
A Survey of Processors with Explicit Multithreading

THEO UNGERER

University of Augsburg

BORUT ROBIČ

University of Ljubljana

AND

JURIJ ŠILC

Jožef Stefan Institute

Hardware multithreading is becoming a generally applied technique in the next
generation of microprocessors. Several multithreaded processors are announced by
industry or already into production in the areas of high-performance microprocessors,
media, and network processors.

A multithreaded processor is able to pursue two or more threads of control in parallel
within the processor pipeline. The contexts of two or more threads of control are often
stored in separate on-chip register sets. Unused instruction slots, which arise from
latencies during the pipelined execution of single-threaded programs by a contemporary
microprocessor, are filled by instructions of other threads within a multithreaded
processor. The execution units are multiplexed between the thread contexts that are
loaded in the register sets.

Underutilization of a superscalar processor due to missing instruction-level
parallelism can be overcome by simultaneous multithreading, where a processor can
issue multiple instructions from multiple threads each cycle. Simultaneous
multithreaded processors combine the multithreading technique with a wide-issue
superscalar processor to utilize a larger part of the issue bandwidth by issuing
instructions from different threads simultaneously.

Explicit multithreaded processors are multithreaded processors that apply processes
or operating system threads in their hardware thread slots. These processors optimize
the throughput of multiprogramming workloads rather than single-thread
performance. We distinguish these processors from implicit multithreaded processors

Categories and Subject Descriptors: C.1 [Computer Systems Organization]:
Processor Architectures; C.1.3 [Processor Architectures]: Other Architecture
Styles—Pipeline processors

General Terms: Design, Performance

Additional Key Words and Phrases: Blocked multithreading, interleaved
multithreading, simultaneous multithreading

Authors’ addresses: T. Ungerer, Institute of Computer Science, University of Augsburg, Eichleitnerstrasse
30, D-86135 Augsburg, Germany; email: ungerer@informatik.uni-augsburg.de; B. Robič, Faculty of Com-
puter and Information Science, University of Ljubljana, Tržaška 25, Sl-1000 Ljubljana, Slovenia; email:
borut.robic@fri.uni-lj.si; J. Šilc, Computer Systems Department, Jožef Stefan Institute, Jamova 39, Sl-1000
Ljubljana, Slovenia; email: jurij.silc@ijs.si.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
c©2003 ACM 0360-0300/03/0300-0029 $5.00

ACM Computing Surveys, Vol. 35, No. 1, March 2003, pp. 29–63.

30 Ungerer et al.

that utilize thread-level speculation by speculatively executing compiler- or
machine-generated threads of control that are part of a single sequential program.

This survey paper explains and classifies the explicit multithreading techniques in
research and in commercial microprocessors.

1. INTRODUCTION

A multithreaded processor is able to con-
currently execute instructions of differ-
ent threads of control within a single
pipeline. The minimal requirement for
such a processor is the ability to pursue
two or more threads of control in paral-
lel within the processor pipeline, that is,
the processor must provide two or more
independent program counters, an inter-
nal tagging mechanism to distinguish in-
structions of different threads within the
pipeline, and a mechanism that triggers
a thread switch. Thread-switch overhead
must be very low, from zero to only a few
cycles. Multithreaded processor features
often, but not always, multiple register
sets on the processor chip.

The current interest in hardware multi-
threading stems from three objectives:

—Latency reduction is an important task
when designing a microprocessor. La-
tencies arise from data dependencies
between instructions within a single
thread of control. Long latencies are
caused by memory accesses that miss in
the cache and by long running instruc-
tions. Short latencies may be bridged
within a superscalar processor by ex-
ecuting succeeding, nondependent in-
structions of the same thread. Long la-
tencies, however, stall the processor and
lessen its performance.

—Shared-memory multiprocessors suffer
from memory access latencies that
are several times longer than in a
single-processor system. When access-
ing a nonlocal memory module in a
distributed-shared memory system, the
memory latency is enhanced by the
transfer time through the communica-
tion network. Additional latencies arise
in a shared memory multiprocessor
from thread synchronizations, which
cause idle times for the waiting thread.
One solution to fill these idle times is

to switch to another thread. However,
a thread switch on a conventional pro-
cessor causes saving of all registers,
loading the new register values, and
several more administrative tasks that
often require too much time to prove this
method as an efficient solution.

—Contemporary superscalar micropro-
cessors [Šilc et al. 1999] are able
to issue four to six instructions each
clock cycle from a conventional lin-
ear instruction stream. VLSI technol-
ogy will allow future microprocessors
with an issue bandwidth of 8–32 in-
structions per cycle [Patt et al. 1997].
As the issue rate of future micropro-
cessors increases, the compiler or the
hardware will have to extract more
instruction-level parallelism (ILP) from
a sequential program. However, ILP
found in a conventional instruction
stream is limited. ILP studies which al-
low single control flow branch specula-
tion have reported parallelism around
7 instructions per cycle (IPC) with
infinite resources [Wall 1991; Lam and
Wilson 1992] and around 4 IPC with
large sets of resources (e.g., 8 to 16
execution units) [Butler et al. 1991].
Contemporary high-performance micro-
processors therefore exploit speculative
parallelism by dynamic branch predic-
tion and speculative execution of the
predicted branch path to increase sin-
gle thread performance. Control specu-
lation may be enhanced by data depen-
dence and value speculation techniques
to increase performance of a single pro-
gram thread [Lipasti et al. 1996; Lipasti
and Shen 1997; Chrysos and Emer 1998;
Rychlik et al. 1998].

Multithreading pursues a different set
of solutions by utilizing coarse-grained
parallelism [Iannucci et al. 1994].

The notion of a thread in the context
of multithreaded processors differs from

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 31

the notion of software threads in multi-
threaded operating systems. In case of
a multithreaded processor a thread is
always viewed as a hardware-supported
thread which can be—depending on the
specific form of multithreaded processor—
a full program (single-threaded UNIX
process), an operating system thread
(a light-weighted process, e.g., a POSIX
thread), a compiler-generated thread
(subordinate microthread, microthread,
nanothread etc.), or even a hardware-
generated thread.

1.1. Explicit and Implicit Multithreading

The solution surveyed in this paper is the
utilization of coarser-grained parallelism
by explicit multithreaded processors that
interleave the execution of instructions of
different user-defined threads (operating
system threads or processes) in the same
pipeline. Multiple program counters are
available in the fetch unit and the multi-
ple contexts are often stored in different
register sets on the chip. The execution
units are multiplexed between the thread
contexts that are loaded in the register
sets. The latencies that arise in the com-
putation of a single instruction stream are
filled by computations of another thread.
Thread-switching is performed automati-
cally by the processor due to a hardware-
based thread-switching policy. This ability
is in contrast to conventional processors or
today’s superscalar processors, which use
busy waiting or a time-consuming, operat-
ing system-based thread switch.

Depending on the specific multi-
threaded processor design, either a single-
issue instruction pipeline (as in scalar
processors) is used, or multiple instruc-
tions from possibly different instruction
streams are issued simultaneously. The
latter are called simultaneous multi-
threaded (SMT) processors and combine
the multithreading technique with a wide-
issue superscalar processor such that the
full-issue bandwidth is more often utilized
by potentially issuing instructions from
different threads simultaneously.

A different approach increases the
performance of sequential programs by

applying thread-level speculation. A
thread in such processor proposals refers
to any contiguous region of the static or
dynamic instruction sequence. We call
such processors implicit multithreaded
processors, which refers to any processor
that can dynamically generate threads
from single-threaded programs and exe-
cute such speculative threads concurrent
with the lead thread. In case of misspecu-
lation, all speculatively generated results
must be squashed. Threads generated
by implicit multithreaded processors are
always executed speculatively, in contrast
to the threads in explicit multithreaded
processors.

Examples of implicit multithreaded
processor proposals are the multiscalar
processor [Franklin 1993; Sohi et al.
1995; Sohi 1997; Vijaykumar and Sohi
1998], the trace processor [Rotenberg
et al. 1997; Smith and Vajapeyam
1997; Vajapeyam and Mitra 1997], the
single-program speculative multithread-
ing architecture [Dubey et al. 1995], the
superthreaded architecture [Tsai and Yew
1996; Li et al. 1996], the dynamic multi-
threading processor [Akkary and Driscoll
1998], and the speculative multithreaded
processor [Marcuello et al. 1998]. Some
approaches, in particular the multiscalar
scheme, use compiler-support for thread
generation. In these examples a mul-
tithreaded processor may be character-
ized by a single processing unit with a
single or multiple-issue pipeline able to
process instructions of different threads
concurrently. As a result, some of these
approaches may rather be viewed as
very closely coupled chip multiprocessors,
because multiple subordinate processing
units execute different threads under con-
trol of a single sequencer unit.

1.2. Multithreading and Multiprocessors

The first multithreaded processor ap-
proaches in the 1970s and 1980s ap-
plied multithreading at user-thread-level
to solve the memory access latency prob-
lem. This problem arises for each mem-
ory access after a cache miss—in particu-
lar, when a processor of a shared-memory

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

32 Ungerer et al.

multiprocessor accesses a shared-memory
variable located in a remote-memory mod-
ule. The latency becomes a problem if the
processor spends a large fraction of its
time sitting idle and waiting for remote
accesses to complete [Culler et al. 1998].
Latencies that arise in a pipeline are
defined with a wider scope—for exam-
ple, covering also long-latency opera-
tions like div or latencies due to branch
interlocking.

Older multithreaded processor ap-
proaches from the 1980s usually extend
scalar RISC processors by a multithread-
ing technique and focus on effectively
bridging very long remote memory access
latencies. Such processors will only be
useful as processor nodes in distributed
shared-memory multiprocessors. How-
ever, developing a processor that is specif-
ically designed for such multiprocessors
is commonly regarded as too expensive.
Multiprocessors today comprise standard
off-the-shelf microprocessors and almost
never specifically designed processors
(with the exception of the Cray MTA).
Therefore, newer multithreaded processor
approaches also strive for tolerating all
latencies (even single-cycle latencies) that
arise from primary cache misses that
hit in secondary cache, from long-latency
operations, or even from unpredictable
branches.

1.3. Multithreading and Dataflow

Another root of multithreading comes
from dataflow architectures. Viewed from
a dataflow perspective a single-threaded
architecture is characterized by the com-
putation that conceptually moves forward
one step at a time through a sequence
of states, each step corresponding to the
execution of one enabled instruction. Ac-
cording to Dennis and Gao [1994], a
multithreaded architecture differs from
a single-threaded architecture in that
there may be several enabled instruc-
tions from different threads which all
are candidates for execution. A thread is
viewed as a sequentially ordered block
of instructions with a grain-size greater

than 1 (to distinguish multithreaded ar-
chitectures from fine-grained dataflow
architectures). Blocking and nonblocking
threads are distinguished. A nonblocking
thread is formed such that its evalua-
tion proceeds without blocking the pro-
cessor pipeline (for instance, by remote
memory accesses, cache misses, or syn-
chronization waits). Evaluation of a non-
blocking thread starts as soon as all
input operands are available, which is
usually detected by some kind of dataflow
principle. Thread switching is controlled
by the compiler harnessing the idea of
rescheduling, rather than blocking, when
waiting for data. Access to remote data is
organized in a split-phase manner by one
thread sending the access request to mem-
ory and another thread activating when
its data is available. Thus a program is
compiled into many, very small threads
activating each other when data become
available. The same hardware mecha-
nisms may also be used to synchronize
interprocess communications to awaiting
threads, thereby alleviating operating sys-
tems overhead. In contrast, a blocking
thread might be blocked during execution
by remote memory accesses, cache misses,
or synchronization needs. The waiting
time, during which the pipeline is blocked,
is lost when using a von Neumann pro-
cessor, but can be efficiently bridged by a
fast context switch to another thread in
a multithreaded processor. Switching to
another thread in a single-threaded pro-
cessor usually exhibits too much context
switching overhead to mask the latency
efficiently. The original thread can be re-
sumed when the reason for blocking is
removed.

Use of nonblocking threads typically
leads to many small threads that are
appropriate for execution by a hybrid
dataflow computer [Šilc et al. 1998] or
by a multithreaded architecture that is
closely related to hybrid dataflow. Block-
ing threads may just be the threads
(e.g., P(OSIX)threads or Solaris threads)
or whole UNIX processes of a multi-
threaded UNIX-based operating system,
but may also be even smaller microthreads

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 33

Explicit multithreading

Issuing
from a single thread
in a cycle

Issuing
from multiple threads
in a cycle

Interleaved
multithreading
(IMT)

Simultaneous
multithreading
(SMT)

Blocked
multithreading
(BMT)

Fig. 1 . Explicit multithreading.

generated by a compiler to utilize the po-
tentials of a multithreaded processor.

Note that we exclude in this survey hy-
brid dataflow architectures that are de-
signed for the execution of nonblocking
threads. Although these architectures are
often called multithreaded, we have cat-
egorized them in a previous paper [Šilc
et al. 1998] as threaded dataflow or large-
grain dataflow because a dataflow prin-
ciple is applied to start the execution of
nonblocking threads. Thus, multithreaded
architectures (in the more narrow sense
applied here) stem from the modification
of scalar RISC, VLIW/EPIC, or super-
scalar processors.

2. CLASSIFICATION OF EXPLICIT
MULTITHREADING TECHNIQUES

Explicit multithreaded processors fall
into two categories depending on whether
they issue instructions from only a single
thread or from multiple threads in a given
cycle.

If instructions can be issued only from a
single thread in a given cycle, the following
two principal techniques of explicit multi-
threading are used (see Figure 1):

—Interleaved multithreading (IMT): An
instruction of another thread is fetched
and fed into the execution pipeline at
each processor cycle (see Section 3).

—Blocked multithreading (BMT): The in-
structions of a thread are executed suc-
cessively until an event occurs that may
cause latency. This event induces a con-
text switch (see Section 4).

When instructions can be issued from
multiple threads in a given cycle, the fol-
lowing technique can be used:

—Simultaneous multithreading (SMT):
Instructions are simultaneously issued
from multiple threads to the execution
units of a superscalar processor. Thus,
the wide superscalar instruction issue is
combined with the multiple-context ap-
proach (see Section 6).

Before we present these techniques
in detail, we briefly review the main
architectural approaches that integrate
instruction-level parallelism and thread-
level parallelism.

