
Page ‹#›

Branch Prediction and Multiple-Issue
Processors

Venkatesh Akella
EEC 270

Winter 2004

Based on Material provided by

Prof. Al Davis and Prof. David Culler

Branch Prediction

• Size of basic blocks limited to 4-7
instructions

• Delayed branches not a solution in multiple-
issue processors

• Why? Hard to find independent instructions
and remember the mess they create for
precise exceptions

• To resolve a branch need two things (a)
branch target address and (b) branch
direction

• Prediction deals with (b) I.e. getting the
direction

• Branch Penalty is governed by (a)
• Deeper pipeline – bad news as BP is higher

Static Branch Prediction

• Let the compiler figure out the branch direction
for each branch instruction

Three strategies:
a) Always Predict Taken - Misprediction is 34%
b) Forward Not Taken; Backward Taken ---

Misprediction is 10% - 40%
c) Profile-driven – using realistic benchmarks and

real data and for each branch determine the
direction – Hennessey & McFarling and Larus and
Ball

Dynamic Branch Prediction

• Run Time
• Hardware assisted
• Intuition – branches direction is not random, they

are BIMODAL i.e. either strongly taken or not taken
• One-bit Branch Prediction Buffer or Branch History

Table (BHT) – Smith 1981

K-bits

1
0
0
1

0
1

PC

Past a good a good indicator of the future

1 = Taken
 0= Not Taken

Update BHT when
You make a mistake

What are the problems?
a) Aliasing due to limited size of the BHT (tag can be stored to

avoid this problem)
b) 1-bit history may not be sufficient? Eg: consider a loop that
iterates 10 times – You will mispredict 2/10 so accuracy is 80%

Page ‹#›

• Better Solution: 2-bit scheme where change prediction only
if get misprediction twice:

• Adds hysteresis to decision making process

Dynamic Branch Prediction (Jim Smith, 1981)

T

T

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

11

00
T

NT

T

NT

NT

01

10

2-bit Counters

• Upto 93.5% accuracy
• If K is sufficiently large, each branch maps to a

unique counter
• Can store tags if you want to avoid aliasing
• How about m-bit counters?
• Doesn’t benefit much

K-bits
PC

2k 2-bit saturating counters

How do you improve further?

• Can we capture the actual history of the
specific branch and use that to make our
prediction? – LOCAL HISTORY

• Can we capture the sequential correlation
between branches – GLOBAL HISTORY

• do both?
• Make multiple predictions and choose the

right prediction based on the context of the
particular branch – TOURNAMENT predictors

Using Local History

Consider the simple for loop
FOR (I=1; I<5; I++) { something …}
If the branch is at the end of the loop body, it has following

pattern – (1110)N

The sequence of the branch history is
11101110111011101110 ……
Basically, if we know what the branch did the last three times, we

can predict EXACTLY what it will do next.

PC

k

LHT/PHT
1-bit or
2-bit or
m-bit

counter

Counter

3-bit local history

X

1
1
0

3 97.1%
accuracy

2-mem
accesses

Page ‹#›

Global History (Correlated Branch
Prediction)

If (x < 1) … B1
if (x > 1) … B2

Observation – if B1 is taken then B2 is not taken
This is a characteristic of structured programming

(nested procedure calls and nested conditionals). So,
whether B2 is taken or not is related to the previous
branch B1 – global history

X

1
1
0

Global history Buffer
NOT PC

(shift register)
So it may not be

The current branch

K-bit

1-bit or
2-bit or
m-bit

counter

counter

Hybrid Predictor

PC

GHB

m

n

(m+n)

k-bit counters

PC

GHB

m

n

 k-bit counters

XOR
n

Gshare - McFarling

Used in Pentium, Athlon,
Ultrasparc

98.1% accuracy

G-Select Predictor

Processor Front-End Correlating Branches

Idea: taken/not taken of
recently executed
branches is related to
behavior of next branch
(as well as the history of
that branch behavior)

– Then behavior of recent
branches selects between,
say, 4 predictions of next
branch, updating just that
prediction

• (2,2) predictor: 2-bit
global, 2-bit local

Branch address (4 bits)

2-bits per branch
local predictors

Prediction

2-bit recent global
branch history

(01 = not taken then taken)

Page ‹#›

Accuracy of Different Schemes
(Figure 3.15, p. 206)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

18%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

Re-evaluating Correlation

• Several of the SPEC benchmarks have less
than a dozen branches responsible for 90%
of taken branches:
program branch % static # = 90%
compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214

• Real programs + OS more like gcc
• Small benefits beyond benchmarks for

correlation? problems with branch aliases?

