
A Case for Clumsy Packet Processors

Arindam Mallik and Gokhan Memik

Department of Electrical and Computer Engineering, Northwestern University

{arindam, memik}@ece.northwestern.edu

Abstract

Hardware faults can occur in any computer system.

Although faults cannot be tolerated for most systems (e.g.,

servers or desktop processors), many applications (e.g.,

networking applications) provide robustness in software.

However, processors do not utilize this resiliency, i.e.,

regardless of the application at hand, a processor is expected

to operate completely fault-free. In this paper, we will question

this traditional approach of complete correctness and

investigate possible performance and energy optimizations

when this correctness constraint is released. We first develop a

realistic model that estimates the change in the fault rates

according to the clock frequency of the cache. Then, we

present a scheme that dynamically adjusts the clock frequency

of the data caches to achieve the desired optimization goal,

e.g., reduced energy or reduced access latency. Finally, we

present simulation results investigating the optimal operation

frequency of the data caches, where reliability is compromised

in exchange of reduced energy and increased performance.

Our simulation results indicate that the clock frequency of the

data caches can be increased as much as 4 times without

incurring a major penalty on the reliability. This also results

in 41% reduction in the energy consumed in the data caches

and a 24% reduction in the energy-delay-fallibility product.

1. Introduction

Over the last decade, in spite of the complexities of new

manufacturing technologies and increasingly complicated

architectures, designers have been able to steadily push the

limits of performance of microprocessors. This is achieved

through optimizations at the architectural level (such as

aggressive pipelining strategies) and at the circuit level

(such as smaller feature sizes). As we move into deeper

sub-micron technologies, the complexity of pushing the

circuit performance has become an important obstacle.

Increased heat dissipation and sub-micron effects are two

examples of the limitations on the optimizations at the

circuit level. In this work, we design a micro-architectural

optimization to aid the circuit designers overcome such

hurdles. Particularly, we will allow the clock frequency of

the data cache to go beyond the specifications of the circuit

designer. Instead of performing this “over-clocking”

uninformed, we will first explore the relation between the

operating frequency (i.e., clock frequency) of a cache

structure and its robustness. As we increase the clock

frequency, the probability of a fault in the data cache

accesses increases. This may result an erroneous execution

of the applications. Hence, we name our proposed

architecture a clumsy packet processor. In our approach,

we first develop a model for estimating the hardware faults

when the clock frequency is changed. This model will

allow us to develop ultra-low power cache structures. In

addition, the delay of the components will also be reduced.

The disadvantage of this optimization is that the probability

of hardware failure reduces the reliability of the processor.

Overall, our goal is to investigate the trade-offs at the

application-level, architecture-level, and circuits

simultaneously in the context of packet processors. We use

the term packet processor for any type of processor

handling packets in a networking hardware. These range

from network processors (NPs) to ASICs and general-

purpose microprocessors used in networking hardware.

In all computer processors there is an inherent

possibility of faults1 being introduced into the system.

These faults may arise from any of several sources such as

adverse environmental conditions [26], physical hardware

defects, electronic noise or logical design flaws [9].

Moreover, this fault problem is expected to be even more

pressing in the future due to aggressive scaling-down of the

supply voltages (Vdd), increasing clock rates, and the use of

flip-chip packaging. While it is critical to put every effort

for avoiding these faults by careful circuit design and

packaging, they can still occur and need to be addressed.

Hence, we should consider reliability trade-offs even

during the design of the processors, which will operate

completely under the specified conditions.

The effect a fault has on a system is largely dependent

on the application in question. In most cases, omitting

faults is not an option, i.e., the processor should be

designed to capture and eliminate faults. This is the

inherent nature of the user expectation. However, for other

domains—such as networking and media applications—a

certain level of error is acceptable, and the integrity of the

system’s behavior can be maintained despite potential

faults. This is also related to the properties of the systems:

networking software/systems are implemented with the

assumption that the hardware can fail (e.g., routers can

drop packets).

Regardless of a fault’s source, the system will operate

differently depending on the corrupted data. Electronic

noise may lead to the corruption of a single piece of

1
A fault is an incorrect execution of the hardware. An error is defined to

be an incorrect outcome of an application due to a fault.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

transient data and affect behavior only momentarily. On the

other hand, a static data element might be damaged—such

as a lookup table—disrupting the system for a longer

period of time and perhaps making recovery from the error

more difficult. In this paper we analyze the susceptibility of

a data cache to faults and the resulting behavior for packet

processors. Particularly, we study several networking

applications and define error metrics for each of these

applications. We first make the distinction between the

control plane and data plane tasks in these applications and

measure the error behavior of the applications under

different operation frequencies in these segments. Then, we

perform a study where we introduce cache faults and

measure their effect on these applications. Our goal is to

extract optimal execution properties of the caches for

different applications. We also present a scheme that

dynamically adjusts the processor properties to achieve

reduced energy consumption and/or increased performance.

Specifically, our contributions in this paper are:

We propose the design and utilization of clumsy packet

processors,

We find a realistic model that determines the

probability of a fault for a given cycle time of a cache

and show that the delay of the cache and the energy

consumed by the cache can be reduced significantly

without incurring a large penalty on faulty behavior,

We discuss simulation results investigating an optimal

point for trading off the reliability for reducing cycle

time of the data cache in a representative architecture,

We implement a scheme to dynamically adjust the

operation frequency of the data cache to achieve the

desired objective (e.g., reduced energy).

