
Meanwhile, numerous mechanisms have been proposed and
implemented to eliminate false data dependences and toler-
ate the latencies induced by true data dependences by allow-
ing instructions to execute out of program order (see [8] for
an overview).

Surprisingly, in light of the extensive energies focused on
eliminating control-flow restrictions on parallel instruction
issue, less attention has been paid to eliminating data-flow
restrictions on parallel issue. Recent work has focused pri-
marily on reducing the latency of specific types of instruc-
tions (usually loads from memory) by rearranging pipeline
stages [9, 10], initiating memory accesses earlier [11], or
speculating that dependences to earlier stores do not exist
[12, 13, 14, 15].

The most relevant prior work in the area of eliminating
data-flow dependences consists of theTree Machine
[16,17], which uses avalue cache to store and look up the
results of recurring arithmetic expressions to eliminate
redundant computation (thevalue cache, in effect, performs
common subexpression elimination [1] in hardware). Rich-
ardson follows up on this concept in [18] by introducing the
concepts oftrivial computation, which is defined as the triv-
ialization of potentially complex operations by the occur-
rence of simple operands; andredundant computation,
where an operation repeatedly performs the same computa-
tion because it sees the same operands. He proposes a hard-
ware mechanism (theresult cache) which reduces the
latency of such trivial or redundant complex arithmetic
operations by storing and looking up their results in the
result cache. In [19], we introducedvalue locality, a concept
related toredundant computation, and demonstrated a tech-
nique--Load Value Prediction, or LVP--for predicting the
results of load instructions at dispatch by exploiting the
affinity between load instruction addresses and the values
the loads produce.LVP differs from Harbison’svalue cache
and Richardson’sresult cache in two important ways: first,
the LVP table is indexed by instruction address, and hence
value lookups can occur very early in the pipeline; second,
it is speculative in nature, and relies on a verification mech-
anism to guarantee correctness. In contrast, both Harbison
and Richardson use table indices that are only available later
in the pipeline (Harbison uses data addresses, while Rich-
ardson uses actual operand values); and require their predic-
tions to be correct, hence requiring mechanisms for keeping
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Abstract

For decades, the serialization constraints imposed by
true data dependences have been regarded as an absolute
limit--the dataflow limit--on the parallel execution of serial
programs. This paper proposes a new technique--value pre-
diction--for exceeding that limit that allows data dependent
instructions to issue and execute in parallel without violat-
ing program semantics. This technique is built on the con-
cept of value locality, which describes the likelihood of the
recurrence of a previously-seen value within a storage loca-
tion inside a computer system. Value prediction consists of
predicting entire 32- and 64-bit register values based on
previously-seen values. We find that such register values
being written by machine instructions are frequently pre-
dictable. Furthermore, we show that simple microarchitec-
tural enhancements to a modern microprocessor
implementation based on the PowerPC 620 that enable
value prediction can effectively exploit value locality to col-
lapse true dependences, reduce average result latency, and
provide performance gains of 4.5%-23% (depending on
machine model) by exceeding the dataflow limit.

1. Motivation and Related Work

There are two fundamental restrictions that limit the
amount ofinstruction level parallelism (ILP) that can be
extracted from sequential programs:control flow anddata
flow. Control flow limits ILP by imposing serialization con-
straints at forks and joins in a program’s control flow graph
[1]. Data flow limits ILP by imposing serialization con-
straints on pairs of instructions that are data dependent (i.e.
one needs the result of another to compute its own result, and
hence must wait for the other to complete before beginning
to execute). Examining the extent and effect of these limits
has been a popular and important area of research, particu-
larly in the case of control flow [2,3,4,5]. Continuing
advances in the development of accurate branch predictors
(e.g. [6]) have led to increasingly-aggressive control-spec-
ulative microarchitectures (e.g. the Intel Pentium Pro [7]),
which undertake aggressive measures to overcome control-
flow restrictions by using branch prediction and speculative
execution to bypass control dependences and expose addi-
tional instruction-level parallelism to the microarchitecture.
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their tables coherent with all other computation.
In this paper, we extend the LVP approach for predicting

the results of load instructions to apply to all instructions that
write an integer or floating point register; show that a sig-
nificant proportion of such writes are trivially predictable;
describe avalue prediction hardware mechanism that allows
dependent instructions to execute in parallel; and present
results that demonstrate significant performance increases
over our baseline machine models.

2. Taxonomy of Speculative Execution

In order to place our work on value prediction into a
meaningful historical context, we introduce a taxonomy of
speculative execution. This taxonomy, summarized in
Figure1, categorizes ours as well as previously-introduced
techniques based on which types of dependences are being
bypassed (control vs. data), whether the speculation relates
to storage location or value, and what type of decision must
be made to enable the speculation (binary vs. multi-valued).

2.1. Control Speculation

There are essentially two types of control speculation:
speculating on the direction of a branch, which requires a
binary decision (taken vs. not-taken); and speculating on the
target of a branch, which requires a multi-valued decision
(the target can potentially be anywhere in the program’s
address space). Examples of the former are any of the many
branch prediction schemes explored in the literature (e.g.
[20,6]), while examples of the latter are the Branch Target
Buffer (BTB) or Branch Target Address Cache (BTAC) units
included on most modern high-end microprocessors (e.g.
the PowerPC 620 [15] or the Intel Pentium Pro [7]).