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when index the table

• 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18%
(eqntott), with spice at 9% and gcc at 12%

• For SPEC92,
4096 about as good as infinite table

Tournament Predictors

• Motivation for hybrid branch predictors is 2-
bit predictor failed on important branches; by
adding global information, performance
improved

• Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

• Hopes to select right predictor for right
branch (or right context of branch)

Page ‹#›

Tournament Predictor in Alpha 21264
• 4K 2-bit counters to choose from among a global predictor

and a local predictor
• Global predictor also has 4K entries and is indexed by the

history of the last 12 branches; each entry in the global
predictor is a standard 2-bit predictor

– 12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

• Local predictor consists of a 2-level predictor:
– Top level a local history table consisting of 1024 10-bit

entries; each 10-bit entry corresponds to the most recent
10 branch outcomes for the entry. 10-bit history allows
patterns 10 branches to be discovered and predicted.

– Next level Selected entry from the local history table is
used to index a table of 1K entries consisting a 3-bit
saturating counters, which provide the local prediction

• Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)

% of predictions from local predictor in
Tournament Prediction Scheme

Accuracy of Branch Prediction

• Profile: branch profile from last execution
(static in that in encoded in instruction, but profile)

fig 3.40

Accuracy v. Size (SPEC89)

Page ‹#›

Need Address
at Same Time as Prediction

• Branch Target Buffer (BTB): Indexed using the branch
instruction Address to get prediction AND branch address (if
taken)

• Accessed in IF stage

Branch PC Predicted PC

=?

PC of instruction
FET

CH

Extra
prediction state

bits

Yes: instruction
is branch and
use predicted PC
as next PC

No: branch not
predicted, proceed normally

 (Next PC = PC+4)

Branch Target Buffer

• Exists in the IF Stage
• This is a cache (Need the tags as well)
• Need to look-up whole PC (last bits won’t do)

because this stage we do not know the
opcode yet

• Need to keep only predict taken branches
only, others follow normal fetch sequence.

How Branch Target Buffer is Used?

• Avoid branch prediction by turning
branches into conditionally executed
instructions:

 if (x) then A = B op C else NOP
– If false, then neither store result nor cause

exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC

have conditional move; PA-RISC can annul any
following instr.

– This transformation is called “if-conversion”

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions or condition becomes known late

in pipeline => reduces effectiveness

x

A =
B op C

Predicated Execution

Page ‹#›

Branch Folding

• Branch Folding – Instead of storing Next PC
or BTA, how about storing the target
instruction itself or multiple instructions if it
is a multi-issue processor

Eg: L2 : b L
 L : add R1, R2, R3

At address corresponding to L2, you store the
add instruction instead of the unconditional
branch instruction b L

ZERO cycle BRANCH
(eliminated one instruction all together)

Add r1,r2, r3L2:

Advanced Approaches

• Trace Caches – aggressive prefetching
• Return Address Caches – jr $Ra – when $Ra

is return address of a procedure.
85% of indirect jumps are due to procedure

returns.
BTB does not work very well because

procedure is called from many different
places

So, you a separate stack cache to push $Ra
and pop them off

Special Case Return Addresses

• Register Indirect branch hard to predict
address

• SPEC89 85% such branches for procedure
return

• Since stack discipline for procedures, save
return address in small buffer that acts like
a stack: 8 to 16 entries has small miss rate

Pitfall: Sometimes bigger and dumber
is better

• 21264 uses tournament predictor (29 Kbits)
• Earlier 21164 uses a simple 2-bit predictor

with 2K entries (or a total of 4 Kbits)
• SPEC95 benchmarks, 22264 outperforms

– 21264 avg. 11.5 mispredictions per 1000 instructions
– 21164 avg. 16.5 mispredictions per 1000 instructions