A way to look at latencies that arise
in a pipelined execution is the opportu-
nity cost in terms of the instructions that
might be processed while the pipeline
is interlocked, for example, waiting for
a remote reference to return. The op-
portunity cost of single-issue processors
is the number of cycles lost by laten-
cies. Multiple-issue processors (e.g., su-
perscalar, VLIW, etc.) potentially execute
more than 1 IPC, and thus the oppor-
tunity cost is the product of the latency

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

34 Ungerer et al.

Fig. 2 . Different approaches possible with single-
issue (scalar) processors: (a) single-threaded scalar,
(b) interleaved multithreading scalar, (c) blocked
multithreading scalar.

cycles and the issue bandwidth plus the
number of issue slots not fully filled. We
expect that future single-threaded proces-
sors will continue to exploit further super-
scalar or other multiple-issue techniques,
and thus further increase the opportunity
cost of remote-memory accesses.

Figure 2 demonstrates the opportunity
cost of different approaches possible with
scalar processors, while the different ap-
proaches possible with multiple-issue pro-
cessors are given in Figure 3. In all
these cases instructions from only a sin-
gle thread are issued in a given cycle.

The opportunity cost in single-threaded
superscalar can be easily determined as
the number of empty issue slots (see
Figure 3(a)). It consists of horizontal
losses (the number of empty places in not
fully filled issue slot) and the even more
harmful vertical losses (cycles where no
instructions can be issued). In VLIW pro-
cessors, horizontal losses appear as no-op
operations (not shown in Figure 3). The op-
portunity cost of single-threaded VLIW is
about the same as single-threaded super-
scalar. An IMT superscalar (or IMT VLIW)
processor is able to fill the vertical losses
of the single-threaded models by instruc-
tions of other threads, but not the hori-
zontal losses. Further design possibilities,
such as BMT superscalar or BMT VLIW
processors, would fill several succeeding
cycles with instructions of the same thread
before context switching. The switching

event is more difficult to implement and a
context-switching overhead of one to sev-
eral cycles might arise.

Let us now examine processors that can
issue instructions from multiple threads
in a given cycle. In addition to the SMT
processors, one can include in this cat-
egory (by the widest of definitions) also
the chip multiprocessor (CMP) approach.
While SMT uses a monolithic design with
most resources shared among threads,
CMP proposes a distributed design that
uses a collection of independent processors
with less resource sharing. For example,
Figure 4a shows a four-threaded eight-
issue SMT processor, and Figure 4b shows
a CMP with four two-issue processors. The
SMT processor exploits ILP by selecting
instructions from any thread (four in this
case) that can potentially issue. If one
thread has high ILP, it may fill all hori-
zontal slots depending on the issue strat-
egy of the processor. If multiple threads
each have low ILP, instructions of several
threads can be issued and executed simul-
taneously. In the CMP processor with sev-
eral multiple-issue processors (four two-
issue processors in this case) on a single
chip, each CPU is assigned a thread from
which it can issue multiple instructions
each cycle (up to two in this case). Thus,
each CPU has the same opportunity cost
as in a two-issue superscalar model. The
CMP is not able to hide latencies by issu-
ing instructions of other threads. However,
because horizontal losses will be smaller
for two-issue than for high-bandwidth su-
perscalars, a CMP of four two-issue pro-
cessors will reach a higher utilization than
an eight-issue superscalar processor.

There are a number of tradeoffs to con-
sider when choosing between SMT and
CMP. The present report does not survey
CMP design so these tradeoffs are out-
side its scope (but see Section 6 and the
conclusions).

3. INTERLEAVED MULTITHREADING

3.1. Principles

The interleaved multithreading (IMT)
technique (also called fine-grain mul-
tithreading) means that the processor

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 35

Fig. 3 . Different approaches possible with multiple-issue processors: (a) single-
threaded superscalar, (b) interleaved multithreading superscalar, (c) blocked
multithreading superscalar.

Fig. 4 . Issuing from multiple threads in a cycle: (a) simultaneous mul-
tithreading, (b) chip multiprocessor.

switches to a different thread after each
instruction fetch. In principle, an instruc-
tion of a thread is fed into the pipeline af-
ter the retirement of the previous instruc-
tion of that thread. Since IMT eliminates
control and data dependences between in-
structions in the pipeline, pipeline haz-
ards cannot arise and the processor
pipeline can be easily built without the ne-
cessity of complex forwarding paths. This
leads to a very simple and therefore poten-
tially very fast pipeline—no hardware in-
terlocking or data forwarding is necessary.
Moreover, the context-switching overhead
is zero cycles. Memory latency is toler-

ated by not scheduling a thread until the
memory transaction has completed. This
model requires at least as many threads as
pipeline stages in the processor. Interleav-
ing the instructions from many threads
limits the processing power accessible to
a single thread, thereby degrading the
single-thread performance. Two possibil-
ities to overcome this deficiency are the
following:

1. The dependence look-ahead technique
adds several bits to each instruction
format in the ISA. The additional op-
code bits allow the compiler to state the

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

36 Ungerer et al.

number of instructions directly follow-
ing in program order that are not data-
or control-dependent on the instruction
being executed. This allows the instruc-
tion scheduler in the IMT processor to
feed non-data- or control-dependent in-
structions of the same thread succes-
sively into the pipeline. The dependence
look-ahead technique may be applied to
speed up single-thread performance or
to increase machine utilization in the
case where a workload does not com-
prise enough threads.

2. The interleaving technique proposed by
Laudon, Gupta, and Horowitz [1994],
adds caching and full pipeline inter-
locks to the IMT technique. Contexts
may be interleaved on a cycle-by-cycle
basis, yet a single-thread context is also
efficiently supported.

The most well-known examples of IMT
processors are used in the Heteroge-
neous Element Processor (HEP), the
Horizon, and the Cray Multi-Threaded
Architecture (MTA) multiprocessors (see
Section 5.1). The HEP system has up to
16 processors while the other two con-
sist of up to 256 processors. Each of these
processors supports up to 128 threads.
While HEP uses instruction look-ahead
only if there is no other work, the Horizon
and Cray MTA employ the explicit depen-
dence look-ahead technique. Further IMT
processor proposals include the Multil-
isp Architecture for Symbolic Applications
(MASA), the MIT M-Machine, the Me-
dia Processor of MicroUnity, and the pro-
cessor SB-PRAM/HPP (all covered in the
next section). An example of an IMT net-
work processor is the five-threaded Lextra
LX4580 (see Section 5.2).

In principle, the IMT technique can also
be combined with a superscalar instruc-
tion issue, but simulations confirm the in-
tuition that SMT is the more efficient tech-
nique [Eggers et al. 1997].

3.2. Examples of Past Commercial Machines
and of Research Prototypes

HEP. The Heterogeneous Element Pro-
cessor system, designed by Burton Smith

and developed by Denelcor Inc., in Denver,
CO, between 1978 and 1985, was a pio-
neering example of a multithreaded ma-
chine [Smith 1981]. The HEP system
[Smith 1985] was designed to have up to
16 processors (Figure 5) with up to 128
threads per processor. The 128 threads
were supported by a large number of reg-
isters dynamically allocated to threads.
The processor pipeline had eight stages,
matching the minimum number of proces-
sor cycles necessary to fetch a data item
from memory to a register. Consequently
up to eight threads were in execution con-
currently within a single HEP processor.
However, the pipeline did not allow more
than one memory, branch, or divide in-
struction to be in the pipeline at the given
time. Allowing only a single memory in-
struction in the pipeline at a time resulted
in poor single-thread performance and re-
quired a very large number of threads. If
thread queues were all empty, the next in-
struction from the last thread dispatched
was examined for independence from pre-
vious instructions and, if found to be so,
the instruction was also issued.

In contrast to all other IMT processors,
all threads within a HEP processor shared
the same register set. Multiple processors
and data memories were interconnected
via a pipelined switch and any register-
memory or data-memory location could be
used to synchronize two processes on a
producer–consumer basis by a full/empty
bit synchronization on a data memory
word.

MASA. The Multilisp Architecture
for Symbolic Applications [Halstead and
Fujita 1988] was an IMT processor pro-
posal for parallel symbolic computation
with various features intended for effec-
tive Multilisp [Halstead 1985] program
execution. MASA featured a tagged archi-
tecture, multiple contexts, fast trap han-
dling, and a synchronization bit in every
memory word. Its principal novelty was
the use of multiple contexts both to sup-
port interleaved execution from separate
instruction streams and to speed up proce-
dure calls and trap handling (in the same
manner as register windows).

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 37

Fig. 5 . The HEP processor.

M-Machine. The MIT M-Machine [Fillo
et al. 1995] supports both public and
private registers for each thread, and
uses the IMT technique. Each processor
supports four hardware resident user V-
threads, and each V-thread supports four
resident H-threads. All the H-threads in
a given V-thread share the same address
space, and each H-thread instruction is
a three-wide VLIW. Event and exception
handling are each performed by a separate
V-thread. Swapping a processor-resident
V-thread with one stored in memory re-
quires about 150 cycles (1.5 µs). The
M-Machine (like HEP, Horizon, and Cray
MTA) employs full-empty bits for effi-
cient, low-level synchronization. Moreover
it supports message passing and guarded
pointers with base and bounds for access
control and memory protection.

MicroUnity MediaProcessor. MicroUnity
[Hansen 1996] proposed its MediaProces-
sor in 1996 as a processor specialized

for video streaming applications. A su-
perscalar processor kernel is enhanced
by group instructions dedicated to video
streaming applications and by five thread
contexts. Instructions of the different
threads are executed in the IMT fash-
ion issuing instructions with a proposed
1-GHz clock frequency providing five
independent 200-MHz threads. A very
light-weight context switch upon syn-
chronous exceptions and asynchronous
events permits rapid handling of vir-
tual memory system exceptions and I/O
events.

SB-PRAM and HPP. The SB-PRAM (SB
stands for Saarbrücken and PRAM for par-
allel random access machine) [Bach et al.
1997] or high-performance PRAM (HPP)
[Formella et al. 1996] is a multiple in-
struction multiple data (MIMD) parallel
computer with shared address space and
uniform memory access time due to its mo-
tivation: building a multiprocessor that is

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

38 Ungerer et al.

Fig. 6 . Blocked multithreading.

as close as possible to the theoretical ma-
chine model CRCW-PRAM (CRCW stands
for concurrent read concurrent write). Pro-
cessor and memory modules are con-
nected by a pipelined combining butter-
fly network. Network latency is hidden
by pipelining several so-called virtual pro-
cessors on one physical processor node
in IMT mode. Instructions of 32 virtual
processors are interleaved round-robin in
a single SB-PRAM processor, which is
therefore classified as 32-threaded IMT
processor. The project is in progress at
the University of Saarland, Saarbrücken,
Germany. A first prototype was running
with four processors, and recently a 64-
processor model which in total supports
up to 2048 threads has been completed.
Hardware details and performance mea-
surements are reported by Paul, Bach,
Bosch, Fischer, Lichtenau, and Röhrig
[2002].

4. BLOCKED MULTITHREADING

4.1. Principles

The blocked multithreading (BMT) tech-
nique (sometimes also called coarse-grain
multithreading) means that a single
thread is executed until it reaches a situa-
tion that triggers a context switch. Usually
such a situation arises when the instruc-
tion execution reaches a long-latency oper-
ation or a situation where a latency may
arise. Compared to the IMT technique, a
smaller number of threads is needed and a
single thread can execute at full speed un-
til the next context switch. If only a single

thread runs on a BMT processor, there are
no context switches and the processor per-
forms just like a standard processor with-
out multithreading.

In the following we classify BMT pro-
cessors by the event that triggers a
context switch (Figure 6) [Kreuzinger and
Ungerer 1999]:

1. Static models: A context switch occurs
each time the same instruction is ex-
ecuted in the instruction stream. The
context switch is encoded by the com-
piler. The main advantage of this tech-
nique is that context switching can be
triggered already in the fetch stage
of the pipeline. The context switching
overhead is one cycle (if the fetched
instruction triggers the context switch
and is discarded), zero cycles (if the
fetched instruction triggers a context
switch but is still executed in the
pipeline), and almost zero cycles (if a
context switch buffer is applied; see the
Rhamma processor below in this sec-
tion). There are two main variations of
the static BMT technique:
—The explicit-switch static model,

where an explicit context switch in-
struction exists. This model is simple
to implement. However, the addi-
tional instruction causes one-cycle
context switching overhead.

—The implicit-switch model, where
each instruction belongs to a specific
instruction class and a context switch
decision depends on the instruction
class of the fetched instruction. In-
struction classes that cause context

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 39

switch include load, store, and branch
instructions.
The switch-on-load static model

switches after each load instruction to
bridge memory access latency. How-
ever, assuming an on-chip D-cache, the
thread switch occurs more often than
necessary, which makes an extremely
fast context switch necessary, prefer-
ably with zero-cycle context switch
overhead.

The switch-on-store static model
switches after store instructions. The
model may be used to support the im-
plementation of sequential consistency
so that the next memory access instruc-
tion can only be performed after the
store has completed in memory.

The switch-on-branch static model
switches after branch instructions. The
model can be applied to simplify pro-
cessor design by renouncing branch
prediction and speculative execution.
The branch misspeculation penalty is
avoided, but single-thread performance
is decreased. However, it may be effec-
tive for programs with a high percent-
age of branches that are hard to predict
or even are unpredictable.

2. Dynamic models: The context switch is
triggered by a dynamic event. In gen-
eral, all the instructions between the
fetch stage and the stage that triggers
the context switch are discarded, lead-
ing to a higher context switch overhead
than static context switch models. Sev-
eral dynamic models can be defined:
—The switch-on-cache-miss dynamic

model switches the context if a load or
store misses in the cache. The idea is
that only those loads that miss in the
cache and those stores that cannot
be buffered have long latencies and
cause context switches. Such a con-
text switch is detected in a late stage
of the pipeline. A large number of sub-
sequent instructions have already en-
tered the pipeline and must be dis-
carded. Thus context switch overhead
is considerably increased.

—The switch-on-signal dynamic model
switches context on the occurrence

of a specific signal, for example, sig-
naling an interrupt, trap, or message
arrival.

—The switch-on-use dynamic model
switches when an instruction tries to
use the still missing value from a load
(which, for example, missed in the
cache). For example, when a compiler
schedules instructions so that a load
from shared memory is issued several
cycles before the value is used, the
context switch should not occur until
the actual use of the value and will
not occur at all if the load completes
before the register is referenced.

To implement the switch-on-use
model, a valid bit is added to each
register (by a simple form of score-
board). The bit is cleared when a load
to the corresponding register is is-
sued and set when the result returns
from the network. A thread switches
context if it needs a value from a reg-
ister whose valid bit is still cleared.
This model can also be seen as a
lazy model that extends either the
switch-on-load static model (called
lazy-switch-on-load) or the switch-
on-cache-miss dynamic model (called
lazy-switch-on-cache-miss).

