

	NEW CONSTRAINTS
۰F	Power. Power. Power
• [Dynamic and now LEAKAGE power
	Clock frequencies are in the GHz - distribution of clock, skew
۰۱	Wire delay >>> Gate delay
	Real time performance - DSP, media processors
	mputer Architecture has to change to handle hese new constraints.
-	
Chapter 1	

Application	down \$/hr	1%/yr (87.6 hours)	.05%/yr (43.8 hours)	0.1%/yr (8.8 hours)
Stock Broker	\$6450	\$565M	\$283M	\$56.5M
Credit Card Authorization	\$2600	\$228M	\$114M	\$22.8M
Package Shipping Centers	\$150	\$13M	\$6.6M	\$1.3M
Home Shopping Channel	\$113	\$9.9M	\$4.9M	\$1M
Catalog Sales Center	\$90	\$7.9M	\$3.9M	\$800K
Airline Reservation Center	\$89	\$7.9M	\$3.9M	\$800K
Cellular Service Activation	\$41	\$3.6M	\$1.8M	\$400K
ISP's	\$25	\$2.2M	\$1.1M	\$200K
ATM's	\$14	\$1.2M	\$600K	\$100K
				,

Feature	Desktop	Server	Embedded
System Price	\$1K - \$10K	\$10K - \$10M	\$10 - \$100K
Price of uP module	\$100 - \$1K	\$200 - \$2K	\$0.2 - \$200
uP's sold per year	150M	4M	300M (32 & 64-bit only)
Critical System Issues	price-performance & graphics performance	throughput, RAS, scal- ability	Price, power consump- tion, application specific performance

ASP	ECTS OF COMPUTER DESIGN
 Complic objectiv 	ated game with many constraints, many ves
	ine the important attributes (market t, applications)
THEN M	AXIMIZE performance
WHILE s BUDGE	taying within the COST & POWER T
Chapter 1	
muprer	

	Technology Trends
•	Integrated CIRCUITS
	- Density Increases at 35% per year
	- Die Size increases 10 - 20% per year
	- Combination is a chip complexity growth rate of 55% per year
	 Transistor speed increase is similar but wire delay does not track this curve, so clock rates do not go up as fast
•	DRAM
	- Density Quadruples every 3-4 years (40 - 60% per year)
	- Cycle Time decreases slowly - 33% in 10 year
	- Interface changes have improved bandwidth however
Ν	/hat does this mean?
Pı	roduct Cycle – 2 to 4 years and Market requirements something new is needed 6-12 Months
-	Pipelined design efforts using multiple design teams
-	Have to design for a complexity target that does not exist yet
	Infrastructure and NRE Costs – 200 million to 500 million ¿dqlars

But what time?

- Should not consider time spent waiting for I/O delays, because someone else is using the same resources as in a multitasking/timeshared system
- User CPU Time time spent to execute the program in question
- System CPU Time the amount of time the OS spends on behalf of your program
- Unix Time Command
- · 27.2 u 11.1s 56.6 68%

Chapter 1

	Which Programs to choose?
•	Real Programs
	 Clearly the right choice but porting them maybe a problem
	 Burden on the user. Need to know exactly what your workload is
•	Kernels
	- Computational intensive pieces of real programs
	- Livermore loops and Linpack are examples
	- Not Real programs - so might be misleading
•	Toy Benchmarks - Not a good idea
•	Synthetic Benchmarks
	- Has some merit especially during early design stage
	 Since they are not real, they do not actually represent anything that a user maybe interested in
Chapter	1

Program 1 (secs)11020Program 2 (secs)100010020Total Time (secs)100111040hich is better?y how much?re the programs equally important?		Machine A	Machine B	Machine C
Total Time (secs)100111040hich is better?y how much?	Program 1 (sec	s) 1	10	20
hich is better? / how much?	Program 2 (sec	s) 1000	100	20
how much?	Total Time (sec	s) 1001	110	40
	•			

