Computer Architecture

Venkatesh Akella
EEC 270

Winter 2005

Chapter 1
What is it?
User Applications
Language Subsystems d:{):gl?‘fj
Operati
Compiler perating
— > System
Software
Instruction Set Architecture f=F=========
i Hardware
Hardware Organization
EEC270 Technology
CPU [Memonry I/0 | Coprocessor Selection
{
L—- Implementation
VLSl | Logic |oower| Packaging Exsxpfncg:tlyl
; Pir
= Cooling COMM 8 g
Chapter 1

Page <#>

Computer Architecture

Basically a story of unprecedented
improvement

$1K buys you a machine that was 1-5 million
dollars a couple of decades ago

* Why?

- Improvements in technology (process scaling)
Around 35%/year

* Improvement in architecture

Around 23%

Result = Moore's law - 58% per year

Chapter 1

1 Trillions Ops/sec by 2010

1000000

10000 Pentium® 4 Architecturei
i i &
1000 Pentlum® Pro Archltecturte PN
Pentium® Architecture ‘.-'
100

1990 2000 2010

S. Borkar MICRO 37, December 2004

Chapter 1

Page <#>

Technology Scaling -

GATE

SOURCE | DRAIN

BODY

Dimensions scale Doubles transistor
down by 30% density

Oxide thickness Faster transistor,
scales down higher performance

Chapter 1

Computer usage has changed

+ 1950-1960 - Big Mainframes: time-share

+ 1970 - Minicomputers, time share but
perhaps more locally owned machines

+ 1980 - microprocessors are born, personal
computing has becoming a reality

+ 1990 - Network is born - servers, computer
farms, PDAs, cellphones, embedded
computing and DSP are re-born

* Now - ubiquitous computing, where the
computer is does not matter, integration of
communication, computation and entertainment

Chapter 1

Page <#>

Categories of Computers

* Three Cateogries have emerged
- DESKTOP - optimized for price/performance

- SERVER - optimized for availability,
scalability, and throughput

- EMBEDDED - everything around us has a
computer whether it is a washing machine or
the router card or the cell phone

Key issues - real time, cost, application-
specific performance as opposed to general
purpose performance, resource constraints
like memory/ input/output etc.

Chapter 1

NEW CONSTRAINTS

+ Power. Power. Power
+ Dynamic and now LEAKAGE power

* Clock frequencies are in the GHz -
distribution of clock, skew

* Wire delay >>> Gate delay

* Real time performance - DSP, media
processors

Computer Architecture has to change to handle
these new constraints.

Chapter 1

Page <#>

Power is Enemy #1

—
B
o
o

W'SD Lkg
O Active

=

&

=3
z
@
=
@

o
T
)
3
5

o

3
o
3
o
o

90nm 65nm 45nm 32nm 22nm 16nm

Active and Leakage power will become prohibitive

Chapter 1

Leakage Power - New Monster to Grapple with

90nm MOS Transistor

loff (na/u)

90
Temp (C)

2X Tr Growth
1.5X Tr Growth \,

age (Watts)

8
K]
3
o
o
«
=
]
o
|
Q
0

0.25u 0.18u 0.13u 90nm 65nm 45nm 0.25u 0.18u 0.13u 90nm 65nm 45nm
Technology Technology

Page <#>

Server Availability Costs

Application down $/hr %lyr . 05%lyr X 0.1%/yr .
(87.6 hours) (43.8 hours) | (8.8 hours)
Stock Broker $6450 $565M $283M $56.5M
Credit Card Authorization $2600 $228M $114M $22.8M
Package Shipping Centers $150 $13M $6.6M $1.3M
Home Shopping Channel $113 $9.9M $4.9M $IM
Catalog Sales Center $90 $7.9M $3.9M $800K
Airline Reservation Center $89 $7.9M $3.9M $800K
Cellular Service Activation $41 $3.6M $1.8M $400K
ISP's $25 $2.2M $1.1M $200K
ATM's $14 $1.2M $600K $100K
FY 2000 Data from Kembel
Chapter 1

Sector Demographics

Feature Desktop Server Embedded

System Price $1K - $10K $10K - $10M $10- $100K

Price of uP module | $100- $1K $200- $2K §0.2 - $200

uP’s sold per year 150M L] 300M (32 & 64-bit only)
Critical System Issues | price-performance & | throughput, RAS, scal- | Price, power consump-

graphics performance | ability tion, application specific
performance
Chapter 1

Page <#>

ASPECTS OF COMPUTER DESIGN

+ Complicated game with many constraints, many
objectives

+ Determine the important attributes (market
segment, applications)

THEN MAXIMIZE performance

WHILE staying within the COST & POWER
BUDGET

Chapter 1

Technology Trends
+ Integrated CIRCUITS

- Density Increases at 35% per year
- Die Size increases 10 - 20% per year
- Combination is a chip complexity growth rate of 55% per year

- Transistor speed increase is similar but wire delay does not track this
curve, so clock rates do not go up as fast

- DRAM
- Density Quadruples every 3-4 years (40 - 60% per year)
- Cycle Time decreases slowly - 33% in 10 year
- Interface changes have improved bandwidth however

What does this mean?

Product Cycle - 2 to 4 years and Market requirements
something new is needed 6-12 Months

- Pipelined design efforts using multiple design teams

- Have to design for a complexity target that does not exist
yet
- Infrastruct | NRE Costs - 200 million to 500 milli
Chap‘l’edqlla"s

Page <#>

IC Scaling - How does it affect us?