There is also an increasing motivation to utilize NPs in

wireless systems. In such systems, energy consumption is

arguably the most important design criteria. Our

optimization scheme reduces the execution delay and the

energy consumption simultaneously.

The types of errors examined are similar to those in the

aforementioned cases. One type is considered to be a

volatile error, affecting data only temporarily. In general

this type of error will only concern a limited amount of

data, and will not noticeably affect performance provided

that the error does not continually reproduce. The other

type is a nonvolatile error, which has an effect on a static

data structure (e.g., the routing table). This type of error

will have a lasting effect on the system. Our goal in this

paper is to define data structures in these applications that

can be used to measure their error behavior.

The rest of the paper is organized as follows. In the next

section, we present the applications studied and discuss the

application-specific error metrics we have defined for each.

Section 3 explains the analytical model we have developed

to estimate the hardware faults for various clock

frequencies of the data cache. Section 4 presents the overall

architecture and a dynamic scheme for adjusting the clock

frequency. Section 5 discusses the simulation results.

Section 6 gives an overview of the related work and

Section 7 concludes the paper with a summary.

2. Applications and error measurement

In this section, we discuss the networking applications

studied in this paper and present the error metrics used for

each application. We selected seven applications from the

NetBench [13] suite. The applications are listed in Table I.

NetBench is a benchmarking suite designed for NPs. It

contains applications representing level 3 tasks (e.g., route)

as well as higher-level programs.

As a metric of “reliability”, we first identify important

data structures and outputs of key function units for each

application. Our goal is to make a comparison of these data

values between the correct execution and an execution with

faults (Section 5.2). Thereby, we will measure the

probability of an error in the application. Some of these

data structures have more impact on the overall output than

others (e.g., a routing table error is more important than an

error in the ttl value calculation). However, in this study we

do not assign weights to them. Note that this type of

measurement assumes that the application executes to

completion even under faults. As we are executing

erroneous code (i.e., a code that will read erroneous data)

and the data values are changed, it is possible that the

application might fall into an infinite loop or even cause the

system to crash. This is of interest to us for measuring the

effects of faults. Therefore, an error, which prevents a

complete execution is a special one called a fatal error.

Table I. Networking Applications and Their Properties

Fallibility Factor
App.

No. of inst.

simulated

[M]

No. of

cache acc.

[M]

Cache

miss

rate [%] Cr=0.5 Cr=0.25

crc 145.8 59.8 1.2 1.007 1.052

tl 6.9 3.9 9.2 1.016 1.135

route 14.2 7.1 5.8 1.001 1.018

drr 12.9 7.9 5.7 1.002 1.008

nat 11.4 5.6 7.1 1.004 1.077

md5 209.1 73.2 3.8 1.055 1.261

url 497.0 249.1 11.2 1.003 1.018

One common property of all the applications is the

separation of control plane and data plane tasks. In all the

applications, the implementation initially performs the

control plane tasks. This is followed by the data plane

tasks. We have identified each of these segments in the

applications.

CRC: The CRC-32 checksum calculates a checksum

based on a cyclic redundancy check. The code is available

in the public domain [6]. The errors are measured using

two data structures: the crc table and the crc accumulator

value calculated for each packet. Note that the errors in the

crc table are more serious, because they can potentially

affect multiple packets.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

TL: TL is the table lookup routine common to all routing

processes. In this application, a radix-tree routing table is

implemented. The code segment is from FreeBSD

operating system [18]. The data values in the TL

application are the radix tree nodes traversed and the

RouteTable entry for each packet.

ROUTE: Route implements IPv4 routing according to

RFC 1812 [4]. When a router receives a packet, it has to

decide the next network hop. The values observed in the

route application are the entries in the created RouteTable,

the checksum value, the ttl value, and the radix tree entries

traversed for each packet.

DRR: Deficit-round robin (DRR) scheduling [24] is a

scheduling method implemented in several switches today.

In DRR, all the connections through the router have

separate queues for a fair scheduling. The implementation

is based on the algorithm by Shreedhar and Varghese [24].

The data values in the DRR application are the entries in

the created RouteTable, the radix tree entries traversed for

each packet, the value of the deficit list for each packet, and

the deficit information read for the packet.

NAT: Network Address Translation (NAT) is a common

method for IP address management. NAT operates on a

router, usually connecting two networks, and translating

the private (not globally unique) addresses in the internal

network into legal addresses before packets are forwarded

onto the public network. The data values used for

measuring errors in NAT are initial IP source address,

value in the interface for translation, translated IP source

address, the IP destination address after translation, the

entries in the NAT table, and the radix tree entries traversed

for each packet.

MD5: Message Digest algorithm (MD5) creates a

signature for each outgoing packet, which is checked at the

destination [21]. The implementation is from RSA Data

Security, Inc. [22]. The errors in MD5 are binary errors

URL: URL implements URL-based destination

switching, which is a commonly used content-based load

balancing mechanism. In URL-based switching, all the

incoming packets to a switch are parsed and forwarded

according to URL. The data structures in the URL

application that are observed are: URL table entries, final

IP destination address, RouteTable entries, the checksum

value, the ttl value, and the radix tree entries traversed for

each packet

3. Fault model and clock frequency

Injection of noise into a circuit node causes a signal

deviation at that node. This signal deviation will affect the

operation of the circuit or circuit block driven by the victim

net, and may lead to different kinds of unexpected behavior

including functional failure or logic faults. The parameters

that determine if there will be a logic fault are (i) the

amplitude and the duration of the noise pulse, (ii) the type

of the victim node and the circuit connected to the victim

node, and (iii) the signal condition on the affected node.

