
Intel®

Technology
Journal

Network Processors

Volume 06 Issue 03 Published, August 15, 2002 ISSN 1535766X

The Next Generation of
Intel IXP Network Processors

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

Paper1cover.qxd 8/9/02 11:41 AM Page 1

http://developer.intel.com/technology/itj/index.htm

The Next Generation of Intel IXP Network Processors 6

The Next Generation of Intel IXP Network Processors

Matthew Adiletta, Mark Rosenbluth, Debra Bernstein,
Gilbert Wolrich, Hugh Wilkinson

 Intel Communications Group, Intel Corporation

Index words: network processors, IXP, communication architecture, routing, switching, Ethernet,
ATM, multi-service switches, multi-processors, microprocessor architecture, multi-threading, 10Gb/s,
OC-192, OC-48.

ABSTRACT
This paper describes the next generation of Intel Internet
eXchange Processors (IXPs). The IXP family of network
processors is growing with the addition of three new parts.
This paper focuses on the high-end IXP2800. The
IXP2800 is capable of 10Gb/s ATM, OC-192 POS, or
Ethernet data processing. The IXP2400 is a sibling and is
capable of sustained OC-48 or Quad Gigabit Ethernet data
processing. The third new member of the family is the
IXP440, which is a Customer Premise Equipment (CPE)
class device. The IXP2800 and IXP2400 share the
architectural chassis, major functional units and software
programming model, as well as the same instruction set.

This paper covers system architecture, micro-architecture,
and functional unit characteristics, and provides insights
into the challenges of processing an incoming cell or
packet every 35ns. Special attention is paid to the problem
of enqueuing and dequeuing onto and from a linked list
that is maintained in external memory. The challenge is
that cell and packet arrival rates are approaching the
external memory access latencies.

Finally, this paper concludes with future directions for the
IXP family.

INTRODUCTION
The IXP1200 is the first member of the IXP network
processor family. It has been designed into over 200
products at a wide range of companies and market
segments. Introduced in 1999, it provided OC-12 or
Gigabit Ethernet packet processing capability. The
IXP2800 and IXP2400 leverage many learnings from the
experiences of the IXP1200. In particular, refining the
computational needs and memory access bandwidths
required at different incoming line rates has led to
providing both

greater computational capability and memory bandwidth.
The IXP2800 provides over 23,000 MIPs, the IXP2400
4800 MIPs, and the IXP1200 1200 MIPs.

There are many competing approaches to network
processing. One approach is through dedicated hardware
state machines with configurability, or minimal software
programming capability. Another approach is through
very high-performance microprocessors that are provided
with a very flexible software programming capability.
The IXP family employs the flexible software approach,
with state-of-the-art compilers and debuggers. This
allows the IXP to address many market segments and
allows our customers to develop a base hardware platform
that they can then use in different applications.
Additionally, by providing a flexible software platform,
customers can download features and capabilities to
enhance product lifespans and product experiences.

The first section of this paper describes three system
architectures using the IXP2800. It is interesting to note
that the system architectures detailed may also be applied
to the IXP2400, albeit at a lower incoming cell or packet
rate.

The second section focuses on the internal architecture of
the IXP2800. The chassis, or the interconnection between
the different functional units, will be described, as well as
the major functional units.

The third section provides details on the microengine,
which is the processor arrayed in either 16 instantiations
for the IXP2800 or eight instantiations for the IXP2400.

The challenges of packet or cell processing at 10 gigabits
per second are then described along with the solution
employed by the IXP2800. Then flexibility versus
software complexity is discussed. The paper concludes
with a discussion of the future directions of the IXP high-
end processor.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 7

IXP2800 SYSTEM EXAMPLES
Many system architectures are possible employing the
IXP2800. This section details three configurations of
IXP2800 processors supporting various switching
applications.

Metro-LAN 10 Gigabit Ethernet Switching or
OC-192 Packet over SONET Switching Blade
In this system architecture, two IXP2800 network
processors are used (Figure 1). The top IXP2800 is used
for ingress processing. Ingress processing tasks may
include classification, metering, policing, congestion
avoidance, statistics, segmentation, and traffic scheduling
into a switching fabric. The bottom IXP2800 is used for
egress processing. Egress processing tasks may similarly
include reassembly, congestion avoidance, statistics, and
traffic shaping. Both input and output buffering are
supported using small DRAM buffers linked together by
linked lists maintained in SRAM.

SRAM Bulk
DRAM

Framer

Fabric

Interface
Chip

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

IXP2800
Ingress

Processor

IXP2800
Egress

Processor

SRAM Bulk
DRAM

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

Figure 1: Metro-LAN 10 Gigabit Ethernet switching
or OC-192 Packet over SONET configuration

The framer interfaces to the two IXP2800 network
processors using the interface defined by the Optical
Internetworking Forum SPI-4.2 Implementation
Agreement. The fabric interfaces to the two IXP2800
network processors using the Common Switch Interface
Specification-L1 (CSIX-L1) protocol implemented on top
of the SPI-4.2 physical signaling. The ingress and egress
network processors present a single full-duplex interface
to the fabric, as if they were a single chip.

Packets are streamed into the ingress IXP2800 at or above
line rate. The processing of a packet begins upon receipt

of the initial part. The parts of a packet are received,
reassembled, processed, buffered into DRAM, and
enqueued for transmission into the fabric. Subsequently,
the packet is scheduled and transmitted into the fabric to
be processed by an egress IXP2800. The egress IXP2800
reassembles the packet in DRAM and queues the packet
for outgoing transmission. Subsequently, the packet is
transmitted out the egress framer. At both the ingress
IXP2800 and the egress IXP2800, packet data is written
to and read from DRAM only a single time. The DRAM
interface constists of three Rambus DRAM (RDRAM)
channels operating at a clock rate of up to 533MHz,
offering an aggregate peak bandwidth of 51Gb/s.

