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ABSTRACT 
This paper describes the next generation of Intel Internet 
eXchange Processors (IXPs).  The IXP family of network 
processors is growing with the addition of three new parts.  
This paper focuses on the high-end IXP2800.  The 
IXP2800 is capable of 10Gb/s ATM, OC-192 POS, or 
Ethernet data processing.  The IXP2400 is a sibling and is 
capable of sustained OC-48 or Quad Gigabit Ethernet data 
processing.  The third new member of the family is the 
IXP440, which is a Customer Premise Equipment (CPE) 
class device.  The IXP2800 and IXP2400 share the 
architectural chassis, major functional units and software 
programming model, as well as the same instruction set. 

This paper covers system architecture, micro-architecture, 
and functional unit characteristics, and provides insights 
into the challenges of processing an incoming cell or 
packet every 35ns. Special attention is paid to the problem 
of enqueuing and dequeuing onto and from a linked list 
that is maintained in external memory. The challenge is 
that cell and packet arrival rates are approaching the 
external memory access latencies.  

Finally, this paper concludes with future directions for the 
IXP family. 

INTRODUCTION 
The IXP1200 is the first member of the IXP network 
processor family. It has been designed into over 200 
products at a wide range of companies and market 
segments. Introduced in 1999, it provided OC-12 or 
Gigabit Ethernet packet processing capability.  The 
IXP2800 and IXP2400 leverage many learnings from the 
experiences of the IXP1200.  In particular, refining the 
computational needs and memory access bandwidths 
required at different incoming line rates has led to 
providing both  

 

greater computational capability and memory bandwidth.  
The IXP2800 provides over 23,000 MIPs, the IXP2400 
4800 MIPs, and the IXP1200 1200 MIPs.  

There are many competing approaches to network 
processing.  One approach is through dedicated hardware 
state machines with configurability, or minimal software 
programming capability.  Another approach is through 
very high-performance microprocessors that are provided 
with a very flexible software programming capability.  
The IXP family employs the flexible software approach, 
with state-of-the-art compilers and debuggers.  This 
allows the IXP to address many market segments and 
allows our customers to develop a base hardware platform 
that they can then use in different applications.  
Additionally, by providing a flexible software platform, 
customers can download features and capabilities to 
enhance product lifespans and product experiences. 

The first section of this paper describes three system 
architectures using the IXP2800.  It is interesting to note 
that the system architectures detailed may also be applied 
to the IXP2400, albeit at a lower incoming cell or packet 
rate. 

The second section focuses on the internal architecture of 
the IXP2800.  The chassis, or the interconnection between 
the different functional units, will be described, as well as 
the major functional units. 

The third section provides details on the microengine, 
which is the processor arrayed in either 16 instantiations 
for the IXP2800 or eight instantiations for the IXP2400.  

The challenges of packet or cell processing at 10 gigabits 
per second are then described along with the solution 
employed by the IXP2800.  Then flexibility versus 
software complexity is discussed.  The paper concludes 
with a discussion of the future directions of the IXP high-
end processor. 



Intel Technology Journal Vol. 6 Issue 3, 2002. 

The Next Generation of Intel IXP Network Processors 7
  

IXP2800 SYSTEM EXAMPLES 
Many system architectures are possible employing the 
IXP2800.   This section details three configurations of 
IXP2800 processors supporting various switching 
applications.   

Metro-LAN 10 Gigabit Ethernet Switching or 
OC-192 Packet over SONET Switching Blade 
In this system architecture, two IXP2800 network 
processors are used (Figure 1).  The top IXP2800 is used 
for ingress processing.  Ingress processing tasks may 
include classification, metering, policing, congestion 
avoidance, statistics, segmentation, and traffic scheduling 
into a switching fabric. The bottom IXP2800 is used for 
egress processing.  Egress processing tasks may similarly 
include reassembly, congestion avoidance, statistics, and 
traffic shaping.  Both input and output buffering are 
supported using small DRAM buffers linked together by 
linked lists maintained in SRAM. 
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Figure 1: Metro-LAN 10 Gigabit Ethernet switching 
or OC-192 Packet over SONET configuration 

The framer interfaces to the two IXP2800 network 
processors using the interface defined by the Optical 
Internetworking Forum SPI-4.2 Implementation 
Agreement.  The fabric interfaces to the two IXP2800 
network processors using the Common Switch Interface 
Specification-L1 (CSIX-L1) protocol implemented on top 
of the SPI-4.2 physical signaling.  The ingress and egress 
network processors present a single full-duplex interface 
to the fabric, as if they were a single chip. 

Packets are streamed into the ingress IXP2800 at or above 
line rate.  The processing of a packet begins upon receipt 

of the initial part.  The parts of a packet are received, 
reassembled, processed, buffered into DRAM, and 
enqueued for transmission into the fabric.  Subsequently, 
the packet is scheduled and transmitted into the fabric to 
be processed by an egress IXP2800.  The egress IXP2800 
reassembles the packet in DRAM and queues the packet 
for outgoing transmission.  Subsequently, the packet is 
transmitted out the egress framer.  At both the ingress 
IXP2800 and the egress IXP2800, packet data is written 
to and read from DRAM only a single time.  The DRAM 
interface constists of three Rambus DRAM (RDRAM) 
channels operating at a clock rate of up to 533MHz, 
offering an aggregate peak bandwidth of 51Gb/s. 