Higher clock rates limit the achievable voltage swing at a

circuit node (see Figure 1(a)), since there is insufficient

time to fully charge or discharge the load capacitance. Cfs

in Figure 1(a) is clock cycle time required to obtain the full

voltage swing (Vfs) from zero to Vdd. Note that the supply

voltage is kept constant at Vdd.

Figure1(a). Voltage at circuit node;

Figure1(b). Voltage swing-frequency curve

Figure 1(b) illustrates the decrease of voltage swing (Vs)

with the decrease of clock cycle time (C). The clock cycle

time and the voltage swing are normalized against the clock

cycle at full swing (Cfs) and the full swing voltage (Vfs),

respectively. The relative voltage swing is defined as Vsr =

Vs/Vfs and the relative cycle time Cr = C/Cfs. If the voltage

swing changes, all the signals become faster by the same

ratio independent of the capacitive load at a circuit node.

This shape correctly maps the change of actual signals on-

chip with time. The curve in Figure 1(b) has been produced

by simulating a chain of gates driven by an inverter at

different frequencies with constant supply voltage Vdd.

Figure 2 (a) A static RAM cell; (b) Noise Immunity Curve

With a reduced signal level, a circuit node is more likely

to suffer from logic failure due to a certain level of noise.

The main advantage of static logic over dynamic logic is its

robustness under the influence of noise. But static logic

may also suffer from logic failure if there is a feedback

loop. A 6-transistor static RAM cell (as in Figure 2(a)),

which is a common building block of caches, has a

feedback loop that cannot recover from noise-induced

faults. In these types of circuits there are three possible

points where noise can be injected: the input, the clock and

the feedback loop. Of these three points, the feedback loop

is the most sensitive to noise. A set of noise immunity

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative cylce time (Cr)

re
la

ti
v
e

v
o
lt

ag
e

sw
in

g
(V

sr
)

at Cfsat 0.3Cfs

Vfs
0.8Vfs 0.78Vfs

0.6Vfs

0.56Vfs

0.39Vfs
0.61Vfs0.5Vfs

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

curves for the SRAM cell in Figure 2(a) is presented in

Figure 2(b), which plots the relative noise duration (Dr)

against the relative noise amplitude(Ar) at various voltage

swings. SPICE simulations were used to determine the set

of noise amplitudes and durations that cause a logic failure

for different voltage swing levels. The area above each

curve in Figure 2(b) represents the amplitudes and

durations of a noise pulse that can cause logic failure. The

relative noise amplitude is defined as Ar = A/Vfs, where A is

the amplitude of the noise pulse, and the relative duration

of noise Dr = D/Cfs, where D is the duration of the noise

pulse. The highest curve is for the full voltage swing Vfs

(swing from zero to Vdd). The lower curves illustrate noise

immunity at voltage swings smaller than the full swing.

Figure 3. Noise level at various switching combinations.

It is important to note that the noise amplitudes and

durations are not equally probable. The probability of

smaller noise amplitudes and noise durations are higher

than larger amplitude pulses with longer duration. Consider

a victim line, which has n neighbors significantly coupling

to it. For noise injection into the victim line the total

number of switching combinations of the neighboring lines

is 22n. Only one switching combination results in the worst-

case noise amplitude, which occurs when all the

neighboring lines switch in the same direction. However,

the number of cases where the effects of most of the

neighboring lines cancel each other resulting in very small

amplitude of noise is very large. We have found the

number of switching cases between these two limiting

cases, which result in a certain noise amplitude range. The

results are plotted in Figure 3. This distribution can be

approximated very well by an exponential as in (1).

Number of cases =
AK

eK 2
1 (1)

The exact constant K1 and K2 depends on the number of

lines (n) coupling to the victim line. For large n (greater

than 16) this curve saturates to continuous probability

distribution of the form

rA
erAP

8.28
*8.28)(where rA0 (2)

10)(rDP for 1.00 rD

0)(rDP for rD1.0
(3)

The probability distribution of noise duration can be

given by (3). The reason Dr is uniformly distributed

between 0 and 0.1 is that this is the range of rise time on

chip as a ratio of the cycle time. The noise duration is

limited by these rise times, since noise occurs due to

capacitive and/or inductive coupling of switching line to a

victim line. Once an aggressor signal settles, the noise

pulse ends. Using equation (2) and (3), the probabilities

(PE) of logic failure for an SRAM cell at different voltage

swings have been obtained by the integration of the

probabilities of noise pulse above each curve of Figure

2(b). Figure 4 plots the probabilities of logic failure against

the relative voltage swings (Vrs). The probability number at

full voltage swing are consistent with industrial and test

data [23].

Figure 4. Probability of a fault at various voltage levels

Figure 5. Probability of a fault at different cycle times

The probability of fault versus cycle time in Figure 5

has been obtained by the voltage swing variable from the

two relations: cycle time versus voltage swing (Figure 1(b))

and probability of fault versus voltage swing (Figure 4).