2.2. Data Speculation

Data speculation techniques break down logically into
two categories: those that speculate on the storage location
of the data, and those that speculate on the actual value of the

FIGURE 1. Taxonomy of Speculative Execution
Techniques.
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data. Furthermore, techniques that speculate on the location
come in two fundamentally different flavors: those that
speculate on a specific attribute of the storage location (e.g.
whether or not it is aliased with an earlier definition), and
those that speculate on the address of the storage location.
An example of the former isspeculative disambiguation,
which optimistically assumes that an earlier definition does
not alias with a current use, and provides a mechanism for
checking the accuracy of that assumption. Speculative dis-
ambiguation has been implemented both in software [13] as
well as in hardware [12, 14, 15]. Another example of this
type of speculation occurs implicitly in most control-spec-
ulative processors, whenever execution proceeds specula-
tively past a join in the control-flow graph where multiple
reaching definitions for a storage location are live [1]. By
speculating past that join, the processor hardware is implic-
itly speculating that the definition on the predicted path to
the join in question is in fact the correct one (as opposed to
the definition on an alternate path).

There are a large number of techniques that speculate on
data address. Most prefetching techniques, for example, are
speculative in nature and rely on some heuristic for gener-
ating addresses of future memory references (e.g. [21, 22,
23, 24, 25]). Of course, since prefetching has no architected
side effects, no mechanism is needed for verifying the accu-
racy of the prediction or for recovering from mispredictions.
Another example of a technique that speculates on data
address isfast address calculation [26, 11], which enables
early initiation of memory loads by speculatively generating
addresses early in the pipeline.

The final category in our taxonomy, techniques that spec-
ulate on data value, has received little attention in the liter-
ature. The only prior work we are aware of is the LVP
structure described in [19]. This paper also falls squarely
into the data-value-speculative category, since it is an exten-
sion of the LVP approach. Note that neither theTree
Machine [16,17] or Richardson’s work [18] qualify since
they are not speculative.

3. Value Locality

In this paper, we revisit the concept ofvalue locality,
which we first introduced in [19] as the likelihood of a pre-
viously-seen value recurring repeatedly within a storage
location. Although the concept is general and can be applied
to any storage location within a computer system, we have
limited our current study to examine only the value locality
of general-purpose or floating point registers immediately
following instructions that write to those registers. A pleth-
ora of previous work on static and dynamic branch predic-
tion (e.g. [20,6]) has focused on an even more restricted
application of value locality, namely the prediction of a sin-
gle condition bit based on its past behavior. In [19], we
examined the value locality of registers being targeted by
loads from memory. This paper can be viewed as a logical
continuation of that work, extending the prediction of load
values to the prediction of all integer and floating point reg-
ister values.



Intuitively, it seems that it would be a very difficult task
to discover any useful amount of value locality in a general
purpose register. After all, a 32-bit register can contain any
one of over four billion values--how could one possibly pre-
dict which of those is even somewhat likely to occur next?
As it turns out, if we narrow the scope of our prediction
mechanism by considering each static instruction individu-
ally, the task becomes much easier and we are able to accu-
rately predict a significant fraction of register values being
written by machine instructions.

What is it that makes these values predictable? After
examining a number of real-world programs, we assert that
value locality exists primarily for the same reason thatpar-
tial evaluation [27] is such an effective compile-time opti-
mization; namely, that real-world programs, run-time
environments, and operating systems incur severe perfor-
mance penalties because they aregeneral by design. That is,
they are implemented to handle not only contingencies,
exceptional conditions, and erroneous inputs, all of which
occur relatively rarely in real life, but they are also often
designed with future expansion and code reuse in mind. Our
results--which agree with Richardson’s persuasive argu-
ments and results in [18]--show that even code that is
aggressively optimized by modern, state-of-the-art compil-
ers exhibits these tendencies.

The benchmark set we use to explore value locality and
quantify its performance impact is summarized in Table1.
We have chosen thirteen integer benchmarks, five of them
from SPEC ‘92, one from SPEC ‘95, along with two image-
processing applications (cjpeg and mpeg), two commonly-
used Unix utilities (gawk and grep), GNU’s perfect hash
function generator (gperf), a more recent version of GCC

TABLE 1. Benchmark Descriptions.