At a maximum packet rate of approximately 15 million 
packets per second for 10 Gigabit Ethernet, the IXP2800 
supports a service time of 8.53 usec per packet for receive 
and transmit processing by distributing the processing 
across 128 different computation threads.  The IXP2800 
can support the execution of up to 1493 microengine 
instructions per packet (93 instructions per microengine * 
16 microengines) at this packet rate and a clock rate of 
1.4GHz.  

At a maximum packet rate of approximately 28 million 
packets per second for OC-192 Packet over SONET, the 
IXP2800 supports a service time of 4.57 usec per packet 
for receive and transmit.  The IXP2800 can support the 
execution of up to 800 microengine instructions per 
packet at this packet rate and a clock rate of 1.4GHz.  

The IXP2800 supports four QDR II SRAM interfaces that 
may be clocked at up to 250MHz.  Each interface supports 
an independent read and write port, providing an 
aggregate read rate of 32Gb/s and, simultaneously, an 
aggregate write rate of 32Gb/s.  These interfaces may be 
used to access SRAM.  Additionally, Ternary Content 
Adressable Memories (TCAM), which support the same 
interface, are becoming available. 

Classification may be performed using TRIE data 
structures in SRAM, hashing and collision resolution in 
SRAM, and/or TCAM tables. 

At 15 million packets per second, the IXP2800 provides 
for 64 read and 64 write SRAM references per packet.  At 
28 million packets per second, the IXP2800 provides for 
32 read and 32 write SRAM references per packet.  The 
references may be used for network address lookup, multi-
tuple classification, policing, packet or buffer descriptors, 
queuing, statistics, and scheduling.  The IXP2800 
supports an aggregate rate in excess of 60 million queue 
operations per second on one or multiple queues. The 
number of queues that an IXP2800 supports is limited 
only by the available SRAM capacity, not by any on-chip 
resource limit.  Tables 1 and 2 depict a possible allocation 
of SRAM bandwidth. 



Intel Technology Journal Vol. 6 Issue 3, 2002. 

The Next Generation of Intel IXP Network Processors 8
  

Table 1: Ingress possible allocation of SRAM 
references 

Function QDR 
Reads 

QDR 
Writes 

Destination address TRIE 
route lookup 

7  

7-tuple TCAM rule lookup 1 5 

Buffer descriptor 2 2 

Queue and freelist linked-list 
operations 

6 6 

Metering 3 3 

Congestion avoidance 
(WRED) 

5 4 

Per-rule statistics 2 2 

Per (min-size) packet totals 26 22 

Table 2: Egress possible allocation of SRAM 
references 

Function QDR 
Reads 

QDR 
Writes 

Reassembly context 2 2 

7-tupple TCAM rule lookup 1 5 

Buffer descriptor 2 2 

Queue and freelist linked-list 
operations 

6 6 

Congestion avoidance 
(WRED) 

5 4 

Per-rule statistics 2 2 

Per (min-size) packet totals 18 21 

 

Varying product requirements will increase or decrease 
the allocation of SRAM references per packet.  For 
instance, incorporating ATM segmentation and 
reassembly into the processing flow will add a couple of 
read and write references on ingress and egress.  A 
balanced system design will try to balance the 
consumption of resources across ingress and egress 
processors. 

This configuration represents a cost-effective and 
extremely flexible approach to basic packet processing at 
10Gb/s rates. 

10GB/S MULTI-SERVICE SWITCH 
BLADE 
In this system architecture, three IXP2800 network 
processors are used (Figure 2).  The ingress processing is 
distributed across two IXP2800 network processors. 
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Figure 2: 10Gb/s multi-service configuration 

The egress processing is accomplished with a single 
IXP2800, as in the prior configuration. 

The distinguishing characteristic about this configuration 
is the division of labor between the 1st and 2nd ingress 
IXP2800 processors.  The configuration is intended to 
support broadly varying rates of packet processing while 
maintaining expected aggregate throughput rates. 

The 1st ingress IXP2800 is responsible for transferring 
received packet pieces into contiguous ring buffers in 
DRAM, as they are received, with minimal processing.  
Multiple rings may be supported, with the destination ring 
identified by minimal packet classification.  These rings 
provide for an elasticity buffer to allow for varying rates 
of packet processing performed subsequent to the storage 
of the packets in DRAM.  The size of the rings may vary, 
based upon the expected arrival rate of the packets and the 
elasticity requirements.  Maintenance of the rings requires 
minimal SRAM accesses but does require static allocation 
of memory per ring.  The smallest configuration of 
DRAM that supports the maximum bandwidth (3 DRAM 
components) supports 96 mega-bytes of storage. 
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Smaller rings in SRAM shadow the rings in DRAM.  The 
entries in the SRAM rings provide status regarding the 
processing of the packet and information to pass on to the 
2nd ingress IXP2800 for final processing.  Upon 
completion of the processing of a packet in the 1st ingress 
IXP2800, the status is updated.  Earlier packets may 
complete processing subsequently, but the ring insures in-
order forwarding to the 2nd ingress IXP2800, as the 
packets are fetched from the ring in-order and only after 
they complete processing. 