The relative cycle time Cr is always less than 1 for lower

voltage swings. Similarly we can define relative frequency

Fr = f/ffs = 1/Cr, where f is the frequency and ffs is the

frequency at full voltage swing. PE is a single bit

probability of fault and is a function of how fast a circuit is

driven by allowing the voltage swing to decrease. The

formula below shows the relation between PE and Cr and

Fr.

67*6

1

7

2

2

*10*59.2*10*59.2
r

r

F

C

E eeP (4)

These formulae have been found by curve fitting for the

data of the above curves. The curves in Figure 5, showing

the data and the curve fitted formula, illustrate the accuracy

of the formula.

4. Clock variation and fault detection

In this paper, we assume a processor architecture similar

to a generic Network Processor (NP). We model a

relatively simple execution core with a local instruction

cache, a local data cache, and a shared level-2 cache.

Although we apply our ideas to a packet processor, they

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

can be applied to any type of processor that executes

applications with fault resiliency (e.g., media processors).

One important aspect of the cache accesses is whether to

include a fault detection scheme or not. In Section 5, we

will experiment with a processor architecture where cache

blocks are protected with parity and a processor

architecture without any fault detection scheme. We are

modifying the clock frequency of the level-1 cache only.

Hence, we assume that the data in the level-2 cache will be

correct unless an incorrect value from level-1 is written to

it. Therefore, if a fault is detected, we can access the data

from the level 2 cache. As the error correction techniques

(such as Hamming codes) would incur unnecessary

complication on the design and energy consumption, they

are not considered in our studies.

Once a fault is detected, we have different options of

recovery. A fault might be caused during the read—in

which case the actual data in the cache is actually correct—

or during the write to the cache . We cannot determine the

exact source of the fault. The first technique we utilize

assumes that every fault observed is a write fault.

Therefore, for every fault detected, it invalidates the cache

block2 and starts accessing the level 2 cache. This strategy

is called a one-strike strategy. The second strategy accesses

the cache after a fault and if another fault is detected, it

invalidates the cache block and accesses the level 2 cache.

This strategy is called a two-strike strategy. Similarly, a

three-strike strategy accesses the level 1 cache twice before

invalidating the block. Even if the processor employs a

fault detection and recovery mechanism, there is still a

chance of undetected faults. Therefore, the application can

behave erroneously.

Over-clocking the cache can be utilized during the

design process of a processor. However, this is hard to

achieve for programmable processors (such as Network

Processors), because different applications might require

different levels of reliability. Therefore, in the next section

we also present results for a dynamic frequency adaptation

technique. In this scheme, the processor adapts the

operation frequency of the data cache according to the

faults it has observed. Particularly, it records the number of

parity failures during execution epochs. For our

simulations, after the completion of the processing of 100

packets, the processor makes a decision for whether to

increase the frequency, to keep it in its current state, or to

decrease it depending on the number of faults. Note that the

possible frequency settings are discrete. Hence, when the

frequency is changed, it will be set to the next frequency

level available. Whenever a frequency change is made, the

number of faults in the previous epoch is stored. During the

decision, if the number of faults is more than X1% of the

last stored fault rate, the frequency is reduced. If the fault

2
If the cache has sub-blocks, only the corresponding portions of the cache

block can be invalidated and accessed from the level 2 cache. However, in

this paper we do not study such cache structures.

rate is less than X2% of the last stored rate, the frequency is

increased. For all other rates, the frequency is not changed.

A detailed study reveals that setting X1 to 200% and X2 to

80% overall results in the best performance of the dynamic

scheme. This also relates to the fault model we have

developed in Section 3. As shown in Figure 5, the clock

cycle can be reduced by almost 60% before we observe a

major increase in the number of faults. Depending on the

packet processing time, the X1 and X2 values will lean

towards increasing the frequency until a significant

increase in the number of faults.

Most networking applications have application errors

proportional to the number of faults occurred during the

processing of a packet. The dynamic frequency adaptation

technique observes the packet processing and makes the

decision for a constant number of packets (instead of time).

This allows the system to dynamically adjust to the

properties of the application. This information is usually

available to the processor cores.

Note that dynamically varying the clock frequency of

the cache is easier to implement than varying the supply

voltage [11]. This can be achieved while the cache is being

accessed and there is no need to flush the cache. In

accordance with this, we incur a 10-cycle penalty whenever

the frequency is dynamically varied. In addition, the

hardware to implement variable clock rate is also quite

simple. We assumed that the frequency can be increased by

50%, 100%, or 300%, corresponding to Cr values of 0.75,

0.5, and 0.25.

4.1 Comparison Metric

We need to introduce a measurement index to determine

the “optimal” point of operation. Since, the processor is

going to make errors, traditional approaches such as delay,

energy, or energy-delay product would be insufficient. We

define the metric energy-delay-fallibility product, which is

the product of the energy consumption, the execution

cycles of the application, and the “fallibility” factor of the

processor. The energy consumption is the energy consumed

in the whole processor during the execution of the

application. The fallibility is defined as the probability of

the processor making an error for the application. One can

use the number of hardware faults that are not detected to

measure the fallibility. However, due to the application-

specific nature of our target architectures, we use

application errors in the fallibility factor as discussed in

Section 2. Particularly, fallibility corresponds to the

fraction of packets that have any type of errors. We also

pay special attention to the fatal errors. Since fatal errors

prevent other packets to be processed3, we calculate the

number of packets successfully processed till the

occurrence of a fatal error. The reported energy-delay-

3
Majority the fatal errors we have observed during our simulations are

because the execution gets stuck in an infinite loop. For such an error, the

processor can be modified such that we can recover from the error.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

fallibility factors are based on this number. We report the

probability of a fatal error in addition to the energy-delay-

fallibility product. Particularly, we record the fatal error

probability with increasing clock frequency. Increased

clock frequency makes system more susceptible to

termination. Hence, less number of packets can be

processed successfully at higher clock frequency.