—The conditional-switch dynamic
model couples an explicit switch
instruction with a condition. The con-
text is switched only when the condi-
tion is fulfilled; otherwise the context
switch is ignored. A conditional-
switch instruction may be used, for
example, after a group of load/store
instructions. The context switch is
ignored if all load instructions (in
the preceding group) hit the cache;
otherwise, the context switch is
performed. Moreover, a conditional-
switch instruction could also be
added between a group of loads and
their subsequent use to realize a
lazy context switch (instead of imple-
menting the switch-on-use model).

The explicit-switch, conditional-switch,
and switch-on-signal techniques enhance
the ISA by additional instructions. The
implicit switch technique may favor a

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

40 Ungerer et al.

specific ISA encoding to simplify instruc-
tion class detection. All other techniques
are microarchitectural techniques without
the necessity of ISA changes.

A previous classification [Boothe and
Ranade 1992; Boothe 1993] concerns the
BMT technique only in a shared-memory
multiprocessor environment and is re-
stricted to only a few of the models of the
BMT technique described above. In par-
ticular, the switch-on-load in [Boothe and
Ranade 1992] switches only on instruc-
tions that load data from remote memory,
while storing data in remote memory does
not cause context switching. Likewise, the
switch-on-miss model is defined so that the
context is only switched if a load from re-
mote memory misses in the cache.

Several well-known processors use
the BMT technique. The MIT Sparcle
[Agarwal et al. 1993] and the MSparc
processors [Mikschl and Damm 1996]
use both switch-on-cache-miss and
switch-on-signal dynamic models. The
CHoPP 1 [Mankovic et al. 1987] uses
the switch-on-cache-miss and switch-
on-use dynamic models, while Rhamma
[Gruenewald and Ungerer 1996, 1997]
applies several static and dynamic models
of BMT. The EVENTS mechanism and
the Komodo microcontroller proposal
apply multithreading for real-time event
handling. These, as well as some other
processors using the BMT technique, are
described in the next section, while the
current commercial high-performance
processors—that is, the two-threaded
IBM RS64 IV, the Sun MAJC—and the
network processors of the Intel IXP, IBM
Power NP, Vitesse IQ2x00, and AMCC nP
families are covered in Section 5.

4.2. Examples of Past Commercial Machines
and of Research Prototypes

CHoPP 1. The Columbia Homogeneous
Parallel Processor 1 (CHoPP 1) [Mankovic
et al. 1987] was designed by CHoPP Sul-
livan Computer Corporation (ANTs since
1999) in 1987. The system was a shared-
memory MIMD with up to 16 powerful
processors. High sequential performance
is due to issuing multiple instructions

on each clock cycle, zero-delay branch
instructions, and fast execution of indi-
vidual instructions. Each processor can
support up to 64 threads and uses the
switch-on-cache-miss dynamic interleav-
ing model.

MDP in J-Machine. The MIT Jellybean
Machine (J-Machine) [Dally et al. 1992] is
so-called because it is to be built entirely of
a large number of ”jellybean” components.
The initial version uses an 8× 8× 16 cube
network, with possibilities of expanding to
64K nodes. The ”jellybeans” are message-
driven processor (MDP) chips, each of
which has a 36-bit processor, a 4K word
memory, and a router with communica-
tion ports for bidirectional transmissions
in three dimensions. External memory of
up to 1M words can be added per processor.
The MDP creates a task for each arriving
message. In the prototype, each MDP chip
has four external memory chips that pro-
vide 256K memory words. However, access
is through a 12-bit data bus, and with an
error correcting cycle, the access time is
four memory cycles per word. Each com-
munication port has a 9-bit data channel.
The routers provide support for automatic
routing from source to destination. The
latency of a transfer is 2 µs across the
prototype machine, assuming no blocking.
When a message arrives, a task is created
automatically to handle it in 1 µs. Thus, it
is possible to implement a shared-memory
model using message passing, in which a
message provides a fetch address and an
automatic task sends a reply with the de-
sired data.

MIT Sparcle. The MIT Sparcle proces-
sor [Agarwal et al. 1993] is derived from
a SPARC RISC processor. The eight over-
lapping register windows of a SPARC pro-
cessor are organized as four independent
nonoverlapping thread contexts, each us-
ing two windows, one as a register set, the
other as a context for trap and message
handlers (Figure 7).

Context switches are used only to
hide long memory latencies since small
pipeline delays are assumed to be hidden
by the proper ordering of instructions by

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 41

Fig. 7 . Sparcle register usage.

an optimizing compiler. The MIT Spar-
cle processor switches to another context
in the case of a remote cache miss or
a failed synchronization (switch-on-cache-
miss and switch-on-signal strategies).
Thread switching is triggered by external
hardware, that is, by the cache/directory
controller. Reloading of the pipeline and
the software implementation of the con-
text switch requires 14 processor cycles.

The MIT Alewife distributed shared-
memory multiprocessor [Agarwal et al.
1995] is based on the multithreaded MIT
Sparcle processor. The multiprocessor has
been operational since May 1994. A node
in the Alewife multiprocessor comprises
a Sparcle processor, an external floating-
point unit, cache, and a directory-based
cache controller that manages cache-
coherence, a network router chip, and a
memory module (Figure 8).

The Alewife multiprocessor uses a
low-dimensional direct interconnection
network. Despite its distributed-memory
architecture, Alewife allows efficient
shared-memory programming through
a multilayered approach to locality
management. Communication latency
and network bandwidth requirements
are reduced by a directory-based cache-
coherence scheme referred to as Limit-
LESS directories. Latencies still occur
although communication locality is en-

Fig. 8 . An Alewife node.

hanced by run-time and compile-time
partitioning and placement of data and
processes.

Rhamma. The Rhamma processor
[Gruenewald and Ungerer 1996, 1997]
was developed at the University of Karl-
sruhe, Germany, as an experimental
microprocessor that bridges all kinds of
latencies by a very fast context switch.
The execution unit (EU) and load/store
unit (LSU) are decoupled and work con-
currently on different threads. A number
of register sets used by different threads
are accessed by the LSU as well as the
EU. Both units are connected by FIFO
buffers for continuations, each denoting
the thread tag and the instruction pointer

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

42 Ungerer et al.

of a thread. The Rhamma processor com-
bines several static and dynamic models
of the BMT technique.

The EU of the Rhamma processor
switches the thread whenever a load/store
or control-flow instruction is fetched.
Therefore, if the instruction format is cho-
sen appropriately, a context switch can
be recognized by predecoding the instruc-
tions already during the instruction fetch
stage.

In the case of a load/store, the continu-
ation is stored in the FIFO buffer of the
LSU, a new continuation is fetched from
the EU’s FIFO buffer, and the context is
switched to the register set given by the
new thread tag and the new instruction
pointer. The LSU loads and stores data of
a different thread in a register set concur-
rently to the work of the EU. There is a loss
of one processor cycle in the EU for each se-
quence of load/store instructions. Only the
first load/store instruction forces a context
switch in the EU; succeeding load/store in-
structions are executed in the LSU.

The loss of one processor cycle in the
EU when fetching the first of a se-
quence of load/store instructions can be
avoided by a so-called context switch buffer
(CSB) whenever the sequence is executed
the second time. The CSB is a hard-
ware buffer, collecting the addresses of
load/store instructions that have caused
context switches. Before fetching an in-
struction from the I-cache, the instruction
fetch stage checks whether the address
can be found in the context switch buffer.
In that case the thread is switched im-
mediately and an instruction of another
thread is fetched instead of the load/store
instruction. No bubble occurs.

PL/PS-Machine. The Preload and Post-
store Machine (or PL/PS-Machine) [Kavi
et al. 1997] is most similar to the Rhamma
processor. It also decouples memory ac-
cesses from thread execution by pro-
viding separate units. This decoupling
eliminates thread stalls due to memory
accesses and makes thread switches due
to cache misses unnecessary. Threads are
created when all data is preloaded into
the register set holding the thread’s con-

text, and the results from an execution
thread are poststored. Threads are non-
blocking and each thread is enabled when
the required inputs are available (i.e.,
data-driven at a coarse grain). The sep-
arate load/store/sync processor performs
preloads and schedules ready threads on
the pipeline. The pipeline processor exe-
cutes the threads which will require no
memory accesses. On completion the re-
sults from the thread are poststored by the
load/store/sync processor.

The DanSoft nanothreading approach.
The nanothreading and the microthread-
ing approaches use multithreading
but spare the hardware complexity of
providing multiple register sets.

Nanothreading [Gwennap 1997], pro-
posed for the DanSoft processor, dismisses
full multithreading for a nanothread that
executes in the same register set as the
main thread. The DanSoft nanothread re-
quires only a 9-bit program counter and
some simple control logic, and it resides
in the same page as the main thread.
Whenever the processor stalls on the main
thread, it automatically begins fetching
instructions from the nanothread. Only
one register set is available, so the two
threads must share the register set. Typ-
ically the nanothread will focus on a sim-
ple task, such as prefetching data into a
buffer, that can be done asynchronously to
the main thread.

In the DanSoft processor nanothreading
is used to implement a new branch strat-
egy that fetches both sides of a branch. A
static branch prediction scheme is used,
where branch instructions include 3 bits
to direct the instruction stream. The bits
specify eight levels of branch direction. For
the middle four cases, denoting low confi-
dence on the branch prediction, the pro-
cessor fetches from both the branch target
and the fall-through path. If the branch
is mispredicted in the main thread, the
backup path executed in the nanothread
generates a misprediction penalty of only
one to two cycles.

The DanSoft processor proposal is a
dual-processor CMP, each processor fea-
turing a VLIW instruction set and the
nanothreading technique. Each processor

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 43

contains an integer processor, but the two
processor cores share a floating-point unit
as well as the system interface.

However, the nanothread technique
might also be used to fill the instruction
issue slots of a wide superscalar approach
as in SMT.

Microthreading. The microthreading
technique [Bolychevsky et al. 1996] is
similar to nanothreading. All threads
share the same register set and the same
run-time stack. However, the number of
threads is not restricted to two. When
a context switch arises, the program
counter is stored in a continuation queue.
The PC represents the minimum possible
context information for a given thread.
Microthreading is proposed for a modified
RISC processor.

Both techniques—nanothreading as
well as microthreading—are proposed
in the context of a BMT technique, but
might also be used to fill the instruction
issue slots of a wide superscalar approach
as in SMT.

The drawback to nanothreading and
microthreading is that the compiler has
to schedule registers for all threads that
may be active simultaneously, because all
threads execute in the same register set.

The solution to this problem has been
recently described in Jesshope and Luo
[2000] and Jesshope [2001]. These papers
describe the dynamic allocation of regis-
ters using vector instruction sets and also
the ease with which the architecture can
be developed as a CMP.

MSparc and the EVENTS mechanism. An
approach similar to the MIT Sparcle pro-
cessor was taken at the University of
Oldenburg, Germany, with the MSparc
processor [Mikschl and Damm 1996].
MSparc supports up to four contexts on
a chip and is compatible with standard
SPARC processors. Switching is supported
by hardware and can be achieved within
one processor cycle. However, a four-cycle
overhead is introduced due to pipeline
refill. The multithreading policy is BMT
with the switch-on-cache-miss policy as in
the MIT Sparcle processor.

The rapid context-switching ability of
the multithreading technique leads to ap-

proaches that apply multithreading in
new areas, in particular embedded real-
time systems, which are proposed by the
EVENTS approach and by the Komodo
project.

The EVENTS scheduler [Lüth et al.
1997; Metzner and Niehaus 2000] acts
as processor-external thread scheduler by
supervising several MSparc processors.
Contest switches are triggered due to
real-time scheduling techniques and the
computation-intensive real-time threads
are assigned to the different MSparc pro-
cessors. The EVENTS mechanism is im-
plemented as a field of field programmable
gate arrays (FPGAs).

Komodo microcontroller. The Komodo
microcontroller [Brinkschulte et al. 1999a;
1999b] implements real-time schedul-
ing algorithms on an instruction-by-
instruction basis deeply embedded in
the multithreaded processor core, in con-
trast to the processor-external EVENTS
approach. The Komodo microcontroller
is a multithreaded Java microcontroller
aimed at embedded real-time systems
with a hardware event handling mecha-
nism that allows handling of simultaneous
overlapping events with hard real-time
requirements. The main purpose for the
use of multithreading within the Komodo
microcontroller is not latency utilization,
but extremely fast reactions on real-time
events.

Real-time Java threads are used as
interrupt service threads (ISTs)—a new
hardware event handling mechanism that
replaces the common interrupt service rou-
tines (ISRs). The occurrence of an event
activates an assigned IST instead of an
ISR. The Komodo microcontroller sup-
ports the concurrent execution of multi-
ple ISTs and zero-cycle overhead context
switching, and triggers ISTs by a switch-
on-signal context switching strategy.

As shown in Figure 9, the four-stage
pipelined processor core consists of an
instruction-fetch unit, a decode unit, an
operand fetch unit, and an execution unit.
Four stack register sets are provided on
the processor chip. A Java bytecode in-
struction is decoded either to a single

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

44 Ungerer et al.

Fig. 9 . Block diagram of the Komodo microcontroller.

micro-op or a sequence of micro-ops, or
a trap routine is called. Each micro-op
is propagated through the pipeline with
its thread id. Micro-ops from multiple
threads can be simultaneously present in
the different pipeline stages.

The instruction fetch unit holds four
program counters (PCs) with dedicated
status bits (e.g., thread active/suspended);
each PC is assigned to a separate thread.
Four byte portions are fetched over the
memory interface and put in the appropri-
ate instruction window (IW). Several in-
structions may be contained in the fetch
portion because of the average Java byte-
code length of 1.8 bytes. Instructions are
fetched depending on the status bits and
fill levels of the IWs.

The instruction decode unit contains the
IWs, dedicated status bits (e.g., priority),
and counters for the implementation of
the proportional share scheme. A priority
manager decides from which IW the next
instruction will be decoded.

The real-time scheduling algorithms
fixed priority preemptive, earliest dead-
line first, least laxity first, and guaranteed
percentage (GP) scheduling are imple-
mented in the priority manager for next

instruction selection [Kreuzinger et al.
2000]. The GP scheduling scheme assigns
portions of the processor execution power
to each hardware thread and allows a
strict isolation of the different real-time
threads—an urgently demanded feature
of real-time systems. GP scheduling is only
efficient if implemented within a multi-
threaded processor [Brinkschulte et al.
2002].