As packet-processing threads become available, a 
scheduling decision is made in software regarding which 
rings should be serviced.  Threads read sufficient parts of 
packets in DRAM to process the packets.  Threads may 
take an arbitrary time to complete processing of the 
packet, subject to the elasticity provided by the DRAM 
buffering and the average packet arrival rate.  Separately, 
as Transmit Buffer (TBUF) elements become available, 
the status of the rings is polled to forward packets to the 
2nd ingress IXP2800. 

The 1st ingress IXP2800 is best suited to performing 
multi-level, multi-protocol packet classification and 
editing.  By design, most of the SRAM bandwidth is 
available for classification.  Update of flow-specific or 
queue-specific state, including statistics, is deferred until 
the 2nd ingress IXP2800.  A digest is forwarded with the 
packet that describes such state as needs updating.  (The 
bandwidth available through the SPI-4.2 physical interface 
approaches 20Gb/s, accommodating the increased payload 
per packet.) 

The 2nd ingress IXP2800 receives packets with no packet 
interleaving or limited packet interleaving, reducing the 
accesses to SRAM to reassemble the packets.  All 
classification processing has been completed.  The 2nd 
ingress IXP2800 is responsible for any remaining 
metering and policing, statistics, queuing and buffering, 
congestion avoidance, and transmit scheduling into the 
fabric. 

By design, the division of labor between the 1st and 2nd 
ingress processor distributes the use of SRAM bandwidth 
across the two processors.  The 1st ingress IXP2800 
supports nearly arbitrary processing times, while 
maintaining the order of packets within categories (rings).  
The 2nd ingress IXP2800 updates shared state in-order.   
The egress IXP2800 operates exactly as described in the 
prior configuration that also uses a single egress IXP2800. 

OC-48 (4 X OC-12 OR 16 X OC-3) 
SWITCHING BLADE 
In this system architecture, a single IXP2800 network 
processor is used for both ingress and egress processing 
(Figure 3).  External silicon components multiplex the 

data from the framer and fabric into the SPI-4.2/CSIX 
receiver and distribute the transmit data from the SPI-
4.2/CSIX transmitter to the framer and fabric. 

The IXP2800 supports the capability to simultaneously 
multiplex the SPI-4.2 and the CSIX-L1 protocols on the 
same interface.  The switch chip allows interfacing to both 
an OC-48 framer (probably using SPI-3 or UTOPIA Level 
3) and a fabric supporting a CSIX-L1 interface. 
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Figure 3: OC-48 (4 x OC-12 or 16 x OC-3) 
configuration 

In this configuration, the IXP2800 is offered half of the 
aggregate load supported by the prior configurations.  
There is sufficient DRAM bandwidth to write packets to 
DRAM on receptions and read them back for processing 
as in the prior multi-service switching configuration, 
although the packets are stored using the linked-list 
organization of buffers.  Rings of buffer descriptors are 
used to enforce in-order enqueuing of the packets to 
linked-list queues, just as in the prior configuration.  The 
different code paths for ingress and egress processing may 
be handled on the same microengines or distributed across 
different microengines in order to optimize the utilization 
of the microcode stores.  Finally, different microengines 
are allocated to updating shared state in-order and 
coherently. 

THE IXP2800 MICROARCHITECTURE 
The IXP2800 has 10 major internal units (Figure 4).  The 
IXP2400 also has 10 major units; however, a few of the 
units have variations.  The IXP2800 units and the 
variations for the IXP2400 are described below. 

The Media-Switch-Fabric Interface 
The Media and Switch Fabric (MSF) Interface is used to 
connect an IXP to a physical layer device (PHY) and/or a  
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switch fabric.  The MSF consists of separate receive and 
transmit interfaces.  Each of the receive and transmit 
interfaces can be separately configured on the IXP2800 
for either SPI-4 Phase 2 (System Packet Interface) for 
PHY devices or CSIX-L1 (Common Switch Interface 
Specification, Layer 1) protocol for switch fabric 
interfaces.  Additionally, configuration provides for 
multiplexing both protocols over the interface 
simultaneously.  The IXP2400 is similar; however, instead 
of SPI-4 phase 2 signaling and protocol, the IXP2400 

supports POS PHY Level 3 (dual 32-bit uni-directional 
125MHz bus) and CSIX-L1 protocol. 

The receive and transmit ports are unidirectional and 
independent of each other.  Each IXP2800 port has 16 
data signals, a clock, a control signal, and a parity signal, 
all of which use Low Voltage Differential Signaling 
(LVDS) and are sampled on both edges of clock.  There is 
also a flow control port consisting of a clock, data, parity, 
and ready status bits, and it is used to communicate 

 

 

 

ME00 

 

ME01 

 

ME02 

 

ME03 

 

ME07

 

ME06

 

ME05

 

ME04

 

ME10

 

ME11

 

ME12

 

ME13

 

ME07

 

ME16

 

ME15

 

ME14

 

RDR DRAM 
controller 2 

 

RDR DRAM 
controller 1 

 

RDR DRAM 
controller 0 

DRAM Controller Bus Interface  
Crypto 
unit0 

 
Crypto 
unit1 

ME Cluster 0 ME Cluster 1 

XScale 
Core 

32k Icache
32k Dcache

 

PCI 
Unit 

2 DMAs 
master/slave 

 

 SPI 4.2 
and / or 
CSIX 

rbuf 

tbuf 

QDR
0

QDR
1

 

QDR
2
 

QDR
3

SRAM Bus 
Interface Unit 

S Cluster

Hash
and 

Scratch
Unit 

D S D S

Media/Switch Interface 

64 

16 

16 

18 18 18 18 

18

18

18

18

18 18 18 18 18 18

IXP2800 

 

Figure 4: IXP2800 block diagram 



Intel Technology Journal Vol. 6 Issue 3, 2002. 