Although we argue that the packet processors can have

faults, frequent faults are certainly undesirable considering

the system behavior. Therefore, instead of giving the same

weight to each component in energy-delay-fallibility

product, one can give more weight to the fallibility.

Particularly, the product can be calculated as energyk-

delaym-fallibilityn according to the needs of the

architecture. In our studies, since delay and fallibility are

more important than energy, we set k to 1, m to 2, and n to

2. The energy-delay-fallibility product can be defined for a

single component (e.g., cache). However, in this paper, we

measure the metric for the applications.

5. Experimental results

5.1 Simulation Environment

We used the SimpleScalar/ARM [7] for our simulations.

We modified the processor configuration to model a

processor similar to execution cores in a variety of Network

Processor architectures. Particularly, we simulate a

processor similar to StrongARM 110 with 4 KB, direct-

mapped L1 data and instruction caches with 32-byte line-

size, and a 128 KB, 4-way set-associative unified L2 cache

with a 128-byte line-size. The level 1 data cache has 2-

cycle latency and the level 2 cache latency is 15 cycles. We

first modified the applications to mark the values of data

structures mentioned in the previous section. Then, we

have modified the simulator to introduce random faults into

the execution and to simulate the effects of the introduced

faults. We chose an initial fault probability of 2.59*10-7 per

bit (in accordance with the formula (4)). This fault rate is

similar to the rates reported by Shivakumar et al. [23]. The

probability of a two-bit fault is set to 2.59*10-9, and the

probability of three-bit faults is 2.59*10-10 in accordance

with reported correlation between single-bit and multiple

bit faults [12]. For the higher clock rates, we increased the

fault rate in steps according to formula (4).

5.2 Application Error Behavior

This section describes the simulation results observed

for the networking applications. The experiments in this

section measure the effect of different fault rates on the

data structures discussed in Section 2.

Figure 6 presents the results for the route application.

For the results presented in Figure 6(a), we only introduce

faults during the control plane tasks. Similarly, for the

results in Figure 6(b), faults are introduced only during data

plane tasks. For the results in Figure 6(c), faults are

introduced during both the control plane and data plane

tasks. Intuitively, the faults in the control plane tasks

should have significantly more effect on the application

behavior. This can be observed for initialization error when

Figure 6(a) and Figure 6(b) are compared. However, for

most error types, the difference is not drastic. This behavior

is due to the shorter length of the control plane tasks

compared to that of the data plane tasks. Therefore,

although each fault happening during the control plane

tasks has larger impact on the error rate compared to the

faults during data plane tasks, the overall impact of varying

the clock rate during the control plane tasks is not

drastically more on the application errors. This is an

encouraging result, because in many cases the processor

will not have information about the type of task it is

executing. Hence, it might be complicated to have different

clock rates for different tasks. Since the results indicate that

the effect of faults during control plane tasks is tolerable,

we can “safely” vary the clock frequency.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

100% 75% 50% 25%

Relative Clock Cycle

E
rr

o
r
P
ro

b
a
b
il
it
y

Initialization Error

Checksum Value

TTL Value

RouteTable Entry

Fatal Error

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

100% 75% 50% 25%

Relative Clock Cycle

E
rr

o
r
P
ro

b
a
b
il
it
y

Initialization Error

Checksum Value

TTL Value

RouteTable Entry

Fatal Error

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

100% 75% 50% 25%

Relative Clock Cycle

E
rr

o
r
P
ro

b
a
b
il
it
y

Initialization Error

Checksum Value

TTL Value

RouteTable Entry

Fatal Error

 Figure 6. Error Probability of route application

Figure 7 presents the results for the nat application.

Similar trends can be observed for this application as well.

Particularly for the nat application we see that errors due to

faults during data plane tasks have more impact on the

application behavior than the faults during control plane

tasks. The results for the remainder of the applications are

not presented due to their similarities with the presented

results. However, all of them show identical characteristics

of the applications under erroneous execution. Overall, all

the applications can sustain faults to varying extents. For

smaller fault rates we observed the execution of the

(a) Faults introduced in control plane

(b) Faults introduced in data plane

(c) Faults introduced in both data and control planes

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

route drr nat tl url md5 crc avrg

Applications

P
ro

b
a
b
il
it
y

100% 75%

50% 25%

application without any observable error in the data

structures and the application output. For larger fault rates,

on the other hand, we encountered fatal errors and errors in

the data structure values.

