycles ? Supercomputing, 1991.

9. J. Dongarra. Performance of various computers using standard
linear equations software in a fortran environment. Technical
Report CS-89-85, Univeristy of Tennesse, 1993.

G. Delic. Performance analysis of a 24 code sample on Cray
X/Y-MP at the Ohio Supercomputer Center. In Proceedings of
the 5th SIAM Conference on Parallel Processing for Scient@c
Applications, pages 530-535, 1991.

D. V. Pryor and P. J. Burns. Vectorized Monte Carlo Molecular
Aerodynamics Simulation of the Reyleigh Problem. In Proceed-
ings of Supercomputing’88, pages 384-391, Orlando, Florida,
November 1988. IEEE Computer Society Press.

Roger Espasa and Mateo Valero. Decoupled vector architectures.
In HPCA-2, pages 281-290. IEEE Computer Society Press, Feb
1996.

Roger Espasa, Mateo Valero, and James E. Smith. Out-of-
order Vector Architectures. In MICRO-JO, pages 160-170. IEEE
Press, December 1997.

Toni Juan, Tomas Lang, and Juan J. Navarro. The difference-bit
cache. In Proceedings of the 2Srd Annual Internatzonol Sympo-
stum on Computer Architecture, pages 114-120, Philadelphia,
Pennsylvania, May 22-24, 1996.

[20] Roger Espasa, Mateo Valero, and James E. Smith. Out-of-
order Vector Architectures. Technical Report UPC-DAC-1996-
52, Univ. Politecnica de Catalunya-Barcelona, November 1996.

PI

WI

P31

P41

P51

[261

PI

Roger Espasa and Mateo Valero. Multithreaded vector archi-
tectures. In HPCA-3, pages 237-249. IEEE Computer Society
Press, Feb 1997.

Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In Proceedings of
the 24rd Annual International Symposium on Computer Ar-
chitecture, pages 206-218, Denver, Colorado, June 2-4, 1997.
ACM SIGARCH and IEEE Computer Society TCCA.

Roger Espasa and Mateo Valero. Exploiting Instruction- and
Data- Level Parallelism. IEEE Micro, pages 20-27, Septem-
ber/October 1997.

William J. Dally. Tomorrow’s computing engines (Keynote
Speech). In HPCA-4, February 1998.

Alex Peleg and Uri Weiser. MMX Technology Extension to the
Intel Architecture. IEEE Micro, pages 42-50, August 1996.

Marc Tremblay, J. Michael O’Connor, Venkatesh Narayanan,
and Liang He. VIS Speeds New Media Processing. IEEE Micro,
pages 10-20, August 1996.

Luis Villa, Roger Espasa, and Mateo Valero. A Performance
Study of Out-of-Order Vector Architectures and Short Registers.
In ICS. ACM Press, July 1997.

432