The Next Generation of Intel IXP Network Processors 11
  

between two IXP2800 chips, or an IXP2800 and a switch 
fabric interface.  All the high-speed LVDS interfaces 
support dynamic deskew training.  The IXP2800 supports 
10Gb/s inbound traffic and 15Gb/s outbound or 15Gb/s 
inbound and 10Gb/s outbound. The overspeed (15 vs. 
10Gb/s) is required by fabrics, which have inherent 
inefficiencies.  The average bandwidth required by a 
fabric may be 10Gb/s; however, for extended moments 
they may burst 15Gb/s. The IXP can source or sink these 
extended burst rates. 

Incoming packets are received into the Receive Buffer 
(RBUF).  Outgoing packets are held in the Transmit 
Buffer (TBUF).  The RBUF and TBUF are both RAMs 
and store data in sub-blocks (referred to as elements), and 
are accessed by either the microengines or XScale™.  

The RBUF and TBUF each contain 8KB of data.  The 
element size is programmable as either 64 bytes, 128 
bytes, or 256 bytes per element.  In addition, either buffer 
can be programmed to be split into one, two, or three 
partitions, depending on application.  For SPI-4, one 
partition is used.  For CSIX, two partitions are used 
(control and data c-frames).  For both SPI-4 and CSIX, 
three partitions are used. 

The microengine can read data from the RBUF to the 
microengine in_bound registers using the MSF[read] 
instruction.  The microengine can promote data from 
RBUF to DRAM directly using the DRAM[rbuf_rd] 
instruction. 

The microengine can promote data into the TBUF along 
with status via writes from the outbound_transfer registers 
using the MSF[write] instruction.  The microengine can 
control movement of data from DRAM directly to the 
TBUF using the DRAM[tbuf_wr] instruction. 

The IXP Chassis 
The chassis is the bus system, which interconnects all the 
units within the IXP.  The chassis employs uni-directional 
buses to implement a microengine-based distributed 
memory storage mechanism.  The microengine has 
inbound and outbound transfer registers.   The chassis is 
used to retrieve data from the outbound transfer registers 
and deliver data to the inbound registers.  The chassis 
consists of data busses, which connect the microengine 
transfer registers to the various shared resources (i.e., 
SRAM, DRAM, hash, cryptography units).  Additionally, 
the chassis has multiple instantiations of a command bus. 
This command bus runs ahead of the data buses.  It 
notifies the shared resources that a microengine is 
requiring service and indicates the source and destination 
addresses, the function to be performed, and any other 
information required to complete the requested task.  

Additionally, the command bus has a field indicating the 
data length of the requested transfer. 

The chassis operates at half the frequency of the 
microengine.  This is up to 700MHz for the IXP2800 and 
up to 300MHz for the IXP2400. 

THE MICROENGINE CLUSTERS 
The IXP2800 has 16 microengines, configured as two 
clusters of eight identical microengines.  The reason for 
this partitioning is to provide more communication 
capability between the microengine and the rest of the 
chip resources.  Each cluster has its own copy of 
command and data busses.  Thus each microengine shares 
the command bus with seven other microengines, rather 
than with 15 other microengines, as would be the case 
without the two-cluster configuration.  More details about 
the capabilities and internal configuration of the 
microengine are presented later in this paper. 

The SRAM cluster 
The SRAM cluster consists of four independent SRAM 
controllers, each of which controls external Quad-Data-
Rate (QDR) SRAMs.  The reason for four channels is to 
provide sufficient control information bandwidth for 10Gb 
network applications.  SRAMs are a good choice for 
control information, which tends to have many small data 
structures such as queue descriptors and linked lists.  
SRAMs, unlike DRAMs, allow for small access size and 
additionally allow access to any address sequence with no 
restrictions.  Each SRAM controller, running at 200MHz, 
provides 800MB/s of read bandwidth and 800MB/s of 
write bandwidth. 

In addition to the normal read and write access, the 
IXP2800 SRAM controllers provide three additional 
hardware functions. 

1. Atomic read-modify-write operations: increment, 
decrement, add, subtract, bit-set, bit-clear, and swap.  
The atomic operations are useful for implementing 
software semaphores.   They can also be used for multiple 
processes that modify a shared variable without using 
conventional mutex to obtain ownership, for example, 
update a network statistic via an atomic add operation.  
This is more efficient, since it eliminates the mutex 
operation altogether in this case. 

2. Linked-list queue operations.  This hardware 
accelerates enqueue and dequeue to linked-list operations 
by eliminating the read-to-write or read-to-read latency.  
For example, to do an enqueue, software must read the 
current list tail and then use it as an address to write the 
new link to memory.  The SRAM controller keeps the tail 
address in on-chip registers and does the enqueue write 
locally; this saves the time that would have been spent by 
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the microengine to get the tail value and then simply use it 
as the address for the write. 