0

0.002

0.004

0.006

0.008

0.01

0.012

100% 75% 50% 25%
Relative Clock Cycle

E
rr

o
r
P
ro

b
a
b
il
it
y

Initialization Error

Interface Value

Destn Add

Radix Tree Entry

Translated IP Address

Fatal Error

0

0.005

0.01

0.015

0.02

0.025

100% 75% 50% 25%

Relative Clock Cycle

E
rr
o
r
P
ro

b
a
b
il
it
y

Initialization Error

Interface Value

Destn Add

Radix Tree Entry

Translated IP Address

Fatal Error

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

100% 75% 50% 25%

Relative Clock Cycle

E
rr
o
r
P
ro

b
a
b
il
it
y

Initialization Error

Interface Value

Destn Add

Radix Tree Entry

Translated IP Address

Fatal Error

 Figure 7. Error Probability of nat application

With increase in the fault rates, the applications start

producing erroneous outputs. Nevertheless, we see that the

clock rate of the data cache can be increased up to 4 times

without causing a major impact on the application output.

Particularly, the largest error behavior we have observed in

our simulations for the md5 application, when the relative

clock frequency is set to 400%. For this particular case, the

fallibility factor is 1.261. The fallibility factor of all the

studied applications for the 0.5 and 0.25 relative clock rates

are presented in the right-most columns of Table 1. The

reasons we can increase the clock frequency as much as 4

times are two-fold. First, since the clock frequency is

initially set too low by the circuit designer to be safe,

increasing the clock frequency initially does not have a

major impact on the fault probability. In addition, during

the simulations, we have seen that not all the faults have an

impact on the application output. On average we have only

observed an error for approximately 15% of the faults.

5.3 Fatal Error Probability Measurements

We recorded the probability of a fatal error with

increased clock frequency. Unlike other errors, fatal errors

may destroy the system integrity. This prompts to ensure

that the clock frequency should not reach a value that may

result a high probability of fatal error. Figure 8 depicts the

fatal error probability for different applications when there

is no error detection scheme employed. Similar to the

fallibility results, we see that the fatal error probability is

zero for smaller increases in the clock rate. As we exceed

100% increase in the clock rate, we start seeing an impact

on the fatal error probability.

Note that the fatal error probabilities in Figure 8 are

measured for the base architecture, which does not employ

any error detection scheme. Error detection schemes reduce

the probability of fatal errors dramatically. In fact, during

the simulations of the architectures with error detection, we

have never encountered a fatal error.

Figure 8. Fatal error probabilities for different clock rates.

5.4 Energy-Delay-Fallibility Measurements

The simulations presented in this section introduce

faults during both the control plane and the data plane. As

we have discussed in Section 4.1, different techniques are

compared using the energy-delay2-fallibility2 product. To

measure the energy consumed during the applications we

use three models. For the energy consumption of the

overall processor, we used the results presented by

Montanaro et al. [14]. The energy consumed by the caches

when they are operated with full frequency is found using

CACTI [28]. When the clock frequency is increased, the

voltage swing decreases. The energy consumed by the

cache linearly shrinks with this decrease in the voltage

swing. Therefore, we used the model presented in Figure

1(b) to find the relative voltage swing for different clock

rates. Particularly, the energy consumed by the cache

reduces by 45%, 19%, and 6% for relative clock rates of

0.25, 0.5, and 0.75, respectively. To estimate the energy

consumed by the error detection scheme, we use the results

presented by Phelan [17]. The level-1 data cache consumes

16% of the overall chip energy. Parity increases the energy

consumed during reads by 23%. Similarly, the energy

consumed during writes increases by 36%. We assumed

that each word (32-bits) is protected by a single parity bit.

To measure the delay in the applications, we calculate the

average number of cycles spend for each packet. Note that

we cannot use the total number of execution cycles,

because some simulations do not finish to completion due

to fatal errors. The fallibility factor is calculated as

explained in Section 4.1.

(c) Faults introduced in both data and control planes

(b) Faults introduced in data plane

(a) Faults introduced in control plane

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

Figure 9: Energy-delay
2
-fallibility

2
 product for the simulated configurations, the dynamic configuration, and the static

configurations with Cr = 1, 0.75, 0.5, and 0.25: (a) For the route, (b) for the crc application. The bars represent the
relative energy-delay

2
-fallibility

2
 product with respect to Cr = 1 with no-detection.

Figure 10: Energy-delay
2
-fallibility

2
 product for the simulated configurations, the dynamic configuration, and the static

configurations with Cr = 1, 0.75, 0.5, and 0.25: (a) For the md5, (b) for the tl application. The bars represent the relative
energy-delay

2
-fallibility

2
 product with respect to Cr = 1 with no-detection.

Figure 11: Energy-delay
2
-fallibility

2
 product for the simulated configurations, the dynamic configuration, and the static

configurations with Cr = 1, 0.75, 0.5, and 0.25: (a) For the drr, (b) for the nat application. The bars represent the relative
energy-delay

2
-fallibility

2
 product with respect to Cr = 1 with no-detection.

Figure 12: Energy-delay
2
-fallibility

2
 product for the simulated configurations, the dynamic configuration, and the static

configurations with Cr = 1, 0.75, 0.5, and 0.25: (a) For the url, (b) for the average application. The bars represent the
relative energy-delay

2
-fallibility

2
 product with respect to Cr = 1 with no-detection.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it
y

^
2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll
ib

il
it

y
^

2

1 0.75

0.5 0.25
dynamic

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no detection one-strike two strikes three strikes

Recovery Scheme

E
n

e
rg

y
-D

e
la

y
^

2
-F

a
ll

ib
il

it
y

^
2

1 0.75

0.5 0.25
dynamic

2.1 2.5 2.5

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

Results for the route application are summarized in

Figure 9(a). For route application, we see that the best

technique is the static technique with 50% relative clock

cycle when two-strike recovery is used. For the crc

application (Figure 9(b)), on the other hand, the best

configuration is the dynamic frequency adaptation with

three-strike recovery. When we compare these two

applications, we see that crc is more resilient to faults,

because due to its streaming nature it already has a large

cache miss rate. Therefore, additional cache accesses due

to errors have less effect on the execution time. As

explained in Section 4, three-strike eliminates some of the

incorrect accesses to the level 2 cache that might happen

by the two-strike scheme. Therefore, three-strike

improves the performance for the crc application because

it reduces the pressure on the level 2 cache.