Bench-
mark

Description Input Set
 Instr.
Count

cc1-271 GCC 2.7.1 SPEC95 genoutput.i 102M

cc1 SPEC92 GCC 1.35 SPEC92 insn-recog.i 146M

cjpeg JPEG encoder 128x128 BW image 2.8M

compressSPEC92 compression1 iter. w/ 1/2 input 38.8M

eqntott SPEC92 eqn to tr tbl SPEC92 mod. input 25.5M

gawk GNU awk Parse 1.7M output 25.0M

gperf GNU hash fn gen -a -k 1-13 -D -o dict 7.8M

grep GNU grep -c “st*mo” Same as compress 2.3M

mpeg MPEG decoder 4 frames 8.8M

perl SPEC95 anagram srch“admits” in 1/8 input 105M

quick Recursive quick sort 5,000 elements 688K

sc SPEC92 spreadsheetSPEC92 short input 78.5M

xlisp SPEC92 LISP 6 queens 52.1M

doduc SPEC92 Nucl sim SPEC92 tiny input 35.8M

hydro2d SPEC92 galactic jetsSPEC92 short input 4.3M

swm256 SPEC92 water model5 iterations 43.7M

tomcatv SPEC92 mesh gen 4 iterations (vs. 100)30.0M

Total 720M

(cc1-271), and a recursive quicksort. In addition, we have
chosen four of the SPEC ‘92 floating-point benchmarks.All
benchmarks are compiled at full optimization with the IBM
CSET reference compilers, and are run to completion with
the input sets described, but do not include supervisor-state
instructions, which our tracing tool is unable to capture.

Figure2 shows theregister value locality for all instruc-
tions that write an integer or floating point register in each
of the benchmarks. The register value locality for each
benchmark is measured by counting the number of times
each static instruction writes a register value that matches a
previously-seen value for that static instruction and dividing
by the total number of dynamic register writes in the bench-
mark. Two sets of numbers are shown, one (light bars) for a
history depth of one (i.e. we check for matches against only
the most-recently-written value), while the second set (dark
bars) has a history depth of four (i.e. we check against the
last four unique values).1 We see that even with a history
depth of one, most of the programs exhibit value locality in
the 40-50% range (average 49%), while extending the his-
tory depth to four (along with a perfect mechanism for
choosing the right one of the four values) can improve that
to the 60-70% range (average 61%). What that means is that
a majority of static instructions exhibit very little variation
in the values that they write during the course of a program’s
execution.

To further explore the notion of value locality, we col-
lected value predictability data that classifies register writes
based on instruction type (the types are summarized in
Table2). These results are summarized in Figure3. Once

1.  The history values are stored in a direct-mapped table with 16K entries
indexed but not tagged by instruction address, and the values (up to four)
stored at each entry are replaced with an LRU policy. Hence, the potential
exists for both constructive and destructive interference between instruc-
tions that map to the same entry.

FIGURE 2. Register Value Locality. The light
bars show value locality for a history depth of one,
and dark bars show it for a history depth of four.
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again, two sets of numbers are shown; one for a history depth
of one, and another for a history depth of four. Integer and
floating-point double loads (I_LD and FPD_LD) are the
most predictable frequently-occurring instructions.
FP_OTH, FP_MV, MC_MV are also very predictable but
make up an insignificant portion of the dynamic instruction
mix. For the single-cycle instructions, fewer input operands
(one vs. two) correlate with higher value locality. For the
multi-cycle instructions, however, the opposite is true.

The worst value locality is exhibited by the floating-
point-single instructions. We attribute this to the fact that the
floating-point benchmarks we used initialize input arrays
with pseudo-random numbers, resulting in poor value local-
ity for loads from these arrays.

The store-with-update (ST_U) instruction type also has
poor value locality. This makes sense, since the ST_U
instruction is used to step through an array at a fixed stride
(hence the base address register is updated with a different
value every time the instruction executes, and history-based
value prediction will fail). On the other hand, ST_U is also
used in function prologues to update the stack frame pointer,
where, given the same call-depth, the value is predictable
from one call to the next. Hence, some of our call-intensive
benchmarks report higher value locality for ST_U. How-
ever, the former effect dominates and lowers the overall
value locality for ST_U.

4. Exploiting Value Locality

The fact that the register writes in many programs dem-
onstrate a significant degree of value locality opens up excit-
ing new possibilities for the microarchitect. Since the results
of many instructions can be accurately predicted before they
are issued or executed, dependent instructions are no longer
bound by the serialization constraints imposed by operand

TABLE 2. Instruction Types.

Instr
Type

Description
Freq
(%)

SC_A Single-cycle arithmetic, 2 reg. operands 5.45

SC_A_I Single-cycle arithmetic, 1 reg. operand 23.55

SC_L Single-cycle logical, 2 reg. operands 1.86

SC_L_I Single-cycle logical, 1 reg. operand 9.89

MC_A Multi-cycle arithmetic, 2 reg. operands 0.14

MC_A_I Multi-cycle arithmetic, 1 reg. operand 0.06

MC_MV Multi-cycle register move 1.86

I_LD Integer load instructions 33.00

ST_U Store with base reg. update 5.14

FP_LD FP load single 3.16

FPD_LD FP load double 4.76

FP_A FP instructions other than multiply 3.52

FP_M FP multiply instructions 2.11

FP_MA FP multiply-add instructions 3.65

FP_OTH FP div,abs,neg,round to single precision 1.61

FP_MV FP register move instructions 0.26

data flow. Instructions can now be scheduled speculatively
with additional degrees of freedom to better utilize existing
functional units and hardware buffers, and are frequently
able to complete execution sooner since the critical paths
through dependence graphs have been collapsed. However,
in order to exploit value locality and bring about all of these
benefits, two mechanisms must be implemented: one for
accurately predicting values--the VP (value prediction)
unit--and one for verifying these predictions.