3. Ring operations.  A ring is also sometimes called a 
circular buffer.  It consists of a block of SRAM addresses, 
which are referenced through a head and tail pointer.  
Data is inserted at the tail of the ring (using the content of 
the tail pointer as the address) and removed from the head 
(using the content of the head pointer as the address).  The 
SRAM controller keeps the head and tail pointers in on-
chip registers and increments them as they are used.  The 
advantage is that multiple processors can add data to and 
remove data from the rings without having to use a mutex 
to obtain ownership. 

It is also possible to attach an external coprocessor, such 
as Ternary Content Addressable Memory (TCAM), or 
classification processors to the SRAM interface.  The 
interface conforms to the Network Processor Forum’s LA-
1 (Look-Aside) interface specification.   

The DRAM Cluster 
The DRAM cluster provides three independent DRAM 
controllers, each of which controls external Rambus 
DRAMs (RDRAMs).  The reason for three channels is to 
provide sufficient data buffering bandwidth for 10Gb 
network applications.  DRAMs are a good choice for a 
data buffer because they offer excellent burst bandwidth 
and are much denser and cheaper per bit relative to 
SRAM. Each DRAM controller, running at 133MHz (note 
that this equates to 533MHz DDR, which is 1066 M 
transfers/sec on the data pins), provides 17Gb/s of 
bandwidth, shared between reads and writes. 

The three DRAM controllers provide hardware 
interleaving of the DRAM address space (often referred to 
as striping).  This is done to spread accesses evenly to 
prevent “hot spots” in the memory.  If all accesses for a 
period of time were to address only one of the controllers, 
then only one-third of the bandwidth would be available.  
The way the interleaving works is that each controller 
simultaneously receives all access requests and compares 
the address to the range of addresses that fall within its 
range.  It then claims either all, part, or none of the access 
request according to the result of the address compare.  
The entire process is done in hardware, completely 
transparent to the software. 

The Cryptography Unit 
The cryptography unit performs authentication and bulk 
encryption.  It is believed that these two datapath tasks are 
critical strategic functions for the network processor.  The 
crypto engines are innovative designs that have a very 
small footprint, yet the two engines provide 10Gb/s 
throughput performance.   This unit is covered in detail in 
a subsequent article in this journal. 

The Hash Unit 
The hash unit can perform either 48-bit, 64-bit, or 128-bit 
polynomial division.  The hash function implemented is an 
irreducible polynomial, which has the characteristic of a 
one-to-one mapping.  This means that if there is a 
collision, checking the unused bits of the remainder 
against that entry’s saved and unused remainder bits 
confirms or denies the collision.  The multiplier to the 
hash function is programmable so that if a default 
multiplier is not performing efficiently, a new one may be 
calculated. 

The motivation for the hash unit hardware is that 
performing a high-quality hash in software is cycle 
consuming.  Layer 2 lookups for Ethernet employ a hash 
on the 48-bit source and destination addresses for 
bridging.  The hash hardware acceleration is excellent for 
this lookup.  Ipv6 employs 128-bit source and destination 
addresses, and the hash unit may be used for data 
reduction. 

The basic idea behind the hash unit is to take correlated 
data and uniformly distribute it across a small set space.  
For example, the hash unit may be used to take the 48-bit 
Ethernet destination address and map it into a much 
smaller 16-bit addressed destination table.  A good hash 
function will uniformly distribute entries in the smaller 
table to reduce the probability of a collision. 

The Scratch Unit 
The scratch unit contains an on-chip 16KB scratchpad 
memory, running at 700MHz.  To a programmer, the 
scratchpad memory provides very similar capability to the 
SRAM described earlier.  The main difference is that the 
capacity of the scratchpad is much smaller than the 
external SRAMs.  However, the scratchpad has lower 
latency (running at 700MHz instead of 200MHz as the 
external SRAMs).  The scratchpad provides the atomic 
read-modify-write and ring operations as described in the 
SRAM section. 

The XScale™ Processor 
The XScale processor is compliant with the ARM Version 
5TE (Advanced Risc Machines), and runs at 700MHz.  
Normally, it is used as a system control plane processor, 
handling exception packets and doing management tasks.  
It contains independent 32KB instruction and data caches, 
and a full capability memory management unit.  The 
XScale has uniform access to all system resources, so it 
can efficiently communicate with the microengine though 
data structures in shared memory. 
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The PCI Unit 
The PCI Unit provides an interface to industry standard 
64-bit 66MHz PCI Rev 2.2.  It is typically used as a 
control plane interface, either to an external 
microprocessor, for example, a Pentium®, or as an 
external device interface, such as a public key accelerator.  
The PCI unit can act as a PCI bus master, allowing XScale 
or microengine access to external PCI targets, or as a PCI 
bus target, allowing external devices to transfer data to 
and from the IXP2800 external SRAM and DRAM 
memory spaces.  The PCI Unit also contains DMA 
channels that can be programmed to do bulk data transfers 
between DRAM and external PCI targets.  

Pentium® is a registered trademark of Intel Corporation or its 

subsidiaries in the United States and other countries. 

XScale™ is a trademark of Intel Corporation or its subsidiaries 
in the United States and other countries. 

THE IXP2XXX MICROENGINE 
Several goals guided the specification of the ME: 

• Efficient silicon implementation.  The need for 
lots of compute capability in the network 
processor dictated the need for a large number of 
MEs. 

• High frequency to allow for sufficient 
instructions per packet.  The ME has a six-stage 
pipeline and runs at 1.4GHz in P861 (.13 
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micron). 