• Reversed for transaction processing (TP) !
– 21264 avg. 17 mispredictions per 1000 instructions
– 21164 avg. 15 mispredictions per 1000 instructions

• TP code much larger & 21164 hold 2X
branch predictions based on local behavior
(2K vs. 1K local predictor in the 21264)

Page ‹#›

Dynamic Branch Prediction Summary

• Prediction becoming important part of scalar execution
• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated with

next branch.
– Either different branches
– Or different executions of same branches

• Tournament Predictor: more resources to competitive
solutions and pick between them

• Branch Target Buffer: include branch address & prediction
• Predicated Execution can reduce number of branches,

number of mispredicted branches
• Return address stack for prediction of indirect jump

Multiple Issue

• Goal how to reduce CPI below 1.0
• Consider two consecutive blocks of instructions
Gj – {i1, i2, i3, i4} and Gi = {i5,i6, i7, i8}
Gj is already in execution
1. Fetch Gi
2. Check for all structural hazards that

instructions in Gj may introduce
3. Check for data hazards between Gi and

between instructions in Gi and Gj
4. Read operands and execute

Flavors of Multiple Issue Processors

• Vector = execute a loop in parallel – directly on
array data structures

• Superscalar
– Static = in-order-execution (if I5 has a problem, HALT)

• Eg: SUN ULTRA SPARC II/III

– Dynamic = out-of-order execution (let I6 if I5 has a
resource conflict

» No Speculation – If i5 is a branch do not allow I6 till
branch is resolved

• IBM Power 2

» With Speculation- Allow I6 but be prepared to rollback
(Pentium 3, Pentium 4, Alpha 21264, MIPS R10K)

• VLIW
– Compiler determines what to execute in parallel (Trimedia)
– EPIC (basis for Itanium)

Multiple Issue Headaches

• Increased I-Cache Fetch BW
• Alignment problems may not allow 4

instructions to be fetched
• Need to check for more hazards
• Branches – 25% of instructions are

branches, so you need to resolve a branch
every cycle!

• Increased ports on register file and memory
So, how do we proceed
1. Pipeline the Issue unit into 2 stages
2. Restricted Issue eg: one int and one FP

Page ‹#›

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Integer on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

Multiple Issue Issues
• issue packet: group of instructions from fetch unit

that could potentially issue in 1 clock
– If instruction causes structural hazard or a data hazard either

due to earlier instruction in execution or to earlier instruction in
issue packet, then instruction does not issue

– 0 to N instruction issues per clock cycle, for N-issue

• Performing issue checks in 1 cycle could limit clock
cycle time: O(n2-n) comparisons

– => issue stage usually split and pipelined

– 1st stage decides how many instructions from within this packet
can issue, 2nd stage examines hazards among selected
instructions and those already been issued

– => higher branch penalties => prediction accuracy important

Multiple Issue Challenges
• While Integer/FP split is simple for the HW, get CPI

of 0.5 only for programs with:
– Exactly 50% FP operations AND No hazards

• If more instructions issue at same time, greater
difficulty of decode and issue:

– Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide
if 1 or 2 instructions can issue; (N-issue ~O(N2-N) comparisons)

– Register file: need 2x reads and 1x writes/cycle
–

Multiple Issue Headaches

• Rename logic: must be able to rename same register
multiple times in one cycle! For instance, consider 4-
way issue:

add r1, r2, r3 add p11, p4, p7
sub r4, r1, r2 ⇒ sub p22, p11, p4
lw r1, 4(r4) lw p23, 4(p22)
add r5, r1, r2 add p12, p23, p4

Imagine doing this transformation in a single cycle!

• Result buses: Need to complete multiple
instructions/cycle

– So, need multiple buses with associated matching
logic at every reservation station.

– Or, need multiple forwarding paths

Page ‹#›

Dynamic Scheduling in Superscalar
The easy way

• How to issue two instructions and keep in-order instruction
issue for Tomasulo?