4.1. The Value Prediction Unit

Value prediction is useful only if it can be done accu-
rately, since incorrect predictions can lead to increased
structural hazards and longer latency (the misprediction
penalty is described in greater detail in Section 5.3).Hence,
we propose a two-level prediction structure for the VP Unit:
the first level is used to generate the prediction values, and
the second level is used to decide whether or not the predic-
tions are likely to be accurate.

The internal structure of the VP Unit is summarized in
Figure4. The VP Unit consists of two tables: theClassifi-
cation Table (CT) and theValue Prediction Table (VPT),
both of which are direct-mapped and indexed by the instruc-
tion address (PC) of the instruction being predicted. Entries
in the CT contain two fields: thevalid field, which consists
of either a single bit that indicates a valid entry or a partial
or complete tag field that is matched against the upper bits
of the PC to indicate a valid field; and theprediction history,
which is a saturating counter of 1 or more bits. The predic-
tion history is incremented or decremented whenever a pre-
diction is correct or incorrect, respectively, and is used to
classify instructions as either predictable or unpredictable.
This classification is used to decide whether or not the result
of a particular instruction should be predicted. Increasing
the number of bits in the saturating counter adds hysteresis
to the classification process and can help avoid erroneous
classifications by ignoring anomalous values and/or

FIGURE 3. Register Value Locality by
Instruction Type.

SC_A

SC_A
_I

SC_L

SC_L
_I

M
C_A

M
C_A

_I

M
C_M

V
I_

LD
ST_U

FP_L
D

FPD_L
D

FP_A
FP_M

FP_M
A

FP_O
TH

FP_M
V

0.0

20.0

40.0

60.0

80.0

100.0

V
al

ue
 L

oc
al

ity
 (

%
)



destructive interference.
The VPT entries also consist of two fields: avalid field,

which, again, can consist of a single valid bit or a full or par-
tial tag; and avalue history field, which contains one or more
32- or 64-bit values that are maintained with an LRU policy.
Thevalue history fields are replaced when an instruction is
first encountered (by its result) or whenever a prediction is
incorrect (by the actual result). The VPT replacement policy
is also governed by the CT prediction history to introduce
hysteresis and avoid replacing useful values with less useful
ones.

As a preliminary exploration of the VP Unit design space,
we analyzed sensitivity to a few key parameters, and then
selected a specific design point to use with our microarchi-
tectural studies (see Section 7). However, the intent of this
paper is not to explore the details of such a design; rather, our
intent is to explore the larger issue of the impact of value pre-
diction on microarchitecture and instruction-level parallel-
ism, and to leave such details to future work.

In Figure5, we show the sensitivity of the VPT hit rate to
size for each of our benchmarks. We see that for most bench-
marks, the hit rate levels off at or around 4096 entries,
though in several cases significant improvements are possi-
ble beyond that size. Nevertheless, we chose 4096 as our
design point, since going beyond that size (i.e. 4096 entries
x 8 bytes/entry = 32KB) seemed unreasonable without
severely impacting processor cycle time.

The purpose of the CTis to partition instructions into two
classes: those that are predictable by the VPT, and those that
are not.To measure its effectiveness at accomplishing this
purpose, we simulated six different CT configurations,
which are summarized in Table3. The state descriptions
specify the effect of each state on both value prediction as
well as the replacement of values in the VPT when new val-

FIGURE 4. Value Prediction Unit. The PC of the
instruction being predicted is used to index into the
VPT to find a value to predict. At the same time, the
CT is also indexed with the PC to determine
whether or not a prediction should be made. When
the instruction completes, both the prediction
history and value history are updated.

PC of pred. instr.
Classification Table Value Prediction Table

<v> <v> <value history><pred history>

Predicted ValuePrediction Result Updated Value

ues are encountered. The results for each configuration are
summarized in Figure6. From the results, we conclude that
the best choice for maximizing both the predictable and
unpredictable hit rates is the1024/3-bit configuration (this
is not surprising, since it has the highest hardware cost).
However, since the1024/2-bit configuration is only slightly
worse at identifying predictable instructions and is actually
better at identifying unpredictable ones (hence minimizing
misprediction penalty), and is significantly cheaper to
implement (it uses 1/3 fewer bits), we decided to use the lat-
ter in our microarchitectural simulation studies.1 We note
that the unpredictable hit rates of the 3-bit configurations are
worse (relative to the 1- bit and 2-bit configurations) than
their predictable hit rates, and conclude that this must be
because the 3-bit state assignments heavily favor prediction
(see Table3). Changing the state assignments might
improve these hit rates.

4.2.Verifying Predictions

Since value prediction is by nature speculative, we need
a mechanism for verifying the correctness of the predictions
and efficiently recovering from mispredictions. This mech-
anism is summarized in the example of Figure7, which

1.  Note that we do not claim that the hit rates shown in Figure6 are a
reliable predictor of system performance. Just as in branch prediction,
higher hit rates may not necessarily translate into fewer execution cycles.
Rather, detailed cycle-by-cycle simulation of the entire microarchitecture
is needed to verify performance improvements.