The priority manager applies one of
the implemented scheduling schemes for
IW selection. However, latencies may re-
sult from branches or memory accesses.
To avoid pipeline stalls, instructions from
threads of less priority can be fed into the
pipeline. The decode unit predicts the la-
tency after such an instruction, and pro-
ceeds with instructions from other IWs.

External signals are delivered to the sig-
nal unit from the peripheral components
of the microcontroller core as, for example,
timer, counter, or serial interface. By the
occurrence of such a signal, the corre-
sponding IST will be activated. As soon as
an IST activation ends, its assigned real-
time thread is suspended and its status
is stored. An external signal may activate
the same thread again.

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 45

Further investigations within the
Komodo project [Brinkschulte et al.
2000] have covered real-time garbage
collection on a multithreaded microcon-
troller [Fuhrmann et al. 2001], and a
distributed real-time middleware called
OSA+ [Brinkschulte et al. 2000].

5. INTERLEAVED AND BLOCKED
MULTITHREADING IN CURRENT AND
PROPOSED MICROPROCESSORS

5.1. High-Performance Processors

Cray MTA. The Cray Multi-Threaded
Architecture (MTA) computer [Alverson
et al. 1990] features a powerful VLIW in-
struction set and interleaved multithread-
ing technique. It was designed by the
Tera Computer Company, Seattle, WA,
now Cray Corporation.1

The MTA inherits much of the de-
sign philosophy of the HEP as well as
a (paper) architecture called Horizon
[Thistle and Smith 1988]. The latter was
designed for up to 256 processors and
up to 512 memory modules in a 16 ×
16 × 6-node internal network. Horizon
(like HEP) employed a global address
space and memory-based synchronization
through the use of full/empty bits at each
location. Each processor supported 128
independent instruction streams by 128
register sets with context switches occur-
ring at every clock cycle. Unlike HEP,
Horizon allowed multiple memory opera-
tions from a thread to be in the pipeline
simultaneously.

MTA systems are constructed from re-
source modules, each of which contains up
to six resources. A resource can be a com-
putational processor (CP), an I/O proces-
sor (IOP), an I/O cache (IOC) unit, and
either two or four memory units (MUs)
(Figure 10). Each resource is individually
connected to a separate routing node in
the depopulated three-dimensional (3-D)
torus interconnection network [Almasi
and Gottlieb 1994]. Each routing node has
three or four communication ports and a

1 Tera purchased Cray and adopted the name.

Fig. 10 . The Cray MTA computer system.

resource port. There are several routing
nodes per CP, rather than the several CPs
per routing node. In particular, the num-
ber of routing nodes is at least p3/2, where
p is the number of CPs. This allows the bi-
section bandwidth to scale linearly with p,
while the network latency scales as p1/2.
The communication link is capable of sup-
porting data transfers to and from mem-
ory on each clock tick in both directions,
as are all of the links between the routing
nodes themselves.

The Cray MTA custom chip CP
(Figure 11) is a VLIW pipelined processor
using the IMT technique. Each thread is
associated with one 64-bit stream status
word, thirty-two 64-bit general registers,
and eight 64-bit target registers. The
processor may switch context every cycle
(3-ns cycle period) between as many as
128 distinct threads (called streams by
the designers of the MTA), thereby hiding
up to 128 cycles (384 ns) of memory
latency. Since the context switching is so
fast, the processor has no time to swap
the processor state. Instead, it has 128
of everything, that is, 128 stream status
words, 4096 general registers, and 1024
target registers. Dependences between
instructions are explicitly encoded by
the compiler using explicit dependence
look-ahead. Each instruction contains
a 3-bit look-ahead field that explicitly
specifies how many instructions from this
thread will be issued before encounter-
ing an instruction that depends on the
current one. Since seven is the maximum
possible look-ahead value, at most eight
instructions (i.e., 24 operations) from each

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

46 Ungerer et al.

Fig. 11 . The MTA computational processor.

thread can be concurrently executing in
different stages of a processor’s pipeline.
In addition, each thread can issue as
many as eight memory references without
waiting for earlier ones to finish, further
augmenting the memory latency tolerance
of the processor. The CP has a load/store
architecture with three addressing modes
and 32 general-purpose 64-bit registers.
The three-wide VLIW instructions are
64 bits. Three operations can be exe-
cuted simultaneously per instruction: a
memory reference operation (M-op), an
arithmetic/logical operation (A-op), and a
branch or simple arithmetic/logical opera-
tion (C-op). If more than one operation in
an instruction specifies the same register
or setting of condition codes, the priority
is M-opÂA-opÂC-op.

Every processor has a clock register that
is synchronized with its counterparts in
the other processors and counts up once
per cycle. In addition, the processor counts
the total number of unused instruction
issue slots (measuring the degree of un-
derutilization of the processor) and the

time-integral of the number of instruction
streams ready to issue (measuring the de-
gree of overutilization of the processor).
All three counters are user-readable in a
single unprivileged operation. Eight coun-
ters are implemented in each of the pro-
tection domains of the processor. All are
user-readable in a single unprivileged op-
eration. Four of these counters accumu-
late the number of instructions issued,
the number of memory references, the
time-integral of the number of instruc-
tion streams, and the time-integral of the
number of messages in the network. These
counters are also used for job accounting.
The other four counters are configurable to
accumulate events from any four of a large
set of additional sources within the proces-
sor, including memory operations, jumps,
traps, and so on.

Thus, the Cray MTA exploits paral-
lelism at all levels, from fine-grained
ILP within a single processor to parallel
programming across processors, to multi-
programming among several applications
simultaneously. Consequently, processor

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 47

scheduling occurs at many levels, and
managing these levels poses unique
and challenging scheduling concerns
[Alverson et al. 1995].

After many delays the MTA reached the
market in December 1997 when a single-
processor system (clock speed 145 MHz)
was delivered to the San Diego Supercom-
puter Center. In May 1999, the system
was upgraded to eight processors and a
network with 64 routing nodes. Each pro-
cessor runs at 260 MHz and is theoreti-
cally capable of 780 MFLOPS. This ma-
chine was effectively retired in September
2001.

Early MTA systems had been built us-
ing GaAs technology for all logic design.
As a result of the semiconductor market’s
focus on CMOS technology for computer
systems, Cray started a transition to us-
ing CMOS technology in the MTA. The
latest in this development is the MTA-2,
which is configured with 28 processors and
112 gigabytes (GB) of memory. The first
Cray MTA-2 supercomputer system was
shipped in late December 2001.

HTMT Architecture Project. In 1997, the
Jet Propulsion Laboratory in collabo-
ration with several other institutions
(The California Institute of Technology,
Princeton University, University of Notre
Dame, University of Delaware, The State
University of New York at Stonybrook,
Tera Computer Company (now Cray),
Argonne National Laboratories) initiated
the Hybrid Technology MultiThreaded
(HTMT) Architecture Project whose aim
is to design the first petaflops computer
by 2005–2007. The computer will be based
on radically new hardware technologies
such as superconductive processors, op-
tical holographic storages, and optical
packet switched networks [Sterling 1997].
There will be 4096 superconductive pro-
cessors, called SPELL. A SPELL processor
consists of 16 multistream units, where
each multistream unit is a 64-bit, deeply
pipelined integer processor capable of ex-
ecuting up to eight parallel threads. As a
result, each SPELL is capable of running
in parallel up to 128 threads, arranged in
16 groups of 8 threads [Dorojevets 2000].

Sun MAJC. Sun proposed in 1999 its
MAJC-5200 [Tremblay 1999] that can be
classified as a dual-processor chip with
BMT processors. Special Java-directed in-
structions are provided, motivating the
acronym MAJC for Micro Architecture
for Java Computing. Instruction, data,
thread, and process-level parallelism is
exploited in the basic MAJC architecture
by supporting explicit multithreading (so-
called vertical multithreading), implicit
multithreading (called speculative mul-
tithreading), and chip multiprocessors.
Instruction-level parallelism is utilized by
VLIW packets containing from one to four
instructions and data-level parallelism
through single-instruction, multiple-data
(SIMD) instructions in particular for mul-
timedia applications. Thread-level par-
allelism is utilized through compiler-
supported explicit multithreading. The
architecture supports combining several
multithreaded processors on a chip to har-
ness process-level parallelism.

Single-threaded-program execution
may be accelerated by speculative mul-
tithreading with microthreads that are
dependent on nonspeculative threads
[Tremblay et al. 2000]. Virtual channels
communicate shared register values
between different microthreads with
produced-consumer synchronization. In
case of misspeculation, the speculative
microthread is discarded.

IBM RS64 IV. IBM developed a mul-
tithreaded PowerPC processor, which is
used in the IBM iSeries and pSeries com-
mercial servers. The processor—originally
code-named SStar—is called RS64 IV and
became available for purchase in the
fourth quarter of 2000. Because of its
optimization for commercial server work-
load (i.e., on-line transaction processing,
enterprise resource planning, Web serv-
ing, and collaborative groupware) with
typically large and function-rich applica-
tions, a two-threaded block-interleaving
approach with a switch-on-cache-miss
model was chosen. A so-called thread-
switch buffer, which holds up to eight in-
structions from the background thread,
reduces the cost of pipeline reload after

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

48 Ungerer et al.

a thread switch. These instructions may
be introduced into the pipeline immedi-
ately after a thread switch. A significant
throughput increase by multithreading
while adding less than 5% to the chip area
was reported in Borkenhagen et al. [2000].

5.2. Network Processors

Currently multithreading proves success-
ful in network processors. Network pro-
cessors are expected to become the funda-
mental building blocks for networks in the
same fashion that microprocessors are for
today’s personal computers [Glaskowsky
2002]. Network processors offer real-
time processing of multiple data streams,
enhanced security, and Internet proto-
col (IP) packet handling and forwarding
capabilities.

Network processors apply multithread-
ing to bridge latencies during memory
accesses. Hard real-time events, that is,
the deadline should never be missed,
are requirements for network processors
that need specific instruction scheduling
during multithreaded execution. Multi-
threading is typically restricted to the in-
ternal architecture of the parallel working
picoprocessors or microengines that per-
form the data traffic handling.

Intel IXP network processors. The In-
tel IXP1200 network processor [Intel
Corporation 2002]—the first in the
Intel Internet Exchange Architecture
(Intel IXA) network processor family
that uses multithreading—combines an
Intel StrongARM processor core with
six programmable multithreaded micro-
engines. The IXP2400 network processor
is based on an Intel XScale core with
eight multithreaded microengines, and
the IXP2800 contains even 16 multi-
threaded microengines [Intel Corporation
2002]. The microengines (four-threaded
BMT) are used for packet forwarding and
traffic management, whereas the XScale
processor core is applied for control tasks.
Data and event signals are shared among
threads and microengines at virtual zero
latency while maintaining coherence.
The IXP2800 is claimed to be capable of

enabling 10-Gb/s wire-speed processing
(Gb = gigabits).

IBM PowerNP network processor. The
IBM PowerNP NP46GS3 network proces-
sor [IBM Corporation 1999] integrates a
switching engine, search engine, frame
processors, and multiplexed medium ac-
cess controllers (MACs). The NP4GS3
includes an embedded IBM PowerPC
405 processor core, 16 programmable
multithreaded picoprocessors, 40 Fast
Ethernet/4-Gb MACs, and hardware ac-
celerators performing functions such as
tree searches, frame forwarding, frame fil-
tering, and frame alteration.

The multithreaded picoprocessors are
used for packet manipulation while the
processor core handles control functions.
Each picoprocessor is a 32-bit, 133-MHz
RISC core that supports two threads in
the hardware and includes nine hardwired
function units for tasks such as string
copying, bandwidth-policy checking, and
check summing.

The aggregated bandwidth of the
NP4GS3 is some 4 Gb/s, allowing it to
manage a single OC-48 optical channel or
up to 40 Fast Ethernet ports [Glaskowsky
2002].

Vitesse IQ2x00 network processors. The
Vitesse IQ2x00 family consists of IQ2000
and IQ2200 network processors, whose ar-
chitecture is based on multiple packed pro-
cessors. Each packed processor is a five-
threaded BMT that switches on cache miss
[Glaskowsky 2002].

Lexra network processors. The Lexra net-
work processor employs packet processors,
which are used in parallel to implement IP
layer processing in software. The current
packed processor is the LX4580 [Gelinas
et al. 2002]. It implements the MIPS32 ar-
chitecture, including recent architectural
enhancements, along with instructions for
optimized packet processing. By contrast
with the Intel IXP and Vitesse IQ2x00, the
LX4580 uses the IMT approach (with five
threads).

AMCC nP network processors. AMCC’s nP
network processor family is based on the

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 49

MMC Networks’ nPcore multithreaded
packet processor. Each processor in this
family consists of one or several nPcore
processing units that are connected to an
external search coprocessor and a host
CPU [Glaskowsky 2002]. In particular,
the nP7250 network processor has two
nPcores with 2.4 Gb/s aggregated band-
width. The current top of AMCC’s line is
the nP7510, whose six nPcore processing
units offer 10 Gb/s.

Other network processors. A number of
other network processors, such as the
Motorola C-5, and the Fast Pattern Pro-
cessor (as part of Agere’s PayloadPlus chip
set) seem to include multithreading fea-
tures. Unfortunately, it is often hard to
find out, because multithreading is not
the main feature of network processors
and often hardly mentioned. The mar-
ket for network processors is extremely
competitive, so the above-mentioned pro-
cessors will soon be replaced by their
successors.

6. SIMULTANEOUS MULTITHREADING

6.1. Principles

IMT and BMT are techniques which are
most efficient when applied to scalar RISC
or VLIW processors. Combining multi-
threading with the superscalar technique
naturally leads to a technique where
all hardware contexts are active simul-
taneously, competing each cycle for all
available resources. This technique, called
simultaneous multithreading (SMT), in-
herits from superscalars the ability to is-
sue multiple instructions each cycle; and
like multithreaded processors it contains
hardware resources for multiple contexts.
The result is a processor that can is-
sue multiple instructions from multiple
threads each cycle. Therefore, not only
can unused cycles in the case of laten-
cies be filled by instructions of alterna-
tive threads, but so can unused issue slots
within one cycle.

Thread-level parallelism can come from
either multithreaded, parallel programs
or from multiple, independent programs
in a multiprogramming workload, while

ILP is utilized from the individual
threads. Because an SMT processor si-
multaneously exploits coarse- and fine-
grain parallelism, it uses its resources
more efficiently and thus achieves better
throughput and speedup than single-
threaded superscalar processors for mul-
tithreaded (or multiprogramming) work-
loads. The tradeoff is a slightly more
complex hardware organization.