At a maximum packet rate of approximately 15 million
packets per second for 10 Gigabit Ethernet, the IXP2800
supports a service time of 8.53 usec per packet for receive
and transmit processing by distributing the processing
across 128 different computation threads. The IXP2800
can support the execution of up to 1493 microengine
instructions per packet (93 instructions per microengine *
16 microengines) at this packet rate and a clock rate of
1.4GHz.

At a maximum packet rate of approximately 28 million
packets per second for OC-192 Packet over SONET, the
IXP2800 supports a service time of 4.57 usec per packet
for receive and transmit. The IXP2800 can support the
execution of up to 800 microengine instructions per
packet at this packet rate and a clock rate of 1.4GHz.

The IXP2800 supports four QDR II SRAM interfaces that
may be clocked at up to 250MHz. Each interface supports
an independent read and write port, providing an
aggregate read rate of 32Gb/s and, simultaneously, an
aggregate write rate of 32Gb/s. These interfaces may be
used to access SRAM. Additionally, Ternary Content
Adressable Memories (TCAM), which support the same
interface, are becoming available.

Classification may be performed using TRIE data
structures in SRAM, hashing and collision resolution in
SRAM, and/or TCAM tables.

At 15 million packets per second, the IXP2800 provides
for 64 read and 64 write SRAM references per packet. At
28 million packets per second, the IXP2800 provides for
32 read and 32 write SRAM references per packet. The
references may be used for network address lookup, multi-
tuple classification, policing, packet or buffer descriptors,
queuing, statistics, and scheduling. The IXP2800
supports an aggregate rate in excess of 60 million queue
operations per second on one or multiple queues. The
number of queues that an IXP2800 supports is limited
only by the available SRAM capacity, not by any on-chip
resource limit. Tables 1 and 2 depict a possible allocation
of SRAM bandwidth.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 8

Table 1: Ingress possible allocation of SRAM
references

Function QDR
Reads

QDR
Writes

Destination address TRIE
route lookup

7

7-tuple TCAM rule lookup 1 5

Buffer descriptor 2 2

Queue and freelist linked-list
operations

6 6

Metering 3 3

Congestion avoidance
(WRED)

5 4

Per-rule statistics 2 2

Per (min-size) packet totals 26 22

Table 2: Egress possible allocation of SRAM
references

Function QDR
Reads

QDR
Writes

Reassembly context 2 2

7-tupple TCAM rule lookup 1 5

Buffer descriptor 2 2

Queue and freelist linked-list
operations

6 6

Congestion avoidance
(WRED)

5 4

Per-rule statistics 2 2

Per (min-size) packet totals 18 21

Varying product requirements will increase or decrease
the allocation of SRAM references per packet. For
instance, incorporating ATM segmentation and
reassembly into the processing flow will add a couple of
read and write references on ingress and egress. A
balanced system design will try to balance the
consumption of resources across ingress and egress
processors.

This configuration represents a cost-effective and
extremely flexible approach to basic packet processing at
10Gb/s rates.

10GB/S MULTI-SERVICE SWITCH
BLADE
In this system architecture, three IXP2800 network
processors are used (Figure 2). The ingress processing is
distributed across two IXP2800 network processors.

1st IXP2800
Ingress

Processor

Fabric
Interface

Chip

SRAM Bulk
DRAM

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

SRAM

Bulk
DRAM

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

2nd IXP2800
Ingress

Processor

IXP2800
Egress

Processor

SRAM

Bulk
DRAM

R
D
R

R
D
R

Q
D
R

Q
D
R

Framer

Figure 2: 10Gb/s multi-service configuration

The egress processing is accomplished with a single
IXP2800, as in the prior configuration.

The distinguishing characteristic about this configuration
is the division of labor between the 1st and 2nd ingress
IXP2800 processors. The configuration is intended to
support broadly varying rates of packet processing while
maintaining expected aggregate throughput rates.

The 1st ingress IXP2800 is responsible for transferring
received packet pieces into contiguous ring buffers in
DRAM, as they are received, with minimal processing.
Multiple rings may be supported, with the destination ring
identified by minimal packet classification. These rings
provide for an elasticity buffer to allow for varying rates
of packet processing performed subsequent to the storage
of the packets in DRAM. The size of the rings may vary,
based upon the expected arrival rate of the packets and the
elasticity requirements. Maintenance of the rings requires
minimal SRAM accesses but does require static allocation
of memory per ring. The smallest configuration of
DRAM that supports the maximum bandwidth (3 DRAM
components) supports 96 mega-bytes of storage.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 9

Smaller rings in SRAM shadow the rings in DRAM. The
entries in the SRAM rings provide status regarding the
processing of the packet and information to pass on to the
2nd ingress IXP2800 for final processing. Upon
completion of the processing of a packet in the 1st ingress
IXP2800, the status is updated. Earlier packets may
complete processing subsequently, but the ring insures in-
order forwarding to the 2nd ingress IXP2800, as the
packets are fetched from the ring in-order and only after
they complete processing.

As packet-processing threads become available, a
scheduling decision is made in software regarding which
rings should be serviced. Threads read sufficient parts of
packets in DRAM to process the packets. Threads may
take an arbitrary time to complete processing of the
packet, subject to the elasticity provided by the DRAM
buffering and the average packet arrival rate. Separately,
as Transmit Buffer (TBUF) elements become available,
the status of the rings is polled to forward packets to the
2nd ingress IXP2800.

The 1st ingress IXP2800 is best suited to performing
multi-level, multi-protocol packet classification and
editing. By design, most of the SRAM bandwidth is
available for classification. Update of flow-specific or
queue-specific state, including statistics, is deferred until
the 2nd ingress IXP2800. A digest is forwarded with the
packet that describes such state as needs updating. (The
bandwidth available through the SPI-4.2 physical interface
approaches 20Gb/s, accommodating the increased payload
per packet.)

The 2nd ingress IXP2800 receives packets with no packet
interleaving or limited packet interleaving, reducing the
accesses to SRAM to reassemble the packets. All
classification processing has been completed. The 2nd
ingress IXP2800 is responsible for any remaining
metering and policing, statistics, queuing and buffering,
congestion avoidance, and transmit scheduling into the
fabric.