 Figure 10(a) and (b) present the results for the md5

and tl applications, respectively. We see that similar to

the route application, the static technique with 50%

relative clock cycle and two-strike recovery scheme gives

the best result. For the tl application, we see that the

energy-delay2-fallibility2 product is reduced by as much

as 43%. Tl application has a large fraction of load

instructions. Therefore, reducing the cache access latency

has a significant impact on the overall performance.

One interesting result with the tl application (Figure

10(b)) is the inability of the dynamic scheme to reduce

the energy-delay2-fallibility2 product for the one-strike

scheme. The reason for this is due to some initial errors,

the dynamic scheme gets late into the 0.5 region. Since

the total number of instructions executed for this

application is small, the overall energy-delay2-fallibility2

remains high. The results presented in Figure 11(a) and

(b) are for the drr and the nat applications.

Figure 12(a) presents the results for the url application.

Figure 12(b), on the other hand, gives the average of all

the simulated applications. Overall, we see that the static

technique with 50% relative clock cycle and two-strike

recovery scheme gives the best result reducing the

energy-delay2-fallibility2 product by 24%. This is partially

an artifact of the steps we have selected for the clock

frequency. Although when we set Cr to 0.25, we see a

significant reduction in the energy consumption, we also

see a sharp increase in the error rates. Therefore, Cr = 0.5

almost always performs better than the Cr = 0.25. As a

result, the dynamic scheme also stays mostly in the Cr =

0.5 region and hence does not perform better than the

static scheme. Note that if we do not consider the errors,

the static approach with Cr = 0.5 and two-strike recovery

scheme reduces the energy-delay product of the processor

by 17%, and the energy-delay2 product by 26%.

In almost all the applications, we see that without the

error detection, increasing the clock frequency increases

the energy-delay2-fallibility2. The reasons for this are

two-fold. First, we take the square of the fallibility in our

metric. Since we increase the fallibility factor when we

increase the clock frequency, there is a significant

increase in our metric. Second, we see that errors usually

increase the number of execution cycles. There are two

reasons for this. First, erroneous load operations usually

result in misses in the cache. More importantly, we see

that the number of instructions executed also increases

with the errors. This is mostly due to the loops. If one of

the values that affect the completion criteria changes, we

see that in most cases the number of iterations increase.

6. Related work

One class of related work is in the area of fault

tolerance. Traditionally, fault tolerance has caught

attention in the context of environments with heavy

concentration of alpha-particles and atmospheric neutrons

[27]. Transient faults induced by these particles are

shown to decrease the reliability of processors [25].

Another area where there has been a strong emphasis on

reliability is circuit verification, which is an important

problem in IC fabrication. Techniques exist to study

potential errors in the pre-silicon [5] stage and also

subsequent to the fabrication process [1]. More recently,

designing computer systems for resiliency [2] to transient

faults has gained greater significance due to the combined

effect of higher integration densities, lower voltages, and

faster clock frequencies. There have been various studies

utilizing redundancy to increase robustness for SMT

processors [15, 20], for superscalar processors [19], and

for CMPs [8]. All of these techniques aim to increase

robustness. Our approach, on the other hand, reduces it.

Although this might seem controversial at a glance, our

motivations are similar to these studies: correctness

cannot be achieved by optimizations only at the circuit

level. However, we propose to deal with the errors at the

higher levels instead of trying to eliminate them.

Validation methods such as fault injection are

particularly attractive for estimating the dependability of

computer systems [10]. Mukherjee et al. introduces the

architectural vulnerability factor (AVF) for various

processor components [16]. However, we are not aware

of any study that investigates the application-level

behavior of networking programs under hardware faults.

More importantly, these studies still do not allow an

incorrect execution of the program as we propose in this

paper. Austin introduces DIVA, which is a method for

enforcing correctness in processors which can make

mistakes because of the lack of complete verification [3].

DIVA still aims to achieve correctness, whereas in this

paper we reduce the probability of correct execution.

7. Conclusions

In this paper, we proposed the design and utilization of

clumsy packet processors. Clumsy packet processors use

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

the robustness available in the networking applications to

increase the efficiency of hardware structures while

increasing their fault probabilities. Overall, this results in

better execution efficiency and reduced energy

consumption. Particularly, we have shown how the access

delay and energy consumption of a data cache can be

reduced while increasing the hardware faults during

accesses. We developed a realistic model that estimates

the fault probability of the cache for a given clock

frequency. Thus, a clumsy processor can increase the

clock frequency of its data cache and reduce its energy

consumption. We have also defined various application-

specific error metrics that is used to measure the

“fallibility” of the processor. Particularly, we have

proposed the energy-delay-fallibility product metric,

which can be used to measure the trade off between the

energy, execution time, and the error probability. We

have presented a scheme to adapt the frequency of the

data cache to adjust to the application requirements. Our

simulations reveal that there is a significant gap between

the specifications of the circuit designer and the optimal

clock frequency in terms of energy-delay2-fallibility2

product. The technique that doubles the clock frequency

while utilizing a parity-based error detection scheme and

a two-strike recovery mechanism gave the best result on

average, which resulted in 24% reduction in the energy-

delay2-fallibility2 product.