FIGURE 5. VPT Hit Rate Sensitivity to Size.
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shows the parallel execution of two data-dependent instruc-
tions. The producer instruction, shown on the left, has its
value predicted and written to its rename buffer during the
fetch anddispatch cycles. The consumer instruction, shown
on the right, reads the predicted value from the rename
buffer at the beginning of theexecute cycle, and is able to
issue and execute normally, but is forced to retain its reser-
vation station. Meanwhile, the predicted instruction also
executes, and its computed result is compared with the pre-
dicted result during itscompletion stage. If the values match,
the consumer instruction releases its reservation station. If
not, completion of the first instance of the consumer instruc-
tion is invalidated, and a second instance reissues with the
correct value.

5. Microarchitectural Models

In order to validate and quantify the performance impact
of the Value Prediction Unit, we implemented three cycle-
accurate simulation models, two of them based on the Pow-

FIGURE 6. CT Hit Rates. The Predictable Hit Rate
is the number of correct value predictions that were
identified as such by the CT divided by the total
number of correct predictions, while the
Unpredictable Hit Rate is the number of incorrect
predictions that were identified as such by the CT
divided by the number of incorrect predictions.

TABLE 3. Classification T able Configurations.

Configuration
(entries/bits)

State Descriptions

256/1-bit {0=no pred, 1=pred & no repl}

256/2-bit {0,1=no pred, 2,3=pred, 3=no repl}

256/3-bit {0,1=no pred, 2-7=pred, 5-7= no repl}

1024/1-bit {0=no pred, 1=pred & no repl}

1024/2-bit {0,1=no pred, 2,3=pred, 3=no repl}

1024/3-bit {0,1=no pred, 2-7=pred, 5-7= no repl}
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erPC 620 [28, 15]--one which matches the current 620
closely, and one, termed the 620+, which alleviates some of
its known bottlenecks--and an additional idealized model
which removes all structural dependences1. The number of
functional units and issue and result latencies for common
instruction types on the three machines are summarized in
Table4. Our idealizedinfinite model also implements the
following assumptions:
• Perfect caches
• Perfect alias detection and store-to-load forwarding
• Perfect instruction fetching (limited to one taken

branch per cycle).
• Unit latency for mispredicted branches with no fetch

bubble (i.e. instructions following a mispredicted
branch are able to execute in the cycle following reso-
lution of the mispredicted branch).
It is our intent that theinfinite model match theSP

machine model presented in [4], except for the branch pre-
diction mechanism, which is a 2048-entry BHT design with
a 2-bit saturating counter per entry, copied exactly from our
620 model. Table5 summarizes the performance of each of
our benchmarks on each of the three baseline machine mod-
els without value prediction.

5.1. PowerPC 620 Microarchitecture

The microarchitecture of the PowerPC 620 is summa-
rized in Figure8. Our model is based on published reports

1.  For reasons of efficiency, the instruction window of our simulator is
limited to 4096 active instructions. Hence, we did not truly model an infi-
nite number of resources, only one that approaches that number.

FIGURE 7. Example use of V alue Prediction
Mechanism. The dependent instruction shown
on the right uses the predicted result of the
instruction on the left, and is able to issue and
execute in the same cycle.
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on the PowerPC 620 [28, 15], and accurately models all
aspects of the microarchitecture, including branch predic-
tion, fetching, dispatching, register renaming, out-of-order
issue and execution, result forwarding, the non-blocking
cache hierarchy, store-to-load alias detection, and in-order
completion. To alleviate some of the bottlenecks we found
in the 620 design, we also modeled an aggressive “next-gen-
eration” version of the 620, which we termed the 620+. The
620+ differs from the 620 by doubling the number of reser-
vation stations, FPR and GPR rename buffers, and comple-
tion buffer entries; adding an additional load/store unit
(LSU) without an additional cache port (the base 620
already has a dual-banked data cache); and relaxing dis-
patching requirements to allow up to two loads or stores to
dispatch and issue per cycle. In addition, we added a VP Unit
that predicts register writes by keeping a value history
indexed by instruction addresses.

TABLE 4. Machine Model Specifications.

Instruction
Class

PowerPC 620/620+ Infinite

# FU/RS Issue
Lat

Result
Lat

I&R
Lat620 620+

Simple Int 2/4 2/8 1 1 1,1

Complex Int 1/2 1/4 1-35 1-35 1,1

Load/Store 1/3 2/6 1 2 1,1

Simple FP 1/2 1/4 1 3 1,1

Complex FP shared shared 18 18 11,

Br (pr/mispr) 1/4 1/8 1 0/1+ 1,0/1+

TABLE 5. Baseline Performance (IPC).