If all (hardware-supported) threads of
an SMT processor always execute threads
of the same process, preferably in single-
program multiple-data fashion, a uni-
fied (primary) I-cache may prove useful,
since the code can be shared between the
threads. Primary D-cache may be unified
or separated between the threads depend-
ing on the access mechanism used.

The SMT technique combines a wide
superscalar instruction issue with mul-
tithreading by providing several register
sets on the processor and issuing instruc-
tions from several instruction queues si-
multaneously. Therefore, the issue slots of
a wide-issue processor can be filled by op-
erations of several threads. Latencies oc-
curring in the execution of single threads
are bridged by issuing operations of the re-
maining threads loaded on the processor.
In principle, the full issue bandwidth can
be utilized.

The resources of SMT processors can be
organized in two ways:

1. Resource sharing: Instructions of dif-
ferent threads share all resources like
the fetch buffer, the physical registers
for renaming registers of different reg-
ister sets, the instruction window, and
the reorder buffer. Thus SMT adds
minimal hardware complexity to con-
ventional superscalars; hardware de-
signers can focus on building a fast
single-threaded superscalar and add
multithread capability on top. The
complexity added to superscalars by
multithreading includes the thread tag
for each internal instruction represen-
tation, multiple register sets, and the
abilities of the fetch and the retire
units to fetch/retire instructions of dif-
ferent threads.

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

50 Ungerer et al.

2. Resource replication: The second orga-
nizational form replicates all internal
buffers of a superscalar such that each
buffer is bound to a specific thread. In-
struction fetch, decode, rename, and
retire units may be multiplexed be-
tween the threads or be duplicated
themselves. The issue unit is able to
issue instructions of different instruc-
tion windows simultaneously to the
execution units. This form of organi-
zation adds more changes to the orga-
nization of superscalar processors but
leads to a natural partitioning of the
instruction window and simplifies the
issue and retire stages.

The fetch unit of an SMT processor can
take advantage of the interthread com-
petition for instruction bandwidth in two
ways. First, it can partition this band-
width among the threads and fetch from
several threads each cycle. In this way, it
increases the probability of fetching only
nonspeculative instructions. Second, the
fetch unit can be selective about which
threads it fetches. For example, it may
fetch those that will provide the most im-
mediate performance benefit.

The main drawback to SMT may be that
it complicates the issue stage, which is
always central to the multiple threads.
A functional partitioning as required by
the on-chip wire-delay of future micro-
processors is not easily achieved with an
SMT processor due to the centralized in-
struction issue. A separation of the thread
queues as in the SMT approaches with
resource replication is a possible solution,
although it does not remove the central in-
struction issue.

Closely related to SMT are architectural
proposals that only slightly enhance a su-
perscalar processor by the ability to pur-
sue two or more threads only for a short
time. In principle, predication is the first
step in this direction. An enhanced form
of predication is able to issue and execute
predicated instruction even if the predi-
cate is not yet solved. A further step is dy-
namic predication [Klauser et al. 1998a]
as applied for the Polypath architecture
[Klauser et al. 1998b] that is a superscalar

enhanced to handle multiple threads in-
ternally. Another step to multithreading
is simultaneous subordinate microthread-
ing [Chappell et al. 1999], which is a mod-
ification of superscalars to run threads at
microprogram level concurrently. A new
microthread is spawned either by event-
driven by hardware or by an explicit
spawn instruction. The subordinate mi-
crothread could be used, for example, to
improve branch prediction of the primary
thread or to preload data.

A competing approach to SMT is repre-
sented by the chip multiprocessors (CMPs)
[Ungerer et al. 2002]. A CMP integrates
two or more complete processors on a sin-
gle chip. Every unit of a processer is du-
plicated and used independently of its
copies on the chip. CMP is easier to
implement, but only SMT has the abil-
ity to hide latencies. Examples of CMP
are the Texas Instruments TMS320C8x
[Texas Instruments 1994], the Hydra
[Hammond and Olukotun 1998], the Com-
paq Piranha [Barroso et al. 2000], and the
IBM POWER4 chip [Tendler et al. 2002].

Projects simulating different configura-
tions of SMT are discussed next, while
SMT approaches that can be found in
current microprocessors are given in
Section 7.

6.2. Examples of Prototypes and Simulated
SMT Processors

MARS-M. The MARS-M multi-
threaded computer system [Dorozhevets
and Wolcott 1992] was developed and
manufactured within the Russian Next-
Generation Computer Systems program
during 1982–1988. The MARS-M was the
first system where the SMT technique
was implemented in a real design. The
system has a decoupled multiprocessor
architecture with execution, address,
control, memory, and peripheral multi-
threaded subsystems working in parallel
and communicating via multiple register
FIFO-queues. The execution and address
subsystems are multiple-unit VLIW pro-
cessors with SMT. Within each of these
two subsystems up to four threads can
run in parallel on their hardware contexts

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 51

allocated by the control subsystem, while
sharing the subsystem’s set of pipelined
functional units and resolving resource
conflicts on a cycle-by-cycle basis. The
control processor uses IMT with a zero-
overhead context switch upon issuing a
memory load operation. In total, up to
12 threads can run simultaneously within
MARS-M with a peak instruction issue
rate of 26 instructions per cycle. Medium-
scale integration (MSI) and large-scale
integration emitter-coupled logic (LSI
ECL) elements with a minimum delay of
2.5 ns are used to implement processor
logic. There are 739 boards, each of which
can contain up to 100 ICs mounted on
both sides. The MARS-M hardware is
water-cooled and occupies three cabinets.
The initial clock period of 100 ns was
increased to 108 ns at the debugging
stage.

Matsushita Media Research Laboratory
processor. The multithreaded processor
of the Media Research Laboratory of
Matsushita Electric Ind. (Japan) was
another pioneering approach to SMT
[Hirata et al. 1992]. Instructions of dif-
ferent threads are issued simultaneously
to multiple execution units. Simulation
results on a parallel ray-tracing appli-
cation showed that using eight threads,
a speedup of 3.22 in the case of one
load/store unit, and of 5.79 in the case of
two load/store units, can be achieved over
a conventional RISC processor. However,
caches or translation look-aside buffers
are not simulated, nor is a branch predic-
tion mechanism.

“Multistreamed superscalar” at the Univer-
sity of Santa Barbara. Serrano et al. [1994]
and Yamamoto and Nemirovsky [1995]
at the University of Santa Barbara, CA,
extended the interleaved multithreading
(then called multistreaming) technique to
general-purpose superscalar processor ar-
chitecture and presented an analytical
model of multithreaded superscalar per-
formance, backed up by simulation.

SMT processor at the University of
Washington. The SMT processor ar-
chitecture, proposed by Tullsen, Eggers,

and Levy [1995] at the University of
Washington, Seattle, WA, surveys en-
hancements of the Alpha 21164 processor.
Simulations were conducted to evaluate
processor configurations of an up to eight-
threaded and eight-issue superscalar.
This maximum configuration showed a
throughput of 6.64 IPC due to multi-
threading using the SPEC92 benchmark
suite and assuming a processor with 32
execution units (among them multiple
load/store units). Descriptions and the re-
sults are based on the multiprogramming
model.

The next approach was based on a hy-
pothetical out-of-order instruction issue
superscalar microprocessor that resem-
bles the MIPS R10000 and HP PA-8000
[Tullsen et al. 1996; Eggers et al. 1997].
Both approaches followed the resource-
sharing organization aiming at an only
slight hardware enhancement of a su-
perscalar processor. The latter approach
evaluated more realistic processor con-
figurations, and presented implementa-
tion issues and solutions to register file
access and instruction scheduling for a
minimal change to superscalar processor
organization.

In the simulations of the latter archi-
tectural model (Figure 12), eight threads
and an eight-issue superscalar organiza-
tion are assumed. Eight instructions are
decoded, renamed, and fed to either the
integer or floating-point instruction win-
dow. Unified buffers are used. When
operands become available, up to eight
instructions are issued out of order per
cycle, executed, and retired. Each thread
can address 32 architectural integer (and
floating-point) registers. These registers
are renamed to a large physical register
file of 356 physical registers. The larger
register file requires a longer access time.
To avoid increasing the processor cycle
time, the pipeline is extended by two
stages to allow two-cycle register reads
and two-cycle writes. Renamed instruc-
tions are placed into one of two instruc-
tion windows. The 32-entry integer in-
struction window handles integer and all
load/store instructions, while the 32-entry
floating-point instruction window handles

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

52 Ungerer et al.

Fig. 12 . SMT processor architecture.

floating-point instructions. Three floating-
point and six integer units are assumed.
All execution units are fully pipelined,
and four of the integer units also exe-
cute load/store instructions. The I- and D-
caches are multiported and multibanked,
but common to all threads.

The multithreaded workload consists of
a program mix of SPEC92 benchmark pro-
grams that are executed simultaneously
as different threads. The simulations eval-
uate different fetch and instruction issue
strategies.

An RR.2.8 fetching scheme to access
multiported I-cache—that is, in each cycle,
eight instructions are fetched in round-
robin policy from each of two different
threads—was superior to other schemes
like RR.1.8, RR.4.2, and RR.2.4 with
less fetching capacity. As a fetch policy,
the ICOUNT feedback technique, which
gives the highest fetch priority to the
threads with the fewest instructions in
the decode, renaming, and queue pipeline
stages, proved superior to the BRCOUNT
scheme, which gives the highest prior-
ity to those threads that are least likely
to be on a wrong path, and the MISS-
COUNT scheme, which gives priority to
the threads that have the fewest out-
standing D-cache misses. The IQPOSN
policy that gives the lowest priority to

the oldest instructions by penalizing those
threads with instructions closest to the
head of either the integer or the floating-
point queue is nearly as good as ICOUNT
and better than BRCOUNT and MISS-
COUNT, which are all better than round-
robin fetching. The ICOUNT.2.8 fetching
strategy reached an IPC of about 5.4
(the RR.2.8 only reached about 4.2). Most
interesting is that neither mispredicted
branches nor blocking due to cache misses,
but a mix of both and perhaps some other
effects, proved to be the best fetching
strategy.

In a single-threaded processor, choosing
instructions for issue that are least likely
to be on a wrong path is always achieved
by selecting the oldest instructions, those
deepest into the instruction window. For
the SMT processor, several different issue
strategies have been evaluated, like oldest
instructions first, speculative instructions
last, and branches first. Issue bandwidth
is not a bottleneck on these simulated ma-
chines and all strategies seem to perform
equally well, so the simplest mechanism is
to be preferred. Also, doubling the size of
instruction windows (but not the number
of searchable instructions for issue) has no
significant effect on the IPC. Even an in-
finite number of execution units increases
throughput by only 0.5%.

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 53

Further research looked at compiler
techniques for SMT [Lo et al. 1997] and
at extracting threads of a single pro-
gram designed for multithreaded execu-
tion on an SMT [Tullsen et al. 1999]. The
SMT processor has also been evaluated
with database workloads [Lo et al. 1998]
achieving roughly a three-fold increase
in instruction throughput with an eight-
threaded SMT over a single-threaded su-
perscalar with similar resources.

Wallace et al. [1998] presented the
threaded multipath execution model,
which exploits existing hardware on an
SMT processor to execute simultaneously
alternate paths of a conditional branch in
a thread. Threaded Multiple Path Execu-
tion employs eager execution of branches
in an SMT processor model. It extends the
SMT processor by introducing additional
hardware to test for unused processor
resources (unused hardware threads), a
confidence estimator, mechanisms for fast
starting and finishing threads, priorities
attached to the threads, support for
speculatively executed memory access
operations, and an additional bus for
distributing the contents of the register
mapping table (mapping synchronization
bus, MSB). If the hardware detects that
a number of processor threads are not
processing useful instructions, the confi-
dence estimator is used to decide whether
only one continuation of a conditional
branch should be followed (high confi-
dence) or both continuations should be
followed simultaneously (low confidence).
The MSB is used to provide a thread
that starts execution of one continuation
speculatively with the valid register map.
Such register mappings between different
register sets incur an overhead of four to
eight cycles. Such a speculative execution
increases single-program performance by
14–23%, depending on the misprediction
penalty, for programs with a high branch
misprediction rate. Wallace et al. [1999]
explored instruction recycling on the
proposed multipath SMT processor.

Irvine multithreaded superscalar. This
multithreaded superscalar processor
approach, developed at the University

of California at Irvine, combines out-
of-order execution within an instruction
stream with the simultaneous execution
of instructions of different instruction
streams [Gulati and Bagherzadeh 1996;
Loikkanen and Bagherzadeh 1996]. A
particular superscalar processor called
the Superscalar Digital Signal Processor
(SDSP) is enhanced to run multiple
threads. The enhancements are directed
by the goal of minimal modification to
the superscalar base processor. Therefore,
most resources on the chip are shared by
the threads, as for instance the register
file, reorder buffer, instruction window,
store buffer, and renaming hardware.
Based on simulations, a performance gain
of 20–55% due to multithreading was
achieved across a range of benchmarks.

Pontius and Bagherzadeh [1999] evalu-
ated a multithreaded superscalar proces-
sor model using several video decode, pic-
ture processing, and signal filter programs
as workloads. The programs were paral-
lelized at the source code level by par-
titioning the main loop and distributing
the loop iteration to several threads. The
relatively low speedup that was reported
for multithreading resulted from algorith-
mic restrictions and from the already high
IPC in the single-threaded model. The
latter was only possible because multi-
media instructions were not used. Other-
wise a large part of the IPC in the single-
threaded model would be hidden by the
SIMD parallelism within the multimedia
instructions.

SMV processor. The Simultaneous Mul-
tithreaded Vector (SMV) architecture
[Espasa and Valero 1997], designed at
the Polytechnic University of Catalunya
(Barcelona, Spain) combines simultane-
ous multithreaded execution and out-
of-order execution with an integrated vec-
tor unit and vector instructions. Figure 13
depicts the SMV architecture. The fetch
engine selects one of eight threads and
fetches four instructions on its behalf.
The decoder renames the instructions, us-
ing a per-thread rename table, and then
sends all instructions to several common
execution queues. Inside the queues, the

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

54 Ungerer et al.

Fig. 13 . Simultaneous Multithreaded Vector architecture. FPU = floating-point unit; ALU = arithmetic
logic unit; VFU = vector functional unit.

instructions of different threads are indis-
tinguishable, and no thread information
is kept except in the reorder buffer and
memory queue. Register names preserve
all dependences. Independent threads use
independent rename tables, which pre-
vents false dependences and conflicts from
occurring. The vector unit has 128 vector
registers, each holding 128 64-bit regis-
ters, and has four general-purpose inde-
pendent execution units. The number of
registers is the product of the number of
threads and the number of physical regis-
ters required to sustain good performance
on each thread.