By design, the division of labor between the 1st and 2nd
ingress processor distributes the use of SRAM bandwidth
across the two processors. The 1st ingress IXP2800
supports nearly arbitrary processing times, while
maintaining the order of packets within categories (rings).
The 2nd ingress IXP2800 updates shared state in-order.
The egress IXP2800 operates exactly as described in the
prior configuration that also uses a single egress IXP2800.

OC-48 (4 X OC-12 OR 16 X OC-3)
SWITCHING BLADE
In this system architecture, a single IXP2800 network
processor is used for both ingress and egress processing
(Figure 3). External silicon components multiplex the

data from the framer and fabric into the SPI-4.2/CSIX
receiver and distribute the transmit data from the SPI-
4.2/CSIX transmitter to the framer and fabric.

The IXP2800 supports the capability to simultaneously
multiplex the SPI-4.2 and the CSIX-L1 protocols on the
same interface. The switch chip allows interfacing to both
an OC-48 framer (probably using SPI-3 or UTOPIA Level
3) and a fabric supporting a CSIX-L1 interface.

SPI-4.2/CSIX
Switch Chip

Framer

Fabric

Interface
Chip

SRAM Bulk
DRAM

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

IXP2800
Full Duplex
Processor

Figure 3: OC-48 (4 x OC-12 or 16 x OC-3)
configuration

In this configuration, the IXP2800 is offered half of the
aggregate load supported by the prior configurations.
There is sufficient DRAM bandwidth to write packets to
DRAM on receptions and read them back for processing
as in the prior multi-service switching configuration,
although the packets are stored using the linked-list
organization of buffers. Rings of buffer descriptors are
used to enforce in-order enqueuing of the packets to
linked-list queues, just as in the prior configuration. The
different code paths for ingress and egress processing may
be handled on the same microengines or distributed across
different microengines in order to optimize the utilization
of the microcode stores. Finally, different microengines
are allocated to updating shared state in-order and
coherently.

THE IXP2800 MICROARCHITECTURE
The IXP2800 has 10 major internal units (Figure 4). The
IXP2400 also has 10 major units; however, a few of the
units have variations. The IXP2800 units and the
variations for the IXP2400 are described below.

The Media-Switch-Fabric Interface
The Media and Switch Fabric (MSF) Interface is used to
connect an IXP to a physical layer device (PHY) and/or a

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 10

switch fabric. The MSF consists of separate receive and
transmit interfaces. Each of the receive and transmit
interfaces can be separately configured on the IXP2800
for either SPI-4 Phase 2 (System Packet Interface) for
PHY devices or CSIX-L1 (Common Switch Interface
Specification, Layer 1) protocol for switch fabric
interfaces. Additionally, configuration provides for
multiplexing both protocols over the interface
simultaneously. The IXP2400 is similar; however, instead
of SPI-4 phase 2 signaling and protocol, the IXP2400

supports POS PHY Level 3 (dual 32-bit uni-directional
125MHz bus) and CSIX-L1 protocol.

The receive and transmit ports are unidirectional and
independent of each other. Each IXP2800 port has 16
data signals, a clock, a control signal, and a parity signal,
all of which use Low Voltage Differential Signaling
(LVDS) and are sampled on both edges of clock. There is
also a flow control port consisting of a clock, data, parity,
and ready status bits, and it is used to communicate

ME00

ME01

ME02

ME03

ME07

ME06

ME05

ME04

ME10

ME11

ME12

ME13

ME07

ME16

ME15

ME14

RDR DRAM
controller 2

RDR DRAM
controller 1

RDR DRAM
controller 0

DRAM Controller Bus Interface
Crypto
unit0

Crypto
unit1

ME Cluster 0 ME Cluster 1

XScale
Core

32k Icache
32k Dcache

PCI
Unit

2 DMAs
master/slave

 SPI 4.2
and / or
CSIX

rbuf

tbuf

QDR
0

QDR
1

QDR
2

QDR
3

SRAM Bus
Interface Unit

S Cluster

Hash
and

Scratch
Unit

D S D S

Media/Switch Interface

64

16

16

18 18 18 18

18

18

18

18

18 18 18 18 18 18

IXP2800

Figure 4: IXP2800 block diagram

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 11

between two IXP2800 chips, or an IXP2800 and a switch
fabric interface. All the high-speed LVDS interfaces
support dynamic deskew training. The IXP2800 supports
10Gb/s inbound traffic and 15Gb/s outbound or 15Gb/s
inbound and 10Gb/s outbound. The overspeed (15 vs.
10Gb/s) is required by fabrics, which have inherent
inefficiencies. The average bandwidth required by a
fabric may be 10Gb/s; however, for extended moments
they may burst 15Gb/s. The IXP can source or sink these
extended burst rates.

Incoming packets are received into the Receive Buffer
(RBUF). Outgoing packets are held in the Transmit
Buffer (TBUF). The RBUF and TBUF are both RAMs
and store data in sub-blocks (referred to as elements), and
are accessed by either the microengines or XScale™.

The RBUF and TBUF each contain 8KB of data. The
element size is programmable as either 64 bytes, 128
bytes, or 256 bytes per element. In addition, either buffer
can be programmed to be split into one, two, or three
partitions, depending on application. For SPI-4, one
partition is used. For CSIX, two partitions are used
(control and data c-frames). For both SPI-4 and CSIX,
three partitions are used.

The microengine can read data from the RBUF to the
microengine in_bound registers using the MSF[read]
instruction. The microengine can promote data from
RBUF to DRAM directly using the DRAM[rbuf_rd]
instruction.

The microengine can promote data into the TBUF along
with status via writes from the outbound_transfer registers
using the MSF[write] instruction. The microengine can
control movement of data from DRAM directly to the
TBUF using the DRAM[tbuf_wr] instruction.