• Large register set.  Having many registers 
minimizes the need to shuffle program variables 
back and forth between registers and memory.  
Having to shuffle uses valuable cycles without 
accomplishing useful work. 

• Low-latency local memory in the ME.  This is 
addressable memory, in addition to the registers.  
It can be used in any way the application 
chooses, for example, to hold packet data or state 
related to ports, etc.  

• Efficient intra-ME communication capability.  
This is useful in the applications described earlier 
in this article. 

• Multiple threads.  Given the disparity in 
processor cycle times vs. external memory times, 
a single thread of execution often blocks waiting 
for external memory operations to complete.  
Having multiple threads available allows for 
threads to interleave operation—there is often at 
least one thread ready to run while others are 
blocked.  This makes more productive use of the 
other ME resources, which would otherwise be 
idle. 

There are eight hardware threads available in the ME.  To 
allow for efficient thread swapping, each thread has its 
own register set, program counter, and thread-specific 
local registers.  Having a copy per thread eliminates the 
need to move thread-specific information to/from shared 
memory and ME registers for each swap.  Fast thread 
swapping allows a thread to do computation while other 
threads wait for IO (typically, external memory accesses) 
to complete, or for a signal from another thread or 
hardware unit. (Note that a swap is similar to a taken 
branch in timing.) 

Each of the eight threads will always be in one of four 
states. 

• Inactive—Some applications may not require all 
eight threads. Unused threads can be kept in an 
inactive state by setting the appropriate value in a 
configuration register. 

• Executing—The executing thread is the one in 
control of the ME.  Its PC is used to fetch the 
instructions that are executed.  A thread will stay 
in this state until it executes an instruction that 
causes it to go to sleep state (there is no hardware 
interrupt or pre-emption; thread swapping is 
completely under software control).  At most, 
one thread can be in executing state at any time.  

• Ready—In this state, a thread is ready to execute 
but is not because a different thread is executing. 
When the executing thread goes to sleep state, 
the MEs thread arbiter selects the next thread to 
go to the executing state from among all the 
threads in the ready state.  The arbitration is 
round robin. 

• Sleep—In this state, the thread is waiting for 
some external event(s) to occur (typically, but 
not limited to, an IO access). In this state the 
thread does not arbitrate to enter the executing 
state. 

At most, one thread can be in executing state at a time; 
any number of threads can be in any of the other states.  

Registers 
As shown in the block diagram in Figure 5, each ME 
contains four types of 32-bit datapath registers: 

1. 256 general-purpose registers 

2. 512 transfer registers  

3. 128 next neighbor registers  

4. 640 32-bit words of local memory 

Each of the first three types is partitioned per thread.  The 
local memory is shared among all threads.   

GPRs are used for general programming purposes. They 
are read and written exclusively under program control. 
GPRs, when used as a source in an instruction, supply 
operands to the execution datapath. When used as a 
destination in an instruction, they are written with the 
result of the execution datapath. 

Transfer registers are used for transferring data to and 
from the ME and locations external to the ME (for 
example, DRAMs, SRAMs, etc). 

Next Neighbor (NN) registers are used as an efficient 
method to pass data from one ME to the next, for 
example, when implementing a data-processing pipeline.   
The NN registers can supply instruction source operands; 
when NN register is the destination of an instruction, that 
value is written in the next ME.   

The NN registers can also be configured to act as a 
circular ring instead of addressable registers.  In this mode 
the source operands are “popped” from the head of the 
ring, and destination results are “pushed” to the tail of the 
ring.  The head and tail pointers are maintained in 
hardware in the ME.    

For applications that don’t need to use the NN registers 
for intra-ME communications, the ME can be put into a 
mode where an instruction with NN as destination will 
write the NN register in the same ME.  This increases the 
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number of registers available to an application.  The 
choice of this mode is independent of the use of ring 
mode; all combinations are supported. 

Local Memory (LM) is addressable storage located in the 
ME.  LM is read and written exclusively under program 
control (i.e., it is private to the ME).  The distinction 
between LM and the registers described above is that the 
LM address is computed by the program at run-time, 
whereas the register addresses are determined at compile 
time and bound in the instruction.  Each thread has two 
LM address registers, which are written by special 
instructions.  The specific LM location selected is based 
on the value in one of the LM address registers, which is 
specified in the instruction.  

All of the registers described above, including LM, are 
built using two-ported register files: one read port and one 
write port.  The area efficiency of two-ported registers 
relative to multiport registers is important in allowing the 
large number of registers to fit in the allocated silicon 
area.  Of course, the use of two-port registers places some 
restrictions on which combinations of registers can source 
operands for each instruction.  The restrictions are 
managed by the register allocator in the compiler and 
assembler, and in practice there are no limitations found in 
normal programs. 

Instructions 
The instruction set of the ME is similar to that of many 
RISC microprocessors, with some additional features 
tailored to the network processor task.   

• Computation instructions can take one or two 
operands, perform an operation, and optionally 
write back a result. The sources and destinations 
can be GPRs, transfer registers, next neighbor 
registers, and local memory.  The operations are 
shifts, add/subtract, logical, multiply, byte align, 
and find first one bit.  There is also a Content-
Addressable-Memory (CAM), described below. 