Karlsruhe multithreaded superscalar pro-
cessor. While the SMT processor pro-
posed by Tullsen, Eggers, and Levy
[1995] surveys enhancements of the Alpha
21164 processor, the multithreaded super-
scalar processor approach of Sigmund and
Ungerer [1996a, 1996b] is based on a sim-
plified PowerPC 604 processor, combining
multiple pipelines that were dedicated to
different threads with a simultaneous is-
sue unit (resource replication).

Using an instruction mix with 20% load
and store instructions, the performance
results showed, for an eight-issue pro-
cessor with four to eight threads and

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 55

a single load/store unit, that two in-
struction fetch units, two decode units,
four integer units, 16 rename registers,
four register ports, and completion queues
with 12 slots are sufficient. The single
load/store unit proved the principal bot-
tleneck. The multithreaded superscalar
processor (eight-threaded, eight-issue) is
able to hide completely latencies caused by
4-2-2-2 burst cache refills.2 It reaches the
maximum throughput of 4.2 IPC that is
possible with a single load/store unit.

SMT multimedia processor. Subsequent
SMT research at the University of
Karlsruhe has explored resource repli-
cation-based microarchitecture models
for an SMT processor with multime-
dia enhancements [Oehring et al. 1999a,
1999b]. Related research by Pontius and
Bagherzadeh [1999] and Wittenburg et al.
[1999] did not use multimedia operations.
Hand-coding was applied to transfer a
commercial MPEG-2 video decoding algo-
rithm to the SMT multimedia processor
model and to program the algorithm in
multithreaded fashion. The research pro-
cessor model assumes a wide-issue super-
scalar processor, and enhances it by the
SMT technique, by multimedia units, and
by an additional on-chip RAM storage.

The most surprising finding was that
smaller reservation stations for the thread
unit and the global and the local load/store
units as well as the smaller reorder
buffers, increased the IPC value for the
multithreaded models. Intuition suggests
better performance with larger buffers.
However, large reservation stations (and
large reorder buffers) draw too many
highly speculative instructions into the
pipeline. Smaller buffers limit the spec-
ulation depth of fetched instructions and
lead to the fact that only nonspeculative
instructions or instructions with low spec-
ulation depth are fetched, decoded, is-
sued, and executed in an SMT processor.
An abundance of speculative instructions
may decrease the performance of an SMT

2 4-2-2-2 assumes that four times 64-bit portions are
transmitted over the memory bus, the first portion
reaching the processor four cycles after the cache
miss indication, the next portion two cycles later, etc.

processor. Another reason for the negative
effect of large reorder buffers and of large
reservation stations for the load/store and
thread control units lies in the fact that
those instructions have a long latency
and typically have two to three integer
instructions as consumers. The effect is
that the consuming integer instructions
eat up space in the integer reservation sta-
tion, thus blocking instructions from other
threads from entering it. This multiplica-
tion effect is made even worse by a non-
speculative execution of store and thread
control instructions.

Subsequent research by Sigmund et al.
[2000] investigated a cost/benefit analy-
sis of various SMT multimedia processor
models. Transistor count and chip space
estimations (applying the tool described
by Steinhaus et al. [2001]) showed that
the additional hardware cost of a four-
threaded, eight-issue SMT processor over
a single-threaded processor is a 2% in-
crease in transistor count and a 9% in-
crease in chip space for a 288 million
transistor chip, which yields a threefold
speedup. The small scaled four-threaded,
eight-issue SMT models with only 24 mil-
lion transistors require a 9% increase in
transistor count and a 27% increase in
chip space, resulting in a 1.5-fold speedup
over the superscalar base model.

Similar results were reached by Burns
and Gaudiot [2002], who estimated the
layout area for SMT. They identified which
layout blocks are affected by SMT, de-
termined the scaling of chip space re-
quirements, and compared SMT versus
single-threaded processor space require-
ments by scaling a R10000-based layout
to 0.18-micron technology.

Simultaneous multithreading for signal pro-
cessors. Wittenburg et al. [1999] looked
at the application of the SMT technique
for signal processors using combining in-
structions that are applied to registers of
several register sets simultaneously in-
stead of multimedia operations. Simula-
tions with a Hough transformation as
workload showed a speedup of up to six
compared to a single-threaded processor
without multimedia extensions.

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

56 Ungerer et al.

Simultaneous multithreading and power
consumption. Simultaneous multithread-
ing can also be applied for reduction of
power consumption. In principle, the same
power reduction techniques are applica-
ble for SMT processors as for superscalars.
When an SMT processor is simultane-
ously executing threads, the per-cycle use
of the processor resources should notice-
ably increase, offering less opportunities
for power reduction via traditional tech-
niques such as clock gating. However, an
SMT processor, specifically designed to ex-
ecute multiple threads in a power-aware
manner, provides additional options for
power-aware design [Brooks et al. 2000].

Mispredictions cost energy because the
speculatively executed instructions must
be squashed. Contemporary superscalar
processors discard approximately 60% of
the fetched and 30% of the executed in-
structions due to misspeculations. In case
of a power-aware design, the issue slots
of an SMT processor could be preferably
filled by less speculative instructions of
other threads. Harnessing the extra paral-
lelism provided by multiple threads allows
the processor to rely much less on specula-
tion. Less resources are utilized by specu-
lative instructions and more parallelism is
exploited. Moreover, a simpler branch unit
design could be used. This inherently im-
plies a greater power efficiency per thread.

The simulations of Seng et al. [2000]
showed that by using an appropriate
scheduler up to 22% less power is con-
sumed by an SMT processor than by a com-
parable superscalar.

7. SIMULTANEOUS MULTITHREADING IN
CURRENT MICROPROCESSORS

Alpha 21464. Compaq unveiled its
Alpha EV8 21464 proposal in 1999 [Emer
1999], a four-threaded eight-issue SMT
processor that closely resembles the
SMT processor proposed by Tullsen et al.
[1999]. The processor proposal featured
out-of-order execution, a large on-chip
secondary cache, a direct RAMBUS in-
terface, and an on-chip router for system
interconnect of a directory based, cache-

coherent NUMA (nonuniform memory
access) multiprocessor. This 250 million
transistor chip was planned for year 2003.
In the meantime, the project has been
abandoned, as Compaq sold the Alpha
processor technology to Intel.

Blue Gene. Simultaneous multithread-
ing is mentioned as processor technique
for the building block of the IBM Blue
Gene system—a 5-year effort to build
a petaflops supercomputer started in
December 1999 [Allen et al. 2001].

Sun UltraSPARC V. Also the Sun Ultra-
SPARC V processor has been announced
to exploit thread-level parallelism by sym-
metric multithreading—that is, SMT. The
ultraSPARC V will be able to switch be-
tween two different modes depending on
the type of work—one mode for heavy duty
calculations and the other for business
transactions such as database operations
[Lawson and Vance 2002].

Hyper-Threading Technology in the Intel
Xeon processor. Intel’s Hyper-Threading
Technology [Marr et al. 2002] proposes
SMT for the Pentium 4-based Intel Xeon
processor family to be used in dual and
multiprocessor servers. Hyper-Threading
Technology makes a single physical pro-
cessor appear as two logical processors by
applying a two-threaded SMT approach.
Each logical processor maintains a com-
plete set of the architecture state, which
consists of the general-purpose registers,
the control registers, the advanced pro-
grammable interrupt controller (APIC)
registers, and some machine state regis-
ters. Logical processors share nearly all
other resources on the physical processor,
such as caches, execution units, branch
predictors, control logic, and buses. Each
logical processor has its own APIC. Inter-
rupts sent to a specific logical processor
are handled only by that logical processor.

When one logical processor is stalled,
the other logical processor can continue to
make forward progress. A logical processor
may be temporarily stalled for a variety of
reasons, including servicing cache misses,
handling branch mispredictions, or wait-
ing for the results of previous instructions.

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 57

Independent forward progress was en-
sured by managing buffering queues such
that no logical processor can use all the
entries when two active software threads
were executing.

The buffering queues that separate ma-
jor pipeline logic blocks are either parti-
tioned or duplicated to ensure indepen-
dent forward progress through each logic
block. If only one active software thread
is active, the thread should run at the
same speed on a processor with Hyper-
Threading Technology as on a processor
without this capability. This means that
partitioned resources should be recom-
bined when only one software thread is
active, thus applying a flexible resource-
sharing model.

In the Xeon, as in the Pentium 4, in-
structions generally come from the execu-
tion trace cache (TC), which replaces the
primary I-cache. Two sets of instruction
pointers independently track the progress
of the two executing software threads. The
TC entries are tagged with thread infor-
mation. The two logical processors arbi-
trate access to the TC every clock cycle.
If both logical processors want access to
the TC at the same time, access is granted
to one then the other in alternating clock
cycles. If one logical processor is stalled or
is unable to use the TC, the other logical
processor can use the full bandwidth of the
TC, every cycle.

If there is a TC miss, instruction bytes
need to be fetched from the secondary
cache and decoded into µops (microopera-
tions) to be placed in the TC. Each logical
processor has its own instruction transla-
tion look-aside buffer and its own set of in-
struction pointers to track the progress of
instruction fetch for the two logical proces-
sors. The instruction fetch logic in charge
of sending requests to the secondary cache
arbitrates on a first-come first-served ba-
sis, while always reserving at least one
request slot for each logical processor. In
this way, both logical processors can have
fetches pending simultaneously. Each log-
ical processor has its own set of two 64-
byte streaming buffers to hold instruction
bytes in preparation for the instruction de-
code stage.

The branch prediction structures are ei-
ther duplicated or shared. The branch his-
tory buffer used to look up the global his-
tory array is also tracked independently
for each logical processor. However, the
large global history array is a shared
structure with entries that are tagged
with a logical processor ID. The return
stack buffer, which predicts the target of
return instructions, is duplicated.

When both threads are decoding in-
structions simultaneously, the streaming
buffers alternate between threads so that
both threads share the same decoder logic.
The decode logic has to keep two copies of
all the state needed to decode IA-32 in-
structions for the two logical processors
even though it only decodes instructions
for one logical processor at a time. In gen-
eral, several instructions are decoded for
one logical processor before switching to
the other logical processor.

The µop queue that decouples the front-
end from the out-of-order execution engine
is partitioned such that each logical pro-
cessor has half the entries. The allocator
logic takes µops from the µop queue and
allocates many of the key machine buffers
needed to execute each µop, including the
126 reorder buffer entries, 128 integer and
128 floating-point physical registers, and
48 load and 24 store buffer entries. If there
are µops for both logical processors in the
µop queue, the allocator will alternate se-
lectingµops from the logical processors ev-
ery clock cycle to assign resources. Each
logical processor can use up to a maxi-
mum of 63 reorder buffer entries, 24 load
buffers, and 12 store buffer entries.

Since each logical processor must main-
tain and track its own complete architec-
ture state, there are two register alias ta-
bles for register renaming, one for each
logical processor. The register renaming
process is done in parallel to the alloca-
tor logic described above, so the register
rename logic works on the same µops to
which the allocator is assigning resources.

Once µops have completed the alloca-
tion and register rename processes, they
are placed into the memory instruction
queue or the general instruction queue,
respectively. The two sets of queues are

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

58 Ungerer et al.

also partitioned such that µops from each
logical processor can use at most half the
entries. The memory instruction queue
and general instruction queues send µops
to the five scheduler queues as fast as
they can, alternating betweenµops for the
two logical processors every clock cycle, as
needed.

Each scheduler has its own scheduler
queue of 8 to 12 entries from which it se-
lects µops to send to the execution units.
The schedulers choose µops regardless of
whether they belong to one logical proces-
sor or the other. The schedulers are ef-
fectively oblivious to logical processor dis-
tinctions. The µops are simply evaluated
based on dependent inputs and availabil-
ity of execution resources. For example,
the schedulers could dispatch two µops
from one logical processor and two µops
from the other logical processor in the
same clock cycle. To avoid deadlock and en-
sure fairness, there is a limit on the num-
ber of active entries that a logical proces-
sor can have in each scheduler’s queue.

The execution core and memory hier-
archy are also largely oblivious to logical
processors. After execution, the µops are
placed in the reorder buffer, which decou-
ples the execution stage from the retire-
ment stage. The reorder buffer is parti-
tioned such that each logical processor can
use half the entries.

The retirement logic tracks when µops
from the two logical processors are ready
to be retired, then retires the µops in pro-
gram order for each logical processor by
alternating between the two logical pro-
cessors. Retirement logic will retire µops
for one logical processor, then the other, al-
ternating back and forth. If one logical pro-
cessor is not ready to retire any µops then
all retirement bandwidth is dedicated to
the other logical processor.

The implementation of Hyper-
Threading Technology in the Xeon
processor adds less than 5% to the relative
chip size and maximum power require-
ments, but can provide performance
benefits much greater than that. Initial
benchmark tests show up to a 65% per-
formance increase on high-end server
applications when comparing the Xeon

processor to the previous-generation
PentiumIII Xeon processor on four-way
server platforms. A significant portion
of those gains can be attributed to
Hyper-Threading Technology [Marr et al.
2002].

8. CONCLUSIONS

Although the meaning of the term mul-
tithreading is sometimes used to include
all kinds of architectures that are able
to concurrently execute multiple instruc-
tion streams on a single chip [Sohi 2001],
that is, chip multiprocessors, explicit and
implicit multithreaded architectures, we
clearly distinguish these architectural so-
lutions and focus this survey on explicit
multithreaded processors.

Explicit multithreaded processors inter-
leave the execution of instructions of dif-
ferent user-defined threads within the
same pipeline, in contrast to implicit mul-
tithreaded processors that dynamically
generate threads from single-threaded
programs and execute such speculative
threads concurrently with the lead thread.

Superscalar and implicit multithreaded
processors aim at a low execution time
of a single program, while explicit mul-
tithreaded processors (and chip multipro-
cessors) aim at a low execution time of a
multithreaded workload.

Several explicit multithreaded proces-
sors as well as chip multiprocessors have
currently been announced by industry or
are already into production in the ar-
eas of high-performance microprocessors,
media, and network processors. The ba-
sic interleaved and blocked multithread-
ing techniques are applied in VLIW pro-
cessors, in the network processors, and
even in superscalar processors. In partic-
ular the success of these techniques in
network processors is stunning. In addi-
tion, simultaneous multithreading proces-
sors and chip multiprocessors have been
announced or are already in production
by IBM, Intel, and Sun. The additional
chip space requirement by a two-threaded
processor is reported to be about 5% com-
pared to a single-threaded processor (IBM
RS64 IV and Intel Xeon processor), while a

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 59

significant throughput increase is reached
by multithreading. We therefore expect ex-
plicit multithreading techniques, in par-
ticular the simultaneous multithread-
ing techniques, to be commonly used in
the next generation of high-performance
microprocessors.