The IXP Chassis
The chassis is the bus system, which interconnects all the
units within the IXP. The chassis employs uni-directional
buses to implement a microengine-based distributed
memory storage mechanism. The microengine has
inbound and outbound transfer registers. The chassis is
used to retrieve data from the outbound transfer registers
and deliver data to the inbound registers. The chassis
consists of data busses, which connect the microengine
transfer registers to the various shared resources (i.e.,
SRAM, DRAM, hash, cryptography units). Additionally,
the chassis has multiple instantiations of a command bus.
This command bus runs ahead of the data buses. It
notifies the shared resources that a microengine is
requiring service and indicates the source and destination
addresses, the function to be performed, and any other
information required to complete the requested task.

Additionally, the command bus has a field indicating the
data length of the requested transfer.

The chassis operates at half the frequency of the
microengine. This is up to 700MHz for the IXP2800 and
up to 300MHz for the IXP2400.

THE MICROENGINE CLUSTERS
The IXP2800 has 16 microengines, configured as two
clusters of eight identical microengines. The reason for
this partitioning is to provide more communication
capability between the microengine and the rest of the
chip resources. Each cluster has its own copy of
command and data busses. Thus each microengine shares
the command bus with seven other microengines, rather
than with 15 other microengines, as would be the case
without the two-cluster configuration. More details about
the capabilities and internal configuration of the
microengine are presented later in this paper.

The SRAM cluster
The SRAM cluster consists of four independent SRAM
controllers, each of which controls external Quad-Data-
Rate (QDR) SRAMs. The reason for four channels is to
provide sufficient control information bandwidth for 10Gb
network applications. SRAMs are a good choice for
control information, which tends to have many small data
structures such as queue descriptors and linked lists.
SRAMs, unlike DRAMs, allow for small access size and
additionally allow access to any address sequence with no
restrictions. Each SRAM controller, running at 200MHz,
provides 800MB/s of read bandwidth and 800MB/s of
write bandwidth.

In addition to the normal read and write access, the
IXP2800 SRAM controllers provide three additional
hardware functions.

1. Atomic read-modify-write operations: increment,
decrement, add, subtract, bit-set, bit-clear, and swap.
The atomic operations are useful for implementing
software semaphores. They can also be used for multiple
processes that modify a shared variable without using
conventional mutex to obtain ownership, for example,
update a network statistic via an atomic add operation.
This is more efficient, since it eliminates the mutex
operation altogether in this case.

2. Linked-list queue operations. This hardware
accelerates enqueue and dequeue to linked-list operations
by eliminating the read-to-write or read-to-read latency.
For example, to do an enqueue, software must read the
current list tail and then use it as an address to write the
new link to memory. The SRAM controller keeps the tail
address in on-chip registers and does the enqueue write
locally; this saves the time that would have been spent by

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 12

the microengine to get the tail value and then simply use it
as the address for the write.

3. Ring operations. A ring is also sometimes called a
circular buffer. It consists of a block of SRAM addresses,
which are referenced through a head and tail pointer.
Data is inserted at the tail of the ring (using the content of
the tail pointer as the address) and removed from the head
(using the content of the head pointer as the address). The
SRAM controller keeps the head and tail pointers in on-
chip registers and increments them as they are used. The
advantage is that multiple processors can add data to and
remove data from the rings without having to use a mutex
to obtain ownership.

It is also possible to attach an external coprocessor, such
as Ternary Content Addressable Memory (TCAM), or
classification processors to the SRAM interface. The
interface conforms to the Network Processor Forum’s LA-
1 (Look-Aside) interface specification.

The DRAM Cluster
The DRAM cluster provides three independent DRAM
controllers, each of which controls external Rambus
DRAMs (RDRAMs). The reason for three channels is to
provide sufficient data buffering bandwidth for 10Gb
network applications. DRAMs are a good choice for a
data buffer because they offer excellent burst bandwidth
and are much denser and cheaper per bit relative to
SRAM. Each DRAM controller, running at 133MHz (note
that this equates to 533MHz DDR, which is 1066 M
transfers/sec on the data pins), provides 17Gb/s of
bandwidth, shared between reads and writes.

The three DRAM controllers provide hardware
interleaving of the DRAM address space (often referred to
as striping). This is done to spread accesses evenly to
prevent “hot spots” in the memory. If all accesses for a
period of time were to address only one of the controllers,
then only one-third of the bandwidth would be available.
The way the interleaving works is that each controller
simultaneously receives all access requests and compares
the address to the range of addresses that fall within its
range. It then claims either all, part, or none of the access
request according to the result of the address compare.
The entire process is done in hardware, completely
transparent to the software.

The Cryptography Unit
The cryptography unit performs authentication and bulk
encryption. It is believed that these two datapath tasks are
critical strategic functions for the network processor. The
crypto engines are innovative designs that have a very
small footprint, yet the two engines provide 10Gb/s
throughput performance. This unit is covered in detail in
a subsequent article in this journal.

The Hash Unit
The hash unit can perform either 48-bit, 64-bit, or 128-bit
polynomial division. The hash function implemented is an
irreducible polynomial, which has the characteristic of a
one-to-one mapping. This means that if there is a
collision, checking the unused bits of the remainder
against that entry’s saved and unused remainder bits
confirms or denies the collision. The multiplier to the
hash function is programmable so that if a default
multiplier is not performing efficiently, a new one may be
calculated.

The motivation for the hash unit hardware is that
performing a high-quality hash in software is cycle
consuming. Layer 2 lookups for Ethernet employ a hash
on the 48-bit source and destination addresses for
bridging. The hash hardware acceleration is excellent for
this lookup. Ipv6 employs 128-bit source and destination
addresses, and the hash unit may be used for data
reduction.

The basic idea behind the hash unit is to take correlated
data and uniformly distribute it across a small set space.
For example, the hash unit may be used to take the 48-bit
Ethernet destination address and map it into a much
smaller 16-bit addressed destination table. A good hash
function will uniformly distribute entries in the smaller
table to reduce the probability of a collision.

The Scratch Unit
The scratch unit contains an on-chip 16KB scratchpad
memory, running at 700MHz. To a programmer, the
scratchpad memory provides very similar capability to the
SRAM described earlier. The main difference is that the
capacity of the scratchpad is much smaller than the
external SRAMs. However, the scratchpad has lower
latency (running at 700MHz instead of 200MHz as the
external SRAMs). The scratchpad provides the atomic
read-modify-write and ring operations as described in the
SRAM section.