Bench
mark

620 620+ Infinite

cc1-271 1.05540 1.07260 6.40244

cc1 1.20880 1.30892 6.81969

cjpeg 0.99308 1.10503 10.11820

compress 1.15508 1.22739 5.66520

eqntott 1.35984 1.41655 5.58084

gawk 1.22254 1.23106 4.05087

gperf 1.61187 1.82027 7.00588

grep 1.07909 1.06635 2.02673

mpeg 1.62410 1.86998 7.99286

perl 1.00018 1.05241 8.03310

quick 0.97000 0.99904 4.91123

sc 1.24365 1.31691 6.75335

xlisp 1.15722 1.21509 8.30155

doduc 0.81249 0.83851 5.80629

hydro2d 0.80267 0.82059 5.53410

swm256 0.85172 0.88852 4.15299

tomcatv 0.91337 0.93081 5.77235

GM 1.09757 1.15473 5.84794

5.2. VP Unit Operation

The VP Unit predicts the values during fetch and dis-
patch, then forwards them speculatively to subsequent
dependent instructions via the 620’s rename buffers. Up to
four predictions can be made per cycle on our 620/620+
models, while the infinite model can make up to 4096 pre-
dictions per cycle. Dependent instructions are able to issue
and execute immediately, but are prevented from complet-
ing architecturally and are forced to retain possession of
their reservation stations until their inputs are no longer
speculative. Speculatively forwarded values are tagged with
the uncommitted register writes they depend on, and these
tags are propagated to the results of any subsequent depen-
dent instructions. Meanwhile, uncommitted instructions
execute in their respective functional units, and the pre-
dicted values are verified by a comparison against the actual
values computed by the instructions. Once a prediction is
verified, its tag gets broadcast to all active instructions, and
all the dependent instructions can either release their reser-
vation stations and proceed into the completion unit (in the
case of a correct prediction), or restart execution with the
correct register values (if the prediction was incorrect).
Since a large number of instructions can be in flight at the
same time (16 on the base 620, 32 on the 620+, and up to
4096 in ourinfinite model), verifying a predicted value can
take dozens of cycles or more, allowing the processor to
speculate multiple levels down the dependence chain
beyond the write, executing instructions and resolving
branches that would otherwise be blocked by data-flow
dependences.

5.3. Misprediction Penalty

The worst-case penalty for an incorrect value prediction
in this scheme, as compared to not predicting the value in
question, is one additional cycle of latency along with struc-

FIGURE 8. PPC 620 and 620+ Block Diagram.
Buffer sizes are shown as (620/620+).
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tural hazards that might not have occurred otherwise. The
penalty occurs only when a dependent instruction has
already executed speculatively, but is waiting in its reserva-
tion station for one of its predicted inputs to be verified.
Since the value comparison takes an extra cycle beyond the
pipeline result latency, the dependent instruction will reissue
and execute with the correct value one cycle later than it
would have had there been no prediction. In addition, the
earlier incorrect speculative issue may have caused a struc-
tural hazard that prevented other useful instructions from
dispatching or executing. In those cases where the depen-
dent instruction has not yet executed (due to structural or
other unresolved data dependences), there is no penalty,
since the dependent instruction can issue as soon as the
actual computed value is available, in parallel with the value
comparison that verifies the prediction. In any case, due to
the CT which accurately prevents incorrect predictions (see
Figure6), the misprediction penalty does not significantly
affect performance.

There can also be a structural hazard penalty even in the
case of a correct prediction. Since speculative values are not
verified until one cycle after the actual values become avail-
able, speculatively issued dependent instructions end up
occupying their reservation stations for one cycle longer
than they would have had there been no prediction.

6. Experimental Framework

Our experimental framework consists of three main
phases: trace generation, VP Unit simulation, and microar-
chitectural simulation. Traces are collected and generated
with the TRIP6000 instruction tracing tool, which is an early

FIGURE 9. 620 Speedups.
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version of a software tool developed for the IBM RS/6000
that captures all instruction, value and address references
made by the CPU while in user state. Supervisor state ref-
erences between the initiating system call and the corre-
sponding return to user state are lost. The instruction,
address, and value traces are fed to a model of the VP Unit
described earlier, which annotates each instruction in the
trace with one of three value prediction states: no prediction,
incorrect prediction, or correct prediction. The annotated
trace is then fed to a cycle-accurate microarchitectural sim-
ulator that correctly accounts for the behavior of each type
of instruction. All of our microarchitectural models are
implemented using the VMW framework [29], which
enables significant productivity gains by allowing us to
reuse and retarget existing models. The VP Unit model is
separated from the microarchitectural models for two rea-
sons: to shift complexity out of the microarchitectural mod-
els and thus better distribute our simulations across multiple
CPUs; and to conserve trace bandwidth by passing only two
bits of state per instruction to the microarchitectural simu-
lator, rather than the full 32/64 bit values being written.

One of the well-known shortcomings of trace-driven
simulation is that the non-architected side effects of specu-
lative instructions that never complete are not accurately
modeled. For our machine models, these side effects include
instruction and data cache perturbation due to speculative
fetches and loads as well as perturbation of the branch his-
tory table, return address stack, and branch target address
cache by speculative branch instructions. Fortunately, the
VPT and CT structures are modeled accurately since they
are never updated until completion. Our model also properly
accounts for all other structural resource contention caused



by speculative execution.