• Logical operations can be performed along with 
shifting one of the operands in a single 
instruction.  This can often be used to collapse 
two operations into one, for example, in masking 
fields of a header. 

• IO instructions are used to read and write various 
memory units in the NPU, such as receive buffer, 
transmit buffer, DRAM, and SRAM.  There are 
also a number of higher-level operations 
available in the IO units, such as ring operations, 
atomic read-modify-write, and linked-list queue 
operations. 

• Special instructions are provided for inserting 
bytes into registers.  These are useful for packet 
header modification. 

• Branches can be done, based on comparing a 
byte within a register to a literal value.  This can 
be used to efficiently test for values in a header.  
Branches can also be done on individual bits set 
or clear within a register.  This is useful for 
efficiently testing status flags.  The above are in 
addition to the normal suite of branches on 
numerical results, such as greater than, less than, 
etc. 

• Instructions can be placed into branch defer slots 
to minimize the number of cycles lost due to 
taken branches redirecting the ME pipeline.  The 
compiler is able to move instructions that are 
executed, regardless of branch outcome into 
those slots. 

• Hardware support is provided for integer 
multiply.  Each instruction cycle can retire 8 bits 
of operand.  Taking this approach vs. providing a 
full, autonomous multiply was a trade off of 
performance vs. silicon area.  One advantage of 
this approach is that for small numbers, for 
example, 8 bits or 16 bits, the compiler can insert 
just enough cycles to complete the multiply. 

• Hardware support is also provided for CRC 
operations for several industry standard 
polynomial values.  The hardware can do a CRC 
over 32 bits every other cycle.  This is equivalent 
to 22.4Gb/s at a ME frequency of 1.4GHz. 

CAM 
The CAM is a unique function that has a number of uses.  
The CAM has 16 entries; and each entry stores a 32-bit 
value.  This allows a source operand to be compared 
against 16 values in a single instruction.  All entries are 
compared in parallel, and the result of the lookup is 
written into the destination register.  There are two 
outcomes (the lookup result is indicated by the value in a 
destination register bit, which a branch instruction can test 
in one cycle): 

• A miss indicates that the lookup value was not 
found in the CAM.  The result also contains the 
entry number of the least recently used entry 
(which can be used as a suggested entry to 
replace). 

• A hit indicates that the lookup value was found in 
the CAM.  The result also contains the entry 
number that holds the lookup value.   In addition, 



Intel Technology Journal Vol. 6 Issue 3, 2002. 

The Next Generation of Intel IXP Network Processors 16
  

the result holds an additional 4 bits of state that 
the program can define and use. 

The CAM can be used to accelerate multi-way compares.  
It can also be used to act as the tag store of a cache; in this 
case, the entry number of a matching value can be used as 
an index to data associated with the value (and stored, for 
example, in SRAM or LM).  Because the CAM does not 
store any of the associated data, the hardware places no 
limitation on the amount of data stored for each cached 
entry.  It could be as little as a few bits or as much as 
needed, limited only by SRAM memory capacity.  The 
state bits can be used to store additional information about 
a cache entry, for example, if it has been modified or how 
many threads are making use of it. 

Event Signals 
The ME supports the concept of event signals.  These are 
signals that a thread can use to indicate the occurrence of 
some event external to the ME; the thread can block (go to 
sleep state) waiting on the event.  Typical use of events 
includes completion of IO and signals from other threads, 
for example, to indicate that some data has arrived and is 
ready for processing.  Each thread has 15 event signals.  
These can be allocated and scheduled by the compiler in 
much the same way as registers are allocated.  They allow 
for a large number of outstanding events and, therefore, 
concurrent processing of non-dependent tasks.  For 
example, the thread could start an IO to read packet data 
from the receive buffer, start another IO to allocate a 
buffer from a freelist, and start a third IO to read the next 
task from a work list (on a ring).  All of the IOs execute in 
parallel.  Many microprocessors can also schedule 
multiple outstanding IOs; normally, that is handled in a 
hardware-based scoreboard.  By using event signals, the 
ME places much of the burden on the compiler, which 
simplifies the hardware. 

Other microengine features useful to the network 
processor task are the following: 

• Timestamp–a 64-bit timestamp register that can 
be used for real-time tasks.  The timestamp is 
guaranteed to be monotonically increasing for the 
lifetime of an application; it will not wrap 
around. 

• Pseudo-random number–used for some 
algorithms that need random numbers.  Note that 
this is pseudo-random and not suitable for 
security applications. 

CHALLENGES AT 10GB/S 
For high-speed networking systems an extremely efficient 
means for handling successive enqueue and dequeue 
requests to the same linked list queue structure is required 

to support a large number of queues (linked lists for 
memory efficiency) at line rate (packet/cell arrivals at 
~40ns). Consecutive enqueue operations to the same 
linked list queue are latency constrained since the first 
enqueue must create the link to a list tail pointer before a 
subsequent entry can be linked on to that new tail. 
Likewise, for consecutive dequeue operations, the head 
pointer of the queue must be read to determine the new 
head pointer for the list before a subsequent dequeue 
operation is done. A control structure that can manage 
requests to a large number of queues as well as successive 
requests to only a few queues or to a single queue, plus a 
memory controller data path capable of back-to-back 
enqueue or dequeue to the same queue at the packet or 
cell arrival rate are required.  