The XScale™ Processor
The XScale processor is compliant with the ARM Version
5TE (Advanced Risc Machines), and runs at 700MHz.
Normally, it is used as a system control plane processor,
handling exception packets and doing management tasks.
It contains independent 32KB instruction and data caches,
and a full capability memory management unit. The
XScale has uniform access to all system resources, so it
can efficiently communicate with the microengine though
data structures in shared memory.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 13

The PCI Unit
The PCI Unit provides an interface to industry standard
64-bit 66MHz PCI Rev 2.2. It is typically used as a
control plane interface, either to an external
microprocessor, for example, a Pentium®, or as an
external device interface, such as a public key accelerator.
The PCI unit can act as a PCI bus master, allowing XScale
or microengine access to external PCI targets, or as a PCI
bus target, allowing external devices to transfer data to
and from the IXP2800 external SRAM and DRAM
memory spaces. The PCI Unit also contains DMA
channels that can be programmed to do bulk data transfers
between DRAM and external PCI targets.

Pentium® is a registered trademark of Intel Corporation or its

subsidiaries in the United States and other countries.

XScale™ is a trademark of Intel Corporation or its subsidiaries
in the United States and other countries.

THE IXP2XXX MICROENGINE
Several goals guided the specification of the ME:

• Efficient silicon implementation. The need for
lots of compute capability in the network
processor dictated the need for a large number of
MEs.

• High frequency to allow for sufficient
instructions per packet. The ME has a six-stage
pipeline and runs at 1.4GHz in P861 (.13

Control Store
4k Words

S Transfer
IN Register

8thds x
16regsx32b

D Transfer
IN Register

8thds x
16regsx32b

Next
Neighbor

8thds x
16regsx32b

General
Purpose

8thds x
32regsx32b

Local
Memory

640words x 32b

PrevA PrevB

32b ALU

Multipy

Find 1st bit set

Add, Shift, Logical

CAM 16entries

LRU Logic

S Transfer
Out Regs

8thds x
16regsx32b

D Transfer
Out Regs

8thds x
16regsx32b

Pseudo Random#

CRC Unit

CRC remainder

Local CSRs

Timers

Timestamp

D Push Bus

S Push Bus

LM ptr[15:0]

D Pull Bus S Pull Bus

The IXP Microengine

Figure 5: IXP microengine block diagram

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 14

micron).

• Large register set. Having many registers
minimizes the need to shuffle program variables
back and forth between registers and memory.
Having to shuffle uses valuable cycles without
accomplishing useful work.

• Low-latency local memory in the ME. This is
addressable memory, in addition to the registers.
It can be used in any way the application
chooses, for example, to hold packet data or state
related to ports, etc.

• Efficient intra-ME communication capability.
This is useful in the applications described earlier
in this article.

• Multiple threads. Given the disparity in
processor cycle times vs. external memory times,
a single thread of execution often blocks waiting
for external memory operations to complete.
Having multiple threads available allows for
threads to interleave operation—there is often at
least one thread ready to run while others are
blocked. This makes more productive use of the
other ME resources, which would otherwise be
idle.

There are eight hardware threads available in the ME. To
allow for efficient thread swapping, each thread has its
own register set, program counter, and thread-specific
local registers. Having a copy per thread eliminates the
need to move thread-specific information to/from shared
memory and ME registers for each swap. Fast thread
swapping allows a thread to do computation while other
threads wait for IO (typically, external memory accesses)
to complete, or for a signal from another thread or
hardware unit. (Note that a swap is similar to a taken
branch in timing.)

Each of the eight threads will always be in one of four
states.

• Inactive—Some applications may not require all
eight threads. Unused threads can be kept in an
inactive state by setting the appropriate value in a
configuration register.

• Executing—The executing thread is the one in
control of the ME. Its PC is used to fetch the
instructions that are executed. A thread will stay
in this state until it executes an instruction that
causes it to go to sleep state (there is no hardware
interrupt or pre-emption; thread swapping is
completely under software control). At most,
one thread can be in executing state at any time.

• Ready—In this state, a thread is ready to execute
but is not because a different thread is executing.
When the executing thread goes to sleep state,
the MEs thread arbiter selects the next thread to
go to the executing state from among all the
threads in the ready state. The arbitration is
round robin.

• Sleep—In this state, the thread is waiting for
some external event(s) to occur (typically, but
not limited to, an IO access). In this state the
thread does not arbitrate to enter the executing
state.

At most, one thread can be in executing state at a time;
any number of threads can be in any of the other states.

Registers
As shown in the block diagram in Figure 5, each ME
contains four types of 32-bit datapath registers:

1. 256 general-purpose registers

2. 512 transfer registers

3. 128 next neighbor registers

4. 640 32-bit words of local memory

Each of the first three types is partitioned per thread. The
local memory is shared among all threads.

GPRs are used for general programming purposes. They
are read and written exclusively under program control.
GPRs, when used as a source in an instruction, supply
operands to the execution datapath. When used as a
destination in an instruction, they are written with the
result of the execution datapath.

Transfer registers are used for transferring data to and
from the ME and locations external to the ME (for
example, DRAMs, SRAMs, etc).

Next Neighbor (NN) registers are used as an efficient
method to pass data from one ME to the next, for
example, when implementing a data-processing pipeline.
The NN registers can supply instruction source operands;
when NN register is the destination of an instruction, that
value is written in the next ME.

The NN registers can also be configured to act as a
circular ring instead of addressable registers. In this mode
the source operands are “popped” from the head of the
ring, and destination results are “pushed” to the tail of the
ring. The head and tail pointers are maintained in
hardware in the ME.

For applications that don’t need to use the NN registers
for intra-ME communications, the ME can be put into a
mode where an instruction with NN as destination will
write the NN register in the same ME. This increases the

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 15

number of registers available to an application. The
choice of this mode is independent of the use of ring
mode; all combinations are supported.