7. Experimental Results

We collected performance results for each of the three
machine models described in Section 5 (base620, enhanced
620+, and infinite) in conjunction with five different VP
Unit configurations, which are summarized in Table6.
Attributes that are markedperfect in Table6 indicate behav-
ior that is analogous toperfect caches; that is, a mechanism
that always produces the right result is assumed. More spe-
cifically, in the 1PerfCT, 4PerfCT and 8PerfCT configura-
tions, we assume anoracle CT that is able to correctly
identify all predictable and unpredictable register writes.
Furthermore, in the 4PerfCT and 8PerfCT configurations,
we assume a perfect mechanism for choosing which of the
4 (or 8) values stored in the value history is the correct one.
Moreover, we assume that the Perfect configuration can

FIGURE 10. 620+ Speedups.

TABLE 6. VP Unit Configurations.

Config-
uration

VPT CT

Entries
History
Depth

Entries
Bits/
Entry

Simple 4096 1 1024 2

1PerfCT 4096 1 ∞ Perfect

4PerfCT 4096 4/Perfect ∞ Perfect

8PerfCT 4096 8/Perfect ∞ Perfect

Perfect ∞ Perfect ∞ Perfect
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always correctly predict a value for every register write. We
point out that the only VP Unit configuration that we know
how to build today is theSimple one, while the other four are
merely included to measure the potential contribution of
improvements to both VPT and CT prediction accuracy.

7.1. PowerPC 620 Machine Model Speedups

In Figure9 we show the speedups that the VP Unit con-
figurations of Table6 obtain over the base PowerPC 620
machine model. TheSimple configuration achieves an aver-
age speedup of 4.5% (geometric mean), the1PerfCT con-
figuration improves that to 5.6%,4PerfCT to 6.7%,8PerfCT
to 7.1%, andPerfect all the way to 11.6%. Two benchmarks,
gawk andgrep, demonstrate outstanding performance gains,
even with the imperfect configurations, while the gains for
cjpeg andcompress are nonexistent, even with perfect CTs.
We attribute the poor showing ofcjpeg andcompress to their
lack of register value locality (see Figure2).

Detailed profiling ofgrep andgawk revealed that both
spend a significant portion of their time in thebmexec() and
dfaexec() routines, which implement string search routines
in loops with long dependence chains. For both benchmarks,
value prediction is frequently able to break these depen-
dence chains, resulting in significant additional parallelism.

The speedups for several benchmarks (cc1-271, grep,
perl, doduc,and hydro2d) are quite sensitive to CT accuracy
(i.e. a perfect CT produces significantly more speedup),
indicating a need for a more accurate classification mecha-
nism. In general, however, we are pleased with our results,
which show that value prediction is able to produce measur-



the Infinite machine model. TheSimple configuration
achieves an average speedup of 22.7% (geometric mean),
the1PerfCT configuration improves that to 34.0%,4PerfCT
to 36.9%,8PerfCT to 38.0%, andPerfect all the way to
69.8%. These numbers are very encouraging to us, since
they demonstrate that the ultimate performance potential of
value prediction remains largely untapped by current and
even reasonably-extrapolated next generation processors,
and that much work remains to be done to find more effec-
tive ways to apply it to realistic microarchitectures.

Several benchmarks that displayed measurable speedups
with the finite models show negligible speedup with the infi-
nite model (e.g.mpeg, perl, sc, xlisp), which leads us to
believe that they are not dataflow-limited by nature. How-
ever, the fact that they do show speedups with the finite
models highlights the fact that value prediction, by remov-
ing serialization constraints, allows a processor to more effi-
ciently utilize a limited number of execution resources.

We included the infinite model results to support our
assertion that value prediction can be used to exceed the
dataflow limit. Our infinite machine model measures a data-
flow limit, since, for all practical purposes (ignoring our
limit of 4096 active instructions), parallel issue in theinfi-
nite model is restricted only by the following three factors:
• Branch prediction accuracy
• Fetch bandwidth (single taken branch per cycle)
• Data-flow dependences

Value prediction directly impacts only the last of these,
and yet we are able to demonstrate average and peak speed-
ups of 22.7% and 198% (2.98x speedup forgawk) using our
Simple VP Unit configuration. Hence, we lay claim to
exceeding the dataflow limit.

8. VP Unit Implementation

An exhaustive design study of VP Unit design parame-
ters and implementation details is beyond the scope of this

able speedups on a current-generation microprocessor
design.

7.2.PowerPC 620+ Machine Model Speedups

In Figure10 we show the value prediction speedups over
the baseline 620+ machine model. TheSimple configuration
achieves an average speedup of 6.8% (geometric mean), the
1PerfCT configuration improves that to 8.4%,4PerfCT to
9.7%,8PerfCT to 10.2%, andPerfect all the way to 15.1%.
While the trends are similar to the speedups for the base 620
model, the speedups are higher across the board. We
attribute this to the fact that the increased machine parallel-
ism and additional hardware resources provided by this
model better match the additional instruction-level parallel-
ism exposed by value prediction. Furthermore, the hardware
is better able to tolerate the increase in structural hazards
caused by value prediction

Perhaps the most interesting observation about Figure10
(which applies to Figure9 as well) is the lack of any obvious
correlation to Figure2, which shows the value locality for
each benchmark. This underscores our earlier point that a
high hit rate (i.e. high value locality) does not necessarily
translate into a proportional reduction in execution cycles.
This follows from the fact that benchmarks with high value
locality may not necessarily be sensitive to result latency
(i.e. they are not data-flow-limited), whereas benchmarks
with lower value locality may be very sensitive, and hence
may derive significant performance benefits even if only a
small fraction of register writes are predictable. For exam-
ple,eqntott has significantly better value locality thangrep,
yetgrep obtains significantly more speedup from value pre-
diction..