In contrast, implicit multithreaded pro-
cessors and the related helper thread ap-
proach remain hot research topics and
must still prove their efficiency in real pro-
cessors. We expect that future research
will also focus on the deployment of multi-
threading techniques in the fields of signal
processors and microcontrollers, in par-
ticular for real-time applications, and for
power management. Moreover, instruc-
tion scheduling within a multithreaded
pipeline as well as system software
architectures for multithreaded proces-
sors are still open research questions.

This survey should clarify the terminol-
ogy and demonstrate the state-of-the-art
as well as research results achieved for ex-
plicit multithreaded processors.

ACKNOWLEDGMENTS

The authors would like to thank anonymous review-
ers for many valuable comments.

REFERENCES

AGARWAL, A., BIANCHINI, R., CHAIKEN, D., JOHNSON,
K. L., KRANZ, D., KUBIATOWICZ, J., LIM, B. H.,
MACKENZIE, K., AND YEUNG, D. 1995. The MIT
Alewife machine: architecture and performance.
In Proceedings of the 22nd Annual International
Symposium on Computer Architecture (Santa
Margherita Ligure, Italy). 2–13.

AGARWAL, A., KUBIATOWICZ, J., KRANZ, D., LIM, B. H.,
YEOUNG, D., D’SOUZA, G., AND PARKIN, M. 1993.
Sparcle: an evolutionary processor design for
large-scale multiprocessors. IEEE Micro 13, 3,
48–61.

AKKARY, H. AND DRISCOLL, M. A. 1998. A dynamic
multithreading processor. In Proceedings of
the 31st Annual International Symposium on
Microarchitecture (Dallas, TX). 226–236.

ALLEN, F., ALMASI, G., ANDREONI, W., BEECE, D., BERNE,
B. J., BRIGHT, A., BRUNHEROTO, J., CASCAVAL, C.,
CASTANOS, J., COTEUS, P., CRUMLEY, P., CURIONI, A.,
DENNEAU, M., DONATH, W., ELEFTHERIOU, M.,
FITCH, B., FLEISCHER, B., GEORGIOU, C. J.,
GERMAIN, R., GIAMPAPA, M., GRESH, D., GUPTA, M.,
HARING, R., HO, H., HOCHSCHILD, P.,
HUMMEL, S., JONAS, T., LIEBER, D., MARTYNA, G.,

MATURU, K., MOREIRA, J., NEWNS, D., NEWTON, M.,
PHILHOWER, R., PICUNKO, T., PITERA, J.,
PITMAN, M., RAND, R., ROYYURU, A.,
SALAPURA, V., SANOMIYA, A., SHAH, R., SHAM,
Y., SINGH, S., SNIR, M., SUITS, F., SWETZ, R.,
SWOPE, W. C., VISHNUMURTHY, N., WARD, T. C. J.,
WARREN, H., AND ZHOU, R. 2001. Blue Gene:
a vision for protein science using a petaflops
supercomputer. IBM Syst. J. 40, 2, 310–326.

ALMASI, G. S. AND GOTTLIEB, A. 1994. Highly Par-
allel Computing, 2nd ed. Benjamin/Cummings,
Menlo Park, CA.

ALVERSON, G., KAHAN, S., KORRY, R., MCCANN, C., AND

SMITH, B. J. 1995. Scheduling on the Tera
MTA. In Lecture Notes in Computer Science,
vol. 949. Springer-Verlag, Heidelberg, Germany.
19–44.

ALVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ,
B., PORTERFIELD, A., AND SMITH, B. J. 1990.
The Tera computer system. In Proceedings of
the 4th International Conference on Supercom-
puting (Amsterdam, The Netherlands). 1–6.

BACH, P., BRAUN, M., FORMELLA, A., FRIEDRICH, J., GRÜN,
T., AND LINCHTENAU, C. 1997. Building the 4
processor SB-PRAM prototype. In Proceedings
of the 30th Hawaii International Conference on
System Science (Maui, HI). 5:14–23.

BARROSO, L. A., GHARACHORLOO, K., MCNAMARA, R.,
NOWATZYK, A., QADEER, S., SANO, B., SMITH, S.,
STETS, R., AND VERGHESE, B. 2000. Piranha: a
scalable architecture based on single-chip mul-
tiprocessing. In Proceedings of the 27th Annual
International Symposium on Computer Architec-
ture (Vancouver, B.C., Canada). 282–293.

BOLYCHEVSKY, A., JESSHOPE, C. R., AND MUCHNIK, V. B.
1996. Dynamic scheduling in RISC architec-
tures. IEE P. Comput. Dig. Tech. 143, 5, 309–317.

BOOTHE, R. F. 1993. Evaluation of multithreading
and caching in large shared memory parallel
computers. Tech. Rep. UCB/CSD-93-766. Com-
puter Science Division, University of California,
Berkeley, Berkeley, CA.

BOOTHE, R. F. AND RANADE, A. 1992. Improved mul-
tithreading techniques for hiding communica-
tion latency in multiprocessors. In Proceedings of
the 19th International Symposium on Computer
Architecture (Gold Coast, Australia). 214–223.

BORKENHAGEN, J. M., EICKEMEYER, R. J., KALLA, R. N.,
AND KUNKEL, S. R. 2000. A multithreaded
PowerPC processor for commercial servers. IBM
J. Res. Dev. 44, 6, 885–898.

BRINKSCHULTE, U., BECHINA, A., PICIOROAGA, F.,
SCHNEIDER, E., UNGERER, T., KREUZINGER, J., AND

PFEFFER, M. 2000. A microkernel middleware
architecture for distributed embedded real-time
systems. In Proceedings of the 20th IEEE Sym-
posium on Reliable Distributed Systems (New
Orleans LA). 218–226.

BRINKSCHULTE, U., KRAKOWSKI, C., KREUZINGER, J.,
AND UNGERER, T. 1999a. A multithreaded
Java microcontroller for thread-oriented real-
time event-handling. In Proceedings of the

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

60 Ungerer et al.

International Conference on Parallel Architec-
tures and Compilation Techniques (Newport
Beach, CA). 34–39.

BRINKSCHULTE, U., KRAKOWSKI, C., MARSTON, R.,
KREUZINGER, J., AND UNGERER, T. 1999b. The
Komodo project: thread-based event handling
supported by a multithreaded Java microcon-
troller. In Proceedings of the 25th Euromicro
Conference (Milan, Italy). 122–128.

BRINKSCHULTE, U., KREUZINGER, J., PFEFFER, M.,
AND UNGERER, T. 2002. A scheduling tech-
nique providing a strict isolation of real-time
threads. In Proceedings of the 7th IEEE In-
ternational Workshop on Object-oriented Real-
time Dependable Systems (San Diego, CA). 169–
172.

BROOKS, D. M., BOSE, P., SCHUSTER, S. E., JACOBSON, H.,
KUDVA, P. N., BUYUKTOSUNOGLU, A., WELLMAN, J. D.,
ZYUBAN, V., GUPTA, M., AND COOK, P. W. 2000.
Power-aware microarchitecture: designing and
modeling challenges for next-generation micro-
processors. IEEE Micro 20, 6, 26–44.

BURNS, J. AND GAUDIOT, J. L. 2002. SMT layout
overhead and scalability. IEEE T. Parall. Distr.
Syst. 13, 2, 142–155.

BUTLER, M., YEH, T. Y., PATT, Y. N., ALSUP, M., SCALES,
H., AND SHEBANOW, M. 1991. Single instruction
stream parallelism is greater than two. In Pro-
ceedings of the 18th International Symposium on
Computer Architecture (Toronto, Ont., Canada).
276–286.

CHAPPELL, R. S., STARK, J., KIM, S. P., REINHARDT, S. K.,
AND PATT, Y. N. 1999. Simultaneous subordi-
nate microthreading (SSMT). In Proceedings of
the 26th Annual International Symposium on
Computer Architecture (Atlanta, GA). 186–195.

CHRYSOS, G. Z. AND EMER, J. S. 1998. Memory de-
pendence prediction using store sets. In Pro-
ceedings of the 25th Annual International Sym-
posium on Computer Architecture (Barcelona,
Spain). 142–153.

CULLER, D. E., SINGH, J. P., AND GUPTA, A.
1998. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan
Kaufmann, San Francisco, CA.

DALLY, W. J., FISKE, J., KEEN, J., LETHIN, R., NOAKES, M.,
NUTH, P., DAVISON, R., AND FYLER, G. 1992. The
message-driven processor: a multicomputer pro-
cessing node with efficient mechanisms. IEEE
Micro 12, 2, 23–39.

DENNIS, J. B. AND GAO, G. R. 1994. Multithreaded
architectures: principles, projects, and issues. In
Multithreaded Computer Architecture: A Sum-
mary of the State of the Art, R. A. Iannucci, G. R.
Gao, R. Halstead, and B. J. Smith, Eds. Kluwer
Boston, MA, Dordrecht, The Netherlands,
London, U.K. 1–74.

DOROJEVETS, M. 2000. COOL multithreading in
HTMT SPELL-1 processors. Int. J. High Speed
Electron. Sys. 10, 1, 247–253.

DOROZHEVETS, M. N. AND WOLCOTT, P. 1992. The
El’brus-3 and MARS-M: recent advances in Rus-

sian high-performance computing. J. Supercom-
put. 6, 1, 5–48.

DUBEY, P. K., O’BRIEN, K., O’BRIEN, K. M., AND

BARTON, C. 1995. Single-program speculative
multithreading (SPSM) architecture: compiler-
assisted fine-grain multithreading. Tech. Rep.
RC 19928. IBM, Yorktown Heights, NY.

EGGERS, S. J., EMER, J. S., LEVY, H. M., LO, J. L., STAMM,
R. M., AND TULLSEN, D. M. 1997. Simultaneous
multithreading: a platform for next-generation
processors. IEEE Micro 17, 5, 12–19.

EMER, J. S. 1999. Simultaneous multithreading:
multiplying Alpha’s performance. In Proceed-
ings of the Microprocessor Forum (San Jose, CA).

ESPASA, R. AND VALERO, M. 1997. Exploiting
instruction- and data-level parallelism. IEEE
Micro 17, 5, 20–27.

FILLO, M., KECKLER, S. W., DALLY, W. J., CARTER,
N. P., CHANG, A., AND GUREVICH, Y. 1995. The
M-machine multicomputer. In Proceedings of
the 28th Annual International Symposium on
Microarchitecture (Ann Arbor, MI). 146–
156.

FORMELLA, A., KELLER, J., AND WALLE, T. 1996. HPP:
A high performance PRAM. In Lecture Notes
in Computer Science, vol. 1123. Springer-Verlag,
Heidelberg, Germany. 425–434.

FRANKLIN, M. 1993. The multiscalar architec-
ture. Tech. Rep. 1196. Department of Com-
puter Science, University of Wisconsin-Madison,
Madison, WI.

FUHRMANN, S., PFEFFER, M., KREUZINGER, J.,
UNGERER, T., AND BRINKSCHULTE, U. 2001. Real-
time garbage collection for a multithreaded Java
microcontroller. In Proceedings of the 4th IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing (Magdeburg,
Germany). 69–76.

GELINAS, B., HAYS, P., AND KATZMAN, S. 2002. Fine-
grained hardware multi-threading: A CPU ar-
chitecture for high-touch packed processing.
Lexra Inc., Waltham, MA. White paper.

GLASKOWSKY, P. N. 2002. Network processors ma-
ture in 2001. Microproc. Report. February 19,
2002 (online journal).

GRÜNEWALD, W. AND UNGERER, T. 1996. Towards ex-
tremely fast context switching in a blockmulti-
threaded processor. In Proceedings of the 22nd
Euromicro Conference (Prague, Czech Republic).
592–599.

GRÜNEWALD, W. AND UNGERER, T. 1997. A mul-
tithreaded processor designed for distributed
shared memory systems. In Proceedings of the
International Conference on Advances in Par-
allel and Distributed Computing (Shanghai,
China). 206–213.

GULATI, M. AND BAGHERZADEH, N. 1996. Perfor-
mance study of a multithreaded superscalar
microprocessor. In Proceedings of the 2nd In-
ternational Symposium on High-Performance
Computer Architecture (San Jose, CA). 291–
301.

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 61

GWENNAP, L. 1997. DanSoft develops VLIW de-
sign. Microproc. Report 11, 2 (Feb. 17), 18–22.

HALSTEAD, R. H. 1985. MULTILISP: a language for
concurrent symbolic computation. ACM Trans.
Program. Lang. Syst. 7, 4, 501–538.

HALSTEAD, R. H. AND FUJITA, T. 1988. MASA: a mul-
tithreaded processor architecture for parallel
symbolic computing. In Proceedings of the 15th
International Symposium on Computer Architec-
ture (Honolulu, HI). 443–451.

HAMMOND, L. AND OLUKOTUN, K. 1998. Considera-
tions in the design of Hydra: a multiprocessor-
on-chip microarchitecture. Tech. Rep. CSL-TR-
98-749. Computer Systems Laboratory, Stanford
University, Stanford, CA.

HANSEN, C. 1996. MicroUnity’s MediaProcessor
architecture. IEEE Micro 16, 4, 34–41.

HIRATA, H., KIMURA, K., NAGAMINE, S., MOCHIZUKI,
Y., NISHIMURA, A., NAKASE, Y., AND NISHIZAWA,
T. 1992. An elementary processor architec-
ture with simultaneous instruction issuing
from multiple threads. In Proceedings of the
19th International Symposium on Computer
Architecture (Gold Coast, Australia). 136–
145.

IANNUCCI, R. A., GAO, G. R., HALSTEAD, R., AND

SMITH, B. J., Eds. 1994. Multithreaded Com-
puter Architecture: A Summary of the State
of the Art. Kluwer Boston, MA, Dordrecht,
The Netherlands, London, U.K.

IBM CORPORATION. 1999. IBM network processor.
Product overview. IBM, Yorktown Heights, NY.

INTEL CORPORATION. 2002. Intel Internet exchange
architecture network processors: flexible, wire-
speed processing from the customer premises
to the network core. White paper. Intel, Santa
Clara, CA.

JESSHOPE, C. R. 2001. Implementing an efficient
vector instruction set in a chip multi-processor
using micro-threaded pipelines. Aust. Comput.
Sci. Commun. 23, 4, 80–88.