Local Memory (LM) is addressable storage located in the
ME. LM is read and written exclusively under program
control (i.e., it is private to the ME). The distinction
between LM and the registers described above is that the
LM address is computed by the program at run-time,
whereas the register addresses are determined at compile
time and bound in the instruction. Each thread has two
LM address registers, which are written by special
instructions. The specific LM location selected is based
on the value in one of the LM address registers, which is
specified in the instruction.

All of the registers described above, including LM, are
built using two-ported register files: one read port and one
write port. The area efficiency of two-ported registers
relative to multiport registers is important in allowing the
large number of registers to fit in the allocated silicon
area. Of course, the use of two-port registers places some
restrictions on which combinations of registers can source
operands for each instruction. The restrictions are
managed by the register allocator in the compiler and
assembler, and in practice there are no limitations found in
normal programs.

Instructions
The instruction set of the ME is similar to that of many
RISC microprocessors, with some additional features
tailored to the network processor task.

• Computation instructions can take one or two
operands, perform an operation, and optionally
write back a result. The sources and destinations
can be GPRs, transfer registers, next neighbor
registers, and local memory. The operations are
shifts, add/subtract, logical, multiply, byte align,
and find first one bit. There is also a Content-
Addressable-Memory (CAM), described below.

• Logical operations can be performed along with
shifting one of the operands in a single
instruction. This can often be used to collapse
two operations into one, for example, in masking
fields of a header.

• IO instructions are used to read and write various
memory units in the NPU, such as receive buffer,
transmit buffer, DRAM, and SRAM. There are
also a number of higher-level operations
available in the IO units, such as ring operations,
atomic read-modify-write, and linked-list queue
operations.

• Special instructions are provided for inserting
bytes into registers. These are useful for packet
header modification.

• Branches can be done, based on comparing a
byte within a register to a literal value. This can
be used to efficiently test for values in a header.
Branches can also be done on individual bits set
or clear within a register. This is useful for
efficiently testing status flags. The above are in
addition to the normal suite of branches on
numerical results, such as greater than, less than,
etc.

• Instructions can be placed into branch defer slots
to minimize the number of cycles lost due to
taken branches redirecting the ME pipeline. The
compiler is able to move instructions that are
executed, regardless of branch outcome into
those slots.

• Hardware support is provided for integer
multiply. Each instruction cycle can retire 8 bits
of operand. Taking this approach vs. providing a
full, autonomous multiply was a trade off of
performance vs. silicon area. One advantage of
this approach is that for small numbers, for
example, 8 bits or 16 bits, the compiler can insert
just enough cycles to complete the multiply.

• Hardware support is also provided for CRC
operations for several industry standard
polynomial values. The hardware can do a CRC
over 32 bits every other cycle. This is equivalent
to 22.4Gb/s at a ME frequency of 1.4GHz.

CAM
The CAM is a unique function that has a number of uses.
The CAM has 16 entries; and each entry stores a 32-bit
value. This allows a source operand to be compared
against 16 values in a single instruction. All entries are
compared in parallel, and the result of the lookup is
written into the destination register. There are two
outcomes (the lookup result is indicated by the value in a
destination register bit, which a branch instruction can test
in one cycle):

• A miss indicates that the lookup value was not
found in the CAM. The result also contains the
entry number of the least recently used entry
(which can be used as a suggested entry to
replace).

• A hit indicates that the lookup value was found in
the CAM. The result also contains the entry
number that holds the lookup value. In addition,

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 16

the result holds an additional 4 bits of state that
the program can define and use.

The CAM can be used to accelerate multi-way compares.
It can also be used to act as the tag store of a cache; in this
case, the entry number of a matching value can be used as
an index to data associated with the value (and stored, for
example, in SRAM or LM). Because the CAM does not
store any of the associated data, the hardware places no
limitation on the amount of data stored for each cached
entry. It could be as little as a few bits or as much as
needed, limited only by SRAM memory capacity. The
state bits can be used to store additional information about
a cache entry, for example, if it has been modified or how
many threads are making use of it.

Event Signals
The ME supports the concept of event signals. These are
signals that a thread can use to indicate the occurrence of
some event external to the ME; the thread can block (go to
sleep state) waiting on the event. Typical use of events
includes completion of IO and signals from other threads,
for example, to indicate that some data has arrived and is
ready for processing. Each thread has 15 event signals.
These can be allocated and scheduled by the compiler in
much the same way as registers are allocated. They allow
for a large number of outstanding events and, therefore,
concurrent processing of non-dependent tasks. For
example, the thread could start an IO to read packet data
from the receive buffer, start another IO to allocate a
buffer from a freelist, and start a third IO to read the next
task from a work list (on a ring). All of the IOs execute in
parallel. Many microprocessors can also schedule
multiple outstanding IOs; normally, that is handled in a
hardware-based scoreboard. By using event signals, the
ME places much of the burden on the compiler, which
simplifies the hardware.

Other microengine features useful to the network
processor task are the following:

• Timestamp–a 64-bit timestamp register that can
be used for real-time tasks. The timestamp is
guaranteed to be monotonically increasing for the
lifetime of an application; it will not wrap
around.

• Pseudo-random number–used for some
algorithms that need random numbers. Note that
this is pseudo-random and not suitable for
security applications.

CHALLENGES AT 10GB/S
For high-speed networking systems an extremely efficient
means for handling successive enqueue and dequeue
requests to the same linked list queue structure is required

to support a large number of queues (linked lists for
memory efficiency) at line rate (packet/cell arrivals at
~40ns). Consecutive enqueue operations to the same
linked list queue are latency constrained since the first
enqueue must create the link to a list tail pointer before a
subsequent entry can be linked on to that new tail.
Likewise, for consecutive dequeue operations, the head
pointer of the queue must be read to determine the new
head pointer for the list before a subsequent dequeue
operation is done. A control structure that can manage
requests to a large number of queues as well as successive
requests to only a few queues or to a single queue, plus a
memory controller data path capable of back-to-back
enqueue or dequeue to the same queue at the packet or
cell arrival rate are required.