8. Acknowledgement

We thank S. O. Memik and B. Mangione-Smith for

providing valuable feedback on this paper. We also thank

Y. Ismail and M. Chowdhury for their help in developing

the error models. Finally, we like to thank M. C. Wildrick

and S. Jevtic for invaluable input to this work.

9. References

1. Anghel, L.a.M.N. Cost Reduction and Evaluation of a

Temporary Faults Detecting Technique. in Design Automation

and Test in Europe (DATE). March 2000.

2. Annavaram, M., J.M. Patel, and E.S. Davidson. Data

prefetching by dependence graph precomputation. in 28th

Annual International Symposium on Computer Architecture.

2001. Göteborg, Sweden.

3. Austin, T. DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design. in International Symposium on

Microarchitecture. Nov. 1999.

4. Baker, F., Requirements for IP version 4 routers. 1812., June

1995.

5. Bose, P. Ensuring dependable processor performance: an

experience report on pre-silicon performance validation. in

International Conference on Dependable Systems and Networks

(DSN). July 2000.

6. Braun, F., J. Lockwood, and M. Waldvogel. Reconfigurable

router modules using network protocol wrappers. in

International Conference on Field-Programmable Logic and

Applications. Aug. 2001. Belfast / N. Ireland.

7. Burger, D. and T. Austin, SimpleScalar Tool Set, Version 2.0.

June 1997, University of Wisconsin.

8. Gomaa, M. ,et al. Transient-Fault Recovery for Chip

Multiprocessors. in International Symposium on Computer

Architecture. June 2003. San Diego, CA.

9. HP, Nonstop computing, http://nonstop.compaq.com.

10. Iyer, R.K. Experimental Evaluation. in 25th Int. Symp. on

Fault-Tolerant Computing (FTCS-25). 1995. Pasadena, CA.

11. Krishna, C.M. and L.-H. Lee. Voltage-clock-scaling

adaptive scheduling techniques for low power in hard real-time

Systems. in Real Time Technology and Applications Symp. May

2000.

12. Li, L. Soft error and energy consumption interactions: a

data cache perspective. in ACM/IEEE International Symposium

on Low Power Electronics and Design. 2004.

13. Memik, G., W.H. Mangione-Smith, and W. Hu. NetBench:

A Benchmarking Suite for Network Processors. in International

Conference on Computer-Aided Design (ICCAD). Nov. 2001.

San Jose / CA.

14. Montanaro J., et al., A 160-MHz, 32-b, 0.5-W CMOS RISC

microprocessor. IEEE Journal of Solid-State Circuits, 1996.

31(11): p. 1703-14.

15. Mukherjee S.S., M. Kontz, and S.K. Reinhardt. Detailed

Design and Evaluation of Redundant Multithreading

Alternatives. in International Symposium on Computer

Architecture (ISCA). May 2002.

16. Mukherjee, S.S., C.T. Weaver, J. Emer, S.K. Reinhardt, and

T. Austin. A Systematic Methodology to Compute the

Architectural Vulnerability Factors for a High-Performance

Microprocessor. in International Symposium on

Microarchitecture. Dec. 2003.

17. Phelan, R., Addressing Soft Errors in ARM Core-based SoC.

Dec. 2003, ARM Ltd.

18. Project, T.F., FreeBSD Operating System.

19. Rashid, F., K. K. Saluja, and P. Ramanathan. Fault

tolerance through re-execution in multiscalar architecture. in

International Conference on Dependable Systems and Networks

(DSN). June 2000.

20. Reinhardt, S.K. and S.S. Mukherjee. Transient Fault

Detection via Simultaneous Multithreading. in 27th Annual

International Symposium on Computer Architecture. June 2000.

21. Rivest, R., The MD5 Message-Digest Algorithm. Apr. 1992.

22. Security, I.R.D., RSA Security Downloads.

23. Shivakumar, P., et al. Modeling the Effect of Technology

Trends on the Soft Error Rate of Combinational Logic. (DSN).

June 2002.

24. Shreedhar, G.V. Efficient Fair Queuing using Deficit Round

Robin. in SIGCOMM'95. Aug/Sep 1995. Camridge / MA.

25. Srinivasan, G.R., Modeling the Cosmic-Ray-Induced Soft-

Error Rate in Integrated Circuits: An Overview. IBM Journal of

Research and Development, Jan. 1996. 40(1): p. p. 77-89.

26. Srinivasan, J.R., Modeling the Cosmic-Ray-Induced Soft-

Error Rate in Integrated Circuits: An Overview. IBM Journal of

Research and Development, Jan. 1996. 40(1): p. p. 77-89.

27. Turmon, M., R. Granat, and D. Katz. Software-implemented

fault detection for high-performance space applications. in

International Conference on Dependable Systems and Networks

(DSN). June 2000.

28. Wilton, S. and N. Jouppi, An enhanced access and cycle

time model for on-chip caches. July 1995, Digital Western

Research Laboratory, 93/5.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04)
1072-4451/04 $ 20.00 IEEE