JESSHOPE, C. R. AND LUO, B. 2000. Micro-threading:
a new approach to future RISC. In Proceedings
of the Australasian Computer Architecture Con-
ference (Canbera, Australia). 34–41.

KAVI, K. M., LEVINE, D. L., AND HURSON, A. R. 1997.
A non-blocking multithreaded architecture. In
Proceedings of the 5th International Conference
on Advanced Computing (Madras, India). 171–
177.

KLAUSER, A., AUSTIN, T., GRUNWALD, D., AND CALDER,
B. 1998a. Dynamic hammock predication for
non-predicated instruction sets. In Proceedings
of the International Conference on Parallel Ar-
chitectures and Compilation Techniques (Paris,
France). 278–285.

KLAUSER, A., PAITHANKAR, A., AND GRUNWALD, D.
1998b. Selective eager execution on the
PolyPath architecture. In Proceedings of the
25th Annual International Symposium on
Computer Architecture (Barcelona, Spain).
250–259.

KREUZINGER, J., SCHULZ, A., PFEFFER, M., UNGERER,
T., BRINKSCHULTE, U., AND KRAKOWSKI, C. 2000.
Real-time scheduling on multithreaded proces-
sors. In Proceedings of the 7th International Con-
ference on Real-Time Computer Systems and Ap-
plications (Cheju Island, South Korea). 155–159.

KREUZINGER, J. AND UNGERER, T. 1999. Context-
switching techniques for decoupled multi-
threaded processors. In Proceedings of the 25th
Euromicro Conference (Milan, Italy). 1:248–
251.

LAM, M. S. AND WILSON, R. P. 1992. Limits of con-
trol flow on parallelism. In Proceedings of the
18th International Symposium on Computer Ar-
chitecture (Toronto, Ont., Canada). 46–57.

LAUDON, J., GUPTA, A., AND HOROWITZ, M. 1994. In-
terleaving: a multithreading technique target-
ing multiprocessors and workstations. In Pro-
ceedings of the 6th International Conference on
Architectural Support for Programming Lan-
guages and Operating Systems (San Jose, CA).
308–318.

LAWSON, S. AND VANCE, A. 2002. Sun hints at
UltraSparc V and beyond. Available online at
PC World.com.

LI, Z., TSAI, J. Y., WANG, X., YEW, P. C., AND

ZHENG, B. 1996. Compiler techniques for con-
current multithreading with hardware specu-
lation support. In Lecture Notes in Computer
Science, vol. 1239. Springer-Verlag, Heidelberg,
Germany. 175–191.

LIPASTI, M. H. AND SHEN, J. P. 1997. The per-
formance potential of value and dependence
prediction. In Lecture Notes Computer Sci-
ence, vol. 1300. Springer-Verlag, Heidelberg,
Germany. 1043–1052.

LIPASTI, M. H., WILKERSON, C. B., AND SHEN, J. P.
1996. Value locality and load value prediction.
In Proceedings of the 7th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (Cambridge,
MA). 138–147.

LO, J. L., BARROSO, L. A., EGGERS, S. J., GHARACHORLOO,
K., LEVY, H. M., AND PAREKH, S. S. 1998. An
analysis of database workload performance on
simultaneous multithreaded processors. In Pro-
ceedings of the 25th Annual International Sym-
posium on Computer Architecture (Barcelona,
Spain). 39–50.

LO, J. L., EGGERS, S. J., EMER, J. S., LEVY, H. M., STAMM,
R. L., AND TULLSEN, D. M. 1997. Converting
thread-level parallelism to instruction-level par-
allelism via simultaneous multithreading. ACM
Trans. Comput. Syst. 15, 3, 322–354.

LOIKKANEN, M. AND BAGHERZADEH, N. 1996. A fine-
grain multithreading superscalar architecture.
In Proceedings of the International Conference
on Parallel Architectures and Compilation Tech-
niques (Boston, MA). 163–168.

LÜTH, K., METZNER, A., PIEKENKAMP, T., AND RISU, J.
1997. The events approach to rapid prototyp-
ing for embedded control system. In Proceedings

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

62 Ungerer et al.

of the Workshop Zielarchitekturen eingebetteter
Syststeme (Rostock, Germany). 45–54.

MANKOVIC, T. E., POPESCU, V., AND SULLIVAN, H. 1987.
CHoPP priciples of operations. In Proceedings of
the 2nd International Supercomputer Conference
(Mannheim, Germany). 2–10.

MARCUELLO, P., GONZALES, A., AND TUBELLA, J. 1998.
Speculative multithreaded processors. In
Proceedings of the 12th International Confer-
ence on Supercomputing (Melbourne, Australia).
77–84.

MARR, D. T., BINNS, F., HILL, D. L., HINTON, G.,
KOUFATY, D. A., MILLER, J. A., AND UPTON,
M. 2002. Hyper-threading technology archi-
tecture and microarchitecture: a hypertext his-
tory. Intel Technology J. 6, 1 (online journal).

METZNER, A. AND NIEHAUS, J. 2000. MSparc: multi-
threading in real-time architectures. J. Univer-
sal Comput. Sci. 6, 10, 1034–1051.

MIKSCHL, A. AND DAMM, W. 1996. Msparc: a multi-
threaded Sparc. In Lecture Notes in Computer
Science, vol. 1123. Springer-Verlag, Heidelberg,
Germany. 461–469.

OEHRING, H., SIGMUND, U., AND UNGERER, T. 1999a.
MPEG-2 video decompression on simultaneous
multithreaded multimedia processors. In Pro-
ceedings of the International Conference on Par-
allel Architectures and Compilation Techniques
(Newport Beach, CA). 11–16.

OEHRING, H., SIGMUND, U., AND UNGERER, T. 1999b.
Simultaneous multithreading and multimedia.
In Proceedings of the Workshop on Multithreaded
Execution, Architecture and Compilation
(Orlando, FL).

PATT, Y. N., PATEL, S. J., EVERS, M., FRIENDLY, D. H.,
AND STARK, J. 1997. One billion transistors,
one uniprocessor, one chip. Computer 30, 9, 51–
57.

PAUL, W. J., BACH, P., BOSCH, M., FISCHER, J.,
LICHTENAU, C., AND RÖHRIG, J. 2002. Real
PRAM programming. In Lecture Notes in
Computer Science, vol. 2400. Springer-Verlag,
Heidelberg, Germany. 522–531.

PONTIUS, N. AND BAGHERZADEH, N. 1999. Multi-
threaded extensions enhance multimedia perfor-
mance. In Proceedings of the Workshop on Mul-
tithreaded Execution, Architecture and Compila-
tion (Orlando, FL).

ROTENBERG, E., JACOBSON, Q., SAZEIDES, Y., AND SMITH,
J. E. 1997. Trace processors. In Proceedings
of the 30th Annual International Symposium on
Microarchitecture (Research Triangle Park, NC).
138–148.

RYCHLIK, B., FAISTL, J., KRUG, B., AND SHEN, J. P.
1998. Efficiency and performance impact of
value prediction. In Proceedings of the Inter-
national Conference on Parallel Architectures
and Compilation Techniques (Paris, France).
148–154.

SENG, J. S., TULLSEN, D. M., AND CAI, G. Z. N. 2000.
Power-sensitive multithreaded architecture. In
Proceedings of the IEEE International Confer-

ence on Computer design: VLSI in Computers
and Processors (Austin, TX). 199–206.

SERRANO, M. J., YAMAMOTO, W., WOOD, R., AND

NEMIROVSKY, M. D. 1994. Performance estima-
tion in a multistreamed superscalar proces-
sor. In Lecture Notes in Computer Science,
vol. 794. Springer-Verlag, Heidelberg, Germany.
213–230.

SIGMUND, U., STEINHAUS, M., AND UNGERER, T. 2000.
Transistor count and chip space assessment
of multimedia-enhanced simultaneous multi-
threaded processors. In Proceedings of the 4th
Workshop on Multithreaded Execution, Architec-
ture and Compilation (Monterrey, CA).

SIGMUND, U. AND UNGERER, T. 1996a. Evaluating a
multithreaded superscalar microprocessor ver-
sus a multiprocessor chip. In Proceedings of the
4th PASA Workshop on Parallel Systems and
Algorithms (Jülich, Germany). 147–159.

SIGMUND, U. AND UNGERER, T. 1996b. Identifying
bottlenecks in multithreaded superscalar multi-
processors. In Lecture Notes in Computer Sci-
ence, vol. 1123. Springer-Verlag, Heidelberg,
Germany. 797–800.

ŠILC, J., ROBIČ, B., AND UNGERER, T. 1998. Asyn-
chrony in parallel computing: from dataflow
to multithreading. Parall. Distr. Comput. Prac-
tices 1, 1, 57–83.

ŠILC, J., ROBIČ, B., AND UNGERER, T. 1999. Processor
Architecture: From Dataflow to Superscalar and
Beyond. Springer-Verlag, Heidelberg and Berlin,
Germany, and New York, NY.

SMITH, B. J. 1981. Architecture and applications of
the HEP multiprocessor computer system. SPIE
Real-Time Signal Processing IV 298, 241–248.

SMITH, B. J. 1985. The architecture of hep. In Par-
allel MIMD Computation: HEP Supercomputer
and Its Applications, J. S. Kowalik, Ed. MIT
Press, Cambridge, MA, 41–55.

SMITH, J. E. AND VAJAPEYAM, S. 1997. Trace proces-
sors: moving to fourth-generation microarchitec-
tures. Computer 30, 9, 68–74.

SOHI, G. S. 1997. Multiscalar: another fourth-
generation processor. Computer 30, 9, 72.

SOHI, G. S. 2001. Microprocessors—10 years back,
10 years ahead. In Lecture Notes in Computer
Science, vol. 2000. Heidelberg, Germany. 208–
218.

SOHI, G. S., BREACH, S. E., AND VIJAYKUMAR, T. N.
1995. Multiscalar processors. In Proceedings
of the 22nd Annual International Symposium
on Computer Architecture (Santa Margherita
Ligure, Italy). 414–425.

STEINHAUS, M., KOLLA, R., LARRIBA-PEY, J. L., UNGERER,
T., AND VALERO, M. 2001. Transistor count and
chip space estimation of simple-scalar-based mi-
croprocessor models. In Proceedings of the Work-
shop on Complexity-Effective Design (Göteborg,
Sweden).

STERLING, T. 1997. Beyond 100 teraflops through
superconductors, holographic storage, and the

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

Survey of Processors with Explicit Multithreading 63

data vortex. In Proceedings of the International
Symposium on Supercomputing (Tokyo, Japan).

TENDLER, J. M., DODSON, J. S., FIELDS, JR., J. S., LE,
H., AND SINHAROY, B. 2002. POWER4 system
microarchitecture. IBM J. Res. Dev. 46, 1, 5–26.

TEXAS INSTRUMENTS. 1994. TMS320C80 Technical
brief. Texas Instruments, Dallas, TX.

THISTLE, M. AND SMITH, B. J. 1988. A processor ar-
chitecture for Horizon. In Proceedings of the Su-
percomputing Conference (Orlando, FL). 35–41.

TREMBLAY, M. 1999. A VLIW convergent multipro-
cessor system on a chip. In Proceedings of the
Microprocessor Forum (San Jose, CA).

TREMBLAY, M., CHAN, J., CHAUDHRY, S., CONIGLIARO,
A. W., AND TSE, S. S. 2000. The MAJC archi-
tecture: a synthesis of parallelism and scalabil-
ity. IEEE Micro 20, 6, 12–25.

TSAI, J. Y. AND YEW, P. C. 1996. The superthreaded
architecture: thread pipelining with run-time
data dependence checking and control specula-
tion. In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation
Techniques (Boston, MA). 35–46.

TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY, H. M.,
LO, J. L., AND STAMM, R. L. 1996. Exploiting
choice: instruction fetch and issue on an imple-
mentable simultaneous multithreading proces-
sor. In Proceedings of the 23rd Annual Inter-
national Symposium on Computer Architecture
(Philadelphia, PA). 191–202.

TULLSEN, D. M., EGGERS, S. J., AND LEVY, H. M. 1995.
Simultaneous multithreading: maximizing on-
chip parallelism. In Proceedings of the 22nd
Annual International Symposium on Computer
Architecture (Santa Margherita Ligure, Italy).
392–403.

TULLSEN, D. M., LO, J. L., EGGERS, S. J., AND LEVY,
H. M. 1999. Supporting fine-grained synchro-
nization on a simultaneous multithreading pro-
cessor. In Proceedings of the 5th International

Symposium on High-Performance Computer
Architecture (Orlando, FL). 54–58.

UNGERER, T., ROBIČ, B., AND ŠILC, J. 2002. Multi-
threaded processors. Computer J. 45, 3, 320–348.

VAJAPEYAM, S. AND MITRA, T. 1997. Improving su-
perscalar instruction dispatch and issue by ex-
ploiting dynamic code sequences. In Proceedings
of the 24th Annual International Symposium on
Computer Architecture (Denver, CO). 1–12.

VIJAYKUMAR, T. N. AND SOHI, G. S. 1998. Task selec-
tion for a multiscalar processor. In Proceedings
of the 31st Annual International Symposium on
Microarchitecture (Dallas, TX). 81–92.

WALL, D. W. 1991. Limits of instruction-level par-
allelism. In Proceedings of the 4th International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems
(Santa Clara, CA). 176–188.

WALLACE, S., CALDER, B., AND TULLSEN, D. M. 1998.
Threaded multiple path execution. In Proceed-
ings of the 25th Annual International Sym-
posium on Computer Architecture (Barcelona,
Spain). 238–249.

WALLACE, S., TULLSEN, D. M., AND CALDER, B. 1999.
Instruction recycling on a multiple-path proces-
sor. In Proceedings of the 5th International Sym-
posium on High-Performance Computer Archi-
tecture (Orlando, FL). 44–53.

WITTENBURG, J. P., MEYER, G., AND PIRSCH, P. 1999.
Adapting and extending simultaneous multi-
threading for high performance video signal pro-
cessing applications. In Proceedings of the Work-
shop on Multithreaded Execution, Architecture
and Compilation (Orlando, FL).

YAMAMOTO, W. AND NEMIROVSKY, M. D. 1995. In-
creasing superscalar performance through mul-
tistreaming. In Proceedings of the Interna-
tional Conference on Parallel Architectures and
Compilation Techniques (Limassol, Cyprus).
49–58.

Received June 2001; revised September 2002; accepted November 2002

ACM Computing Surveys, Vol. 35, No. 1, March 2003.