A single microengine designated the queue manager
receives enqueue requests from the set of microengines
that are programmed to perform receive processing and
classification. The enqueue request specifies to which
output queue an arriving packet or cell should be added. A
microengine that functions as the transmit scheduler sends
dequeue requests to the queue manager microengine that
specifies the output queue from which a packet or cell is
to be taken and then transmitted to an output interface (see
Figure 6).

Each microengine contains a 16-entry Content
Addressable Memory (CAM) that tracks which entry is
the Least Recently Used (LRU). The queue manager
microengine uses the CAM to implement a software-
controlled cache containing the last 16 queue descriptors
used to enqueue and/or dequeue packets or cells. While
the CAM serves as the “tag store” holding the addresses
of the queue descriptors that are being cached, the “data
store” associated with each CAM entry is implemented in
the SRAM controller logic. The data store for each queue
descriptor contains the head pointer (address of the first
entry of a queue), the tail pointer (address of the last entry
of a queue), and a count entry (present “length” of the
queue). Locating the data store for the cache of queue
descriptors at the memory controller allows for low-
latency access to and from the queue descriptor data cache
and memory.

The queue manager microengine issues commands to
return queue descriptors to memory and fetch new queue
descriptors from memory such that the queue descriptor
data store located at the memory controller remains
coherent with the CAM tag store of queue descriptor
addresses. The queue manager issues enqueue and
dequeue commands indicating which of the 16 queue
descriptor data store locations to use for the memory
controller to perform the command.

All enqueue and dequeue commands are initiated in the
order in which they arrived at the memory controller, and

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 17

these reference 1 of 16 data store tail or head pointers. An
enqueue writes the address of the pointer to be added to
the queue to the address of the cached tail pointer, and
then updates the cached tail pointer to the address just
added. Since enqueue requires only a write, the data store
is updated in 2 cycles, and a subsequent enqueue even to
the same queue can then be initiated. For dequeue, the
address of the head pointer in the data store is returned to
the queue manager microengine (this is the address locator
for the buffer or cell to be transmitted), and a read of the
contents of the head pointer is initiated. When the read
data returns, it is loaded into the head pointer for specified
data store entry. A subsequent dequeue request to a
different queue can be initiated on the next cycle.
However, a dequeue request to a queue where a read of
the head pointer location is in progress must be held up
until the data store location for that entry’s head pointer is
updated. An enqueue to a queue with a dequeue in
progress can proceed since the tail pointer is not affected
by the dequeue.

Having the control structure for queueing in a microengine
allows for flexible high performance while using the
existing hardware of the microengine. Distributing the
data store part of the cache of queue descriptors allows for
the low-latency memory operations required for
successive enqueue and dequeue operations at high line
rates.

IXP Memory Controller

Queue descriptor “data store”

Entry, Head pntr, Tail pntr, Count

[0 :15] entries

Queue Manager Microengine

CAM of q descriptor addr

Entry --LRU replacement

[0 :15] entries

Enqueue and
dequeue

commands

Dequeue
pointers

Figure 6: Enqueue dequeue memory controller

DISCUSSION
There is a trade off between programmable flexibility and
software complexity. Flexibility provides great product

advantages for feature enhancements and future upgrade
capabilities. However, it also makes evaluation for
performance against customer requirements and
subsequent customer product development more
challenging. The IXP family is addressing these
challenges with tools and leadership silicon performance.

The IXP workbench is a state-of-the-art integrated
development environment. Users write their code,
compile (C language) or assemble (IXP macro language)
their code with advanced error reporting, then debug the
code on a very high-performance-cycle accurate simulator
(>500 cycles per second simulation performance). This
simulation environment provides advanced visualization
tools and debugging facilities for rapid code maturation.
The workbench environment can then be used to exercise
the IXP silicon with the developed code. Advances to the
workbench include rapid prototyping and static
performance evaluation, given simple user heuristics.

Providing leadership silicon performance requires less
software tuning to achieve given product goals. The
IXP2800 with 16 parallel processors at 1.4GHz delivers
on the promise of network processors. This promise
includes providing a multi-application hardware-based
platform for communication companies to leverage across
multiple market segments. Additionally, it promises
network processor customers differentiation by software.
Within a given company, the promise of common software
routines or functions to be leveraged by different product
groups is also now possible for IXP customers.

CONCLUSIONS
The IXP family provides a very powerful, flexible
hardware platform for a wide range of software-based
network processing applications. The range of
applications is widening and is identifying the opportunity
for certain IXP variations tuned to specific applications.
Recognizing this possibility, the design and
implementation methods for the IXP family have been
optimized for rapid future variations.

This is enabling a roadmap vision that is two-pronged.
One prong is providing greater performance through the
use of additional hardware multi-threading and additional
microengines, while also including new strategic hardware
acceleration engines such as the IXP2800 did with
advanced dataplane cryptography acceleration.

The second prong is leveraging the Intel Communication
Group’s silicon portfolio for greater system integration.
Integration is important when it can reduce system power,
cost, and board area. This prong can provide current IXP
customers with a product cost-reduction path.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 18

Both of these prongs will leverage the silicon capabilities
afforded by 90nm and, subsequently, 65nm high-
performance CMOS.

Performance, integration, advanced tools, rapid software
prototyping, advanced strategic hardware acceleration,
extreme customer support: this is the roadmap vision for
the IXP family.

ACKNOWLEDGMENTS
The authors acknowledge the contributions of Sanjeev
Jain, David Romano, John Cyr, Jim Guilford, Bob
Kushlis, Jose Niell, Milo Sprague, Kin-Yip Liu, Yim Pun,
John Wishneusky, Donald Hooper, Bill Wheeler and the
VMOD development team, John Sweeney, the IXP
verification teams, and the IXP implementation teams led
by John Beck (IXP2800) and Ahmad Zaidi (IXP2400).