7.3.Infinite Machine Model Speedups

In Figure11 we show the value prediction speedups over

FIGURE 11. Infinite Machine Model Speedups.

cc
1-

27
1

cc
1

cjp
eg

co
m

pr
es

s

eq
nt

ot
t

ga
wk

gp
er

f
gr

ep
m

pe
g

pe
rl

qu
ick sc

xli
sp

do
du

c

hy
dr

o2
d

sw
m

25
6

to
m

ca
tv

1.0

1.5

2.0

2.5

3.0

3.5

S
pe

ed
up

GM=1.227 Simple
GM=1.340 1PerfCU
GM=1.369 4PerfCU
GM=1.380 8PerfCU
GM=1.698 Perfect

6.296.02



paper. As stated earlier, some preliminary exploration of the
design space was conducted by analyzing sensitivity to a
few key parameters. We realize that the design selected is by
no means optimal, minimal, or even reasonably efficient,
and could be improved significantly with some effort. For
example, we reserve a full 64 bits per value entry in the VPT,
while most instructions generate only 32 or fewer bits, and
space in the table could certainly be shared between such
entries with some clever engineering.

However, to evaluate the feasibility of implementing a
VP Unit in a real-world processor, we compare it against one
alternative approach that consumes roughly the same
amount of chip space: doubling the first-level data cache to
64K by increasing the line size from 64 bytes to 128 bytes.
The results of this comparison, which are shown in
Figure12, make clear that, at least for this benchmark set,
value prediction delivers three to four times more speedup
than doubling the data cache for both the 620 and 620+
machine models.

Furthermore, the VP Unit has several characteristics that
make it attractive to a CPU designer. First of all, since the
VPT and CT lookup indices are available very early, at the
beginning of the instruction fetch stage, access to these
tables can be superpipelined over two or more stages.
Hence, given the necessary chip space, even relatively large
tables could be built without impacting cycle time. Second,
the design adds little or no complexity to critical delay paths
in the microarchitecture. Rather, table lookups and verifica-
tions are done in parallel with existing activities or are seri-
alized with a separate pipeline stage (value comparison).
Hence, it is unlikely that VP would have an adverse effect on
processor cycle time, whereas doubling the data cache
would quite likely do just that.

9. Conclusions and Future Work

We make four major contributions in this paper. First, we
present a taxonomy of speculative execution techniques.

FIGURE 12. Doubling Data Cache vs. VP.
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Second, we demonstrate that many instructions that write
general purpose or floating point registers, when examined
on a per-instruction-address basis, exhibit significant
amounts of value locality. Third, we describe value predic-
tion, a data-speculative microarchitectural technique for
capturing and exploiting value locality to reduce data-flow
restrictions on parallel instruction issue. Fourth, we demon-
strate that value prediction can be used to exceed the data-
flow limit by 23% (geometric mean), as measured on a
processor model with no structural hazards. We are very
encouraged by our results. We have shown that measurable
(5% on average for the 620, 7% on average for the 620+) and
in some cases dramatic (up to 33% on the 620 and 54% on
the 620+) performance gains are achievable with simple
microarchitectural extensions to current-generation and rea-
sonably-extrapolated next-generation microprocessor
implementations.

We envision future work proceeding on several different
fronts. First of all, we believe that the relatively simple tech-
niques we employed for capturing value locality could be
refined and extended to effectively predict a larger share of
register values. Those refinements and extensions might
include allowing multiple values per static instruction in the
prediction table by including branch history bits or other
readily available processor state in the lookup index; or
moving beyond history-based prediction to computed pre-
dictions through techniques like value stride detection. Sec-
ond, our classification mechanism could also be refined to
correctly classify more instructions and extended to control
pollution in the value table (e.g. removing instructions that
are not latency-critical from the table). Third, significant
engineering work is needed to optimize our VP Unit design
and reduce its implementation cost and potential impact on
processor cycle time. Fourth, the microarchitectural design
space should be explored more extensively, sincevalue pre-
diction appears to dramatically alter the available program
parallelism in ways that may not match current levels of
machine parallelism very well. Fifth, feedback-directed



compiler support for rescheduling instructions for different
latencies based on their value locality may also prove ben-
eficial. Finally, more aggressive approaches tovalue pre-
diction could be investigated (e.g. speculating down
multiple paths in the value space, or predicting writes to con-
dition code and other special purpose registers). In short,
there is a great deal of interesting future work that is related
to value prediction and the exploitation of value locality.
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