– Assume 1 integer + 1 floating point
– 1 Tomasulo control for integer, 1 for floating point

• Issue 2X Clock Rate, so that issue remains in order

• Only loads/stores might cause dependency between integer and
FP issue:

– Replace load reservation station with a load queue;
operands must be read in the order they are fetched

– Load checks addresses in Store Queue to avoid RAW violation

– Store checks addresses in Load Queue to avoid WAR,WAW

Register renaming, virtual registers
versus Reorder Buffers

• Alternative to Reorder Buffer is a larger virtual
set of registers and register renaming

• Virtual registers hold both architecturally visible
registers + temporary values

– replace functions of reorder buffer and reservation station

• Renaming process maps names of architectural
registers to registers in virtual register set

– Changing subset of virtual registers contains architecturally
visible registers

• Simplifies instruction commit: mark register as no
longer speculative, free register with old value

• Adds 40-80 extra registers: Alpha, Pentium,…
– Size limits no. instructions in execution (used until commit)

How much to speculate?

• Speculation Pro: uncover events that would
otherwise stall the pipeline (cache misses)

• Speculation Con: speculation costly if
exceptional event occurs when speculation was
incorrect

• Typical solution: speculation allows only low-
cost exceptional events (1st-level cache miss)

• When expensive exceptional event occurs,
(2nd-level cache miss or TLB miss) processor
waits until the instruction causing event is no
longer speculative before handling the event

• Assuming single branch per cycle: future may
speculate across multiple branches!

Limits to ILP

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to
keep on processor performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.

Page ‹#›

Limits to ILP
Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
2 & 3 => machine with perfect speculation & an unbounded
buffer of instructions available
4. Memory-address alias analysis – addresses are known & a
store can be moved before a load provided addresses not
equal

Also:
unlimited number of instructions issued/clock cycle; perfect
caches;
1 cycle latency for all instructions (FP *,/);

Upper Limit to ILP: Ideal Machine
(Figure 3.35 p. 242)

Integer: 18 - 60

FP: 75 - 150

IP
C

More Realistic HW: Branch Impact
Figure 3.37

Change from Infinite
window to examine to
2000 and maximum
issue of 64
instructions per clock
cycle

ProfileBHT (512)TournamentPerfect No prediction

FP: 15 - 45

Integer: 6 - 12

IP
C

More Realistic HW:
Renaming Register Impact

Figure 3.41

Change 2000 instr
window, 64 instr
issue, 8K 2 level
Prediction

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

Page ‹#›

More Realistic HW:
Memory Address Alias Impact

Change 2000 instr
window, 64 instr issue,
8K 2 level Prediction,
256 renaming registers

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

Realistic HW: Window Impact
(Figure 3.46)

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers, issue
as many as window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

How to Exceed ILP Limits of this study?

• WAR and WAW hazards through memory
– eliminated WAW and WAR hazards on registers through

renaming, but not in memory usage

• Unnecessary dependences (compiler not unrolling
loops so iteration variable dependence)

• Overcoming the data flow limit: value
prediction, predicting values and speculating on
prediction

– Address value prediction and speculation predicts addresses
and speculates by reordering loads and stores; could provide
better aliasing analysis, only need predict if addresses =

• Use multiple threads of control

Workstation Microprocessors 3/2001

Source: Microprocessor Report, www.MPRonline.com

• Max issue: 4 instructions (many CPUs)
Max rename registers: 128 (Pentium 4)
Max BHT: 4K x 9 (Alpha 21264B), 16Kx2 (Ultra III)
Max Window Size (OOO): 126 intructions (Pent. 4)
Max Pipeline: 22/24 stages (Pentium 4)

Page ‹#›

SPEC 2000 Performance 3/2001 Source: Microprocessor Report, www.MPRonline.com

1.6X

3.8X

1.2X

1.7X

1.5X

Conclusion
• 1985-2000: 1000X performance

– Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

• Hennessy: industry been following a roadmap of ideas known in
1985 to exploit Instruction Level Parallelism and (real) Moore’s
Law to get 1.55X/year
– Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order

execution,

• ILP limits: To make performance progress in future need to
have explicit parallelism from programmer vs. implicit
parallelism of ILP exploited by compiler, HW?
– Otherwise drop to old rate of 1.3X per year?
– Less than 1.3X because of processor-memory performance gap?

• Impact on you: if you care about performance,
better think about explicitly parallel algorithms
vs. rely on ILP?