REFERENCES
[1] Matthew Adiletta, et. al, “Packet over SONET: An

Overview of the Packet Processing Flow of a 10
Gigabit/sec Datastream Mapped to an IXP2800,” Intel
Technology Journal, Vol. 6 Issue 3, August 2002.

[2] Internet Network Working Group, RFC 2697,
September 1999.

[3] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM
Transactions on Networking, V.1 N.4, August 1993,
pp. 397-413.

[4] Internet Network Working Group, RFC 2863, April
1998.

[5] E. Johnson and A. Kunze, IXP1200 Programming,
Intel Press, ISBN 0-9702846-7-5, 2002.

AUTHORS’ BIOGRAPHIES
Matthew Adiletta is an Intel Fellow and Director of
Communication Processor Architecture. He led the
architectural development and implementation of the
IXP2800 and is driving the IXP roadmap. He is interested
in processor architecture and advanced implementation
techniques for rapid silicon development. He is also
intrigued with network security and classification. Adiletta
has been responsible for 12 previous silicon chips,
including silicon for VAXes, alphas, video, graphics, and
communication. The IX2800 is the lucky 13th. Adiletta
received his B.S. degree in electrical engineering, with
Honors, at the University of Connecticut. He resides in
Bolton, Massachusetts. His e-mail address is
matthew.Adiletta@intel.com.

Debra Bernstein is an architect for Intel’s Network
Processor Division. She worked on the architecture of the

IXP2000 series and the IXP1200. For the 2000 series,
Deb has been particularly focused on the queuing
problem. Previously, she worked on microprocessors in
the VAX and Alpha family at Digital Equipment
Corporation. She is a 1982 graduate from the University
of Massachusetts at Amherst. Her e-mail address is
debra.bernstein@intel.com.

Mark Rosenbluth is an architect in the Network
Processor Division. He has been at Intel for four years
and prior to that worked at Digital Equipment
Corporation, where he was architect for PCI Bridges and
also worked on VAX and Alpha microprocessors. He
received a B.S.E.E. degree from Rutgers University. He
resides in Uxbridge, Massachusetts, and can be reached
via e-mail at mark.rosenbluth@intel.com.

Hugh Wilkinson is a systems architect in the Network
Processor Division at Intel. Hugh’s technical interests
include switching fabrics, protocol design, software
decomposition, and high-speed signaling. He received his
B.S. degree in Computer Science from Boston University.
He works in Hudson, Massachusetts, and can be reached
at Hugh.Wilkinson@intel.com.

Gilbert Wolrich is a senior architect in the Network
Processor Group in Hudson. He has contributed to the
definition of both the IXP1200 and IXP2000 solutions.
Gil has worked on high-performance network and general-
purpose processors, numerous floating point units, and is
interested in network security. Gil received a B.S. degree
from R.P.I. and an M.S. degree from Northeastern
University in Electrical Engineering. He resides in
Framingham, Massachusetts, and can be reached via e-
mail at gilbert.wolrich@intel.com.

Copyright © Intel Corporation 2002. This publication
was downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

mailto:matthew.Adiletta@intel.com
mailto:mark.rosenbluth@intel.com
mailto:Hugh.Wilkinson@intel.com
mailto:gilbert.wolrich@intel.com
http://developer.intel.com/
http://developer.intel.com/sites/developer/tradmarx.htm

Copyright © 2002, Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information vistit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

Paper1cover.qxd 8/9/02 11:41 AM Page 2

http://developer.intel.com/technology/itj/index.htm

	ITJ_Vol06_Issue03_REV.pdf
	1_Adiletta_NextGen_Web3QA1.pdf
	ABSTRACT
	INTRODUCTION
	IXP2800 SYSTEM EXAMPLES
	Metro-LAN 10 Gigabit Ethernet Switching or OC-192 Packet over SONET Switching Blade

	10GB/S MULTI-SERVICE SWITCH BLADE
	OC-48 (4 X OC-12 OR 16 X OC-3) SWITCHING BLADE
	THE IXP2800 MICROARCHITECTURE
	The Media-Switch-Fabric Interface
	The IXP Chassis

	THE MICROENGINE CLUSTERS
	The SRAM cluster
	The DRAM Cluster
	The Cryptography Unit
	The Hash Unit
	The Scratch Unit
	The Xscale™ Processor
	The PCI Unit

	THE IXP2XXX MICROENGINE
	
	Registers
	Instructions
	CAM
	Event Signals

	CHALLENGES AT 10GB/S
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_ADIL~1.PDF
	INTRODUCTION
	CHALLENGES/SOLUTIONS
	Context Pipe Stage
	Functional Pipe Stage
	Mixed Pipelines
	E
	Elasticity Buffers

	Synch Section Signaling and Critical Signaling
	Synch Sections
	Critical Sections
	Exclusive Modification Privileges between MEs

	Folding – Exclusive Modification Privileges between threads in an ME
	Pool of Threads

	INGRESS: IP PACKETS TO CSIX
	Reassembly Pointer Stage (RPTR)
	Reassembly State Update Stage (RUPD)
	Packet Processing (PPR)
	Metering 1 and Metering 2
	Congestion Avoidance
	RED
	WRED

	Statistics
	Transmit Scheduler
	Queue Manager
	Transmit 1 and Transmit 2

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	1_ADIL~3.PDF
	ABSTRACT
	INTRODUCTION
	IXP2800 SYSTEM EXAMPLES
	Metro-LAN 10 Gigabit Ethernet Switching or OC-192 Packet over SONET Switching Blade

	10GB/S MULTI-SERVICE SWITCH BLADE
	OC-48 (4 X OC-12 OR 16 X OC-3) SWITCHING BLADE
	THE IXP2800 MICROARCHITECTURE
	The Media-Switch-Fabric Interface
	The IXP Chassis

	THE MICROENGINE CLUSTERS
	The SRAM cluster
	The DRAM Cluster
	The Cryptography Unit
	The Hash Unit
	The Scratch Unit
	The XScale™ Processor
	The PCI Unit

	THE IXP2XXX MICROENGINE
	
	Registers
	Instructions
	CAM
	Event Signals

	CHALLENGES AT 10GB/S
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