A single microengine designated the queue manager 
receives enqueue requests from the set of microengines 
that are programmed to perform receive processing and 
classification. The enqueue request specifies to which 
output queue an arriving packet or cell should be added. A 
microengine that functions as the transmit scheduler sends 
dequeue requests to the queue manager microengine that 
specifies the output queue from which a packet or cell is 
to be taken and then transmitted to an output interface (see 
Figure 6). 

Each microengine contains a 16-entry Content 
Addressable Memory (CAM) that tracks which entry is 
the Least Recently Used (LRU). The queue manager 
microengine uses the CAM to implement a software-
controlled cache containing the last 16 queue descriptors 
used to enqueue and/or dequeue packets or cells. While 
the CAM serves as the “tag store” holding the addresses 
of the queue descriptors that are being cached, the “data 
store” associated with each CAM entry is implemented in 
the SRAM controller logic. The data store for each queue 
descriptor contains the head pointer (address of the first 
entry of a queue), the tail pointer (address of the last entry 
of a queue), and a count entry (present “length” of the 
queue). Locating the data store for the cache of queue 
descriptors at the memory controller allows for low-
latency access to and from the queue descriptor data cache 
and memory.  

The queue manager microengine issues commands to 
return queue descriptors to memory and fetch new queue 
descriptors from memory such that the queue descriptor 
data store located at the memory controller remains 
coherent with the CAM tag store of queue descriptor 
addresses. The queue manager issues enqueue and 
dequeue commands indicating which of the 16 queue 
descriptor data store locations to use for the memory 
controller to perform the command.  

All enqueue and dequeue commands are initiated in the 
order in which they arrived at the memory controller, and 
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these reference 1 of  16 data store tail or head pointers. An 
enqueue writes the address of the pointer to be added to 
the queue to the address of the cached tail pointer, and 
then updates the cached tail pointer to the address just 
added. Since enqueue requires only a write, the data store 
is updated in 2 cycles, and a subsequent enqueue even to 
the same queue can then be initiated. For dequeue, the 
address of the head pointer in the data store is returned to 
the queue manager microengine (this is the address locator 
for the buffer or cell to be transmitted), and a read of the 
contents of the head pointer is initiated. When the read 
data returns, it is loaded into the head pointer for specified 
data store entry. A subsequent dequeue request to a 
different queue can be initiated on the next cycle. 
However, a dequeue request to a queue where a read of 
the head pointer location is in progress must be held up 
until the data store location for that entry’s head pointer is 
updated. An enqueue to a queue with a dequeue in 
progress can proceed since the tail pointer is not affected 
by the dequeue.  

Having the control structure for queueing in a microengine 
allows for flexible high performance while using the 
existing hardware of the microengine. Distributing the 
data store part of the cache of queue descriptors allows for 
the low-latency memory operations required for 
successive enqueue and dequeue operations at high line 
rates.  
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Figure 6: Enqueue dequeue memory controller 

DISCUSSION 
There is a trade off between programmable flexibility and 
software complexity.  Flexibility provides great product 

advantages for feature enhancements and future upgrade 
capabilities.  However, it also makes evaluation for 
performance against customer requirements and 
subsequent customer product development more 
challenging. The IXP family is addressing these 
challenges with tools and leadership silicon performance.    

The IXP workbench is a state-of-the-art integrated 
development environment.  Users write their code, 
compile (C language) or assemble (IXP macro language) 
their code with advanced error reporting, then debug the 
code on a very high-performance-cycle accurate simulator 
(>500 cycles per second simulation performance).  This 
simulation environment provides advanced visualization 
tools and debugging facilities for rapid code maturation.  
The workbench environment can then be used to exercise 
the IXP silicon with the developed code.   Advances to the 
workbench include rapid prototyping and static 
performance evaluation, given simple user heuristics. 

Providing leadership silicon performance requires less 
software tuning to achieve given product goals.  The 
IXP2800 with 16 parallel processors at 1.4GHz delivers 
on the promise of network processors.  This promise 
includes providing a multi-application hardware-based 
platform for communication companies to leverage across 
multiple market segments.  Additionally, it promises 
network processor customers differentiation by software.  
Within a given company, the promise of common software 
routines or functions to be leveraged by different product 
groups is also now possible for IXP customers. 

CONCLUSIONS 
The IXP family provides a very powerful, flexible 
hardware platform for a wide range of software-based 
network processing applications. The range of 
applications is widening and is identifying the opportunity 
for certain IXP variations tuned to specific applications.  
Recognizing this possibility, the design and 
implementation methods for the IXP family have been 
optimized for rapid future variations.    

This is enabling a roadmap vision that is two-pronged.  
One prong is providing greater performance through the 
use of additional hardware multi-threading and additional 
microengines, while also including new strategic hardware 
acceleration engines such as the IXP2800 did with 
advanced dataplane cryptography acceleration.  

The second prong is leveraging the Intel Communication 
Group’s silicon portfolio for greater system integration. 
Integration is important when it can reduce system power, 
cost, and board area.  This prong can provide current IXP 
customers with a product cost-reduction path. 
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Both of these prongs will leverage the silicon capabilities 
afforded by 90nm and, subsequently, 65nm high-
performance CMOS. 

Performance, integration, advanced tools, rapid software 
prototyping, advanced strategic hardware acceleration, 
extreme customer support: this is the roadmap vision for 
the IXP family. 
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