*+ Wire delay is proportional to R * C
- As wires get smaller their cross section decreases, so R increases

- C does not reduce linearly (cross talk, coupling)

So, wire delay does not track improvements in gate delay

%age of cycle time taken by wire delays becomes non-negligible

Pentium 4 uses 2 pipe stages just for signal propagation

* Power
- P_TOTAL = P_ACTIVE + P_LEAKAGE
- P_ACTIVE = % aCVf
- P_LEAKAGE = Tunneling + subthreshold leakage
= As Vt is lowered and feature size shrinks increases

= Function of number of transistors on chip, so
becomes significant as number of transistors increases.

Chapter 1
COST OF AN IC
cos Die-cost + Die-test-cost + Die-package-cost
IC-cost - = Fina TesVield
DRAM Costs
J‘J‘JJ‘IJ’J&’!J!@@'!!@’(&I!J‘I@#‘
Chapter 1

Page <#>

COST OF A DIE

1 Compute
» # dies / wafer
. % yield

Cost-of-wafer

Cost-of-die - - ——
Dies-per-wafer x Die-yield

-

~ . bl ~ .
T x(Wafer-diameter/2)¢ 1 x Wafer-diameter

Dies-per-wafer Test-dies-per-wafer

Dic-area {2 < Dic-arca
. . P . ((Defects-per-unit-area x Dic-area) -0t
Dic-vield - Wafer-yield | i ‘ Defects-per-unit-arca x Die-area '
\ \ o

Where alpha depends on the process - the more complex the higher the alpha
value - for today’'s multilevel metal CMOS o ~= 4 and defects per unit area are
typically between .4 and .8 per cm?

Chapter 1

Die Testing & Packages

—to_costespeciatty as complexity increases

Testing is a significant portion of chip cost
- Varies from 10% to over 50% for Military specification parts

In 1990 tester costs were about $150/hr

In 1993 tester costs are $500 per hours, runs 10
times faster but chips are 100 times more complex

Now test costs about $10,000 per hour - you see
the trend

Packaging material depends on use and power

Configuration determined by cavity and pins
» 200 pin plastic quad flat pack = $3
» 400 pin ceramic PGA = $50

Testing and Packaging are significant contributors

Chapter 1

Page <#>

Cost Breakdown of a 1000 dollar PC

CABINET = 6%

I/0 Devices = 37% (includes keyboard,
monitor, 20 GB hard drive, DVD drive ..)

PROCESSOR BOARD = 37%
» CPU = 22%
» DRAM = 5% (huge difference from 33% in 1995)
» VIDEO CARD = 5%
» Motherboard and networking = 5%

SOFTWARE = 20% (a.k.a Microsoft Tax)

Chapter 1

PERFORMANCE

1 2 key aspects
* execution time
 throughput
* making 1 faster may slow the other

1 Comparing performance

¢ Performance = l/execution time

e if X is n times faster than Y:
Execution Time %

= N

Execution Time X

» Similar for throughput comparisons
* Improved performance ==> decreasing XEQ time

* or increasing throughput

Chapter 1

Page <#>

But what time?

+ Should not consider time spent waiting for
I/0 delays, because someone else is using
the same resources as in a
multitasking/timeshared system

+ User CPU Time - time spent to execute the
program in question

+ System CPU Time - the amount of time the
OS spends on behalf of your program

+ Unix Time Command
« 27.2u 11.1s 56.6 68%

Chapter 1

Which Programs to choose?

* Real Programs

- Clearly the right choice but porting them maybe a
problem

- Burden on the user. Need to know exactly what your
workload is
* Kernels
- Computational intensive pieces of real programs
- Livermore loops and Linpack are examples
- Not Real programs - so might be misleading

+ Toy Benchmarks - Not a good idea

Synthetic Benchmarks
- Has some merit especially during early design stage

- Since they are not real, they do not actually represent
anything that a user maybe interested in

Chapter 1

Page <#>

BENCHMARKS

- Dhrystone - tells you how well integer code works
* Loops/LINPACK - floating point, matrix algebra

+ PC SPECIFIC

- Business Winstone - office apps and browser
- CC Winstone - content creation - Photoshop, audio/video editing

- WinBench = collection that targets CPU, disk, video

- SPEC2000

- 4t generation, to test CPU performance

- CINT2000 - 11 integer benchmarks

- CFP2000 - 14 floating point benchmarks

- SPECWeb - web server tests
+ TPC = Transaction processing council

- TPCA - simple bank teller transaction

- TPCC - complex database query, TPC-H - decision support

- EEMBC

- 35 kernels in 5 classes - automotive, consumer, networking, office

automation and telecommunication

Chapter 1

Other Problems

Machine A Machine B Machine C
Program 1 (secs) 1 10 20
Program 2 (secs) 1000 100 20
Total Time (secs) 1001 110 40

Which is better?
By how much?

Are the programs

equally important?

Chapter 1

Page <#>

Aggregating and Reporting Performance

1 Arithmetic Mean - provides a simple average

n

1 Lo
p 2 Timei

i=1
* doesn’t account for weight - all programs treated equal

1 Or if rate (as opposed to time) is given - use the
Harmonic Mean

n

n :
Z Ratei

i=1

» still independent of weight

Chapter 1

Weighted Aggregates

Weight is the frequency % of use
1 Weighted arithmetic mean

n
Y Weighti x Timei

i=1

* better but beware the dominant program time

3 Weighted harmonic mean

n

,21’ Weighti
. Ratei
i=1

* same problem - no surprise

Chapter 1

Page <#>

Normalized Execution Times

* Normalize with respect to a reference
machine such as SPARC-10

+ We get a set of ratios - rl, r2, .. rN

* How do we represent aggregate
performance?

1. Arithmetic mean of ratios

- Problem - depends on the reference
machine

- Depends on running time of a specific
program, so results can be manipulated

2.Geometric Mean of Ratios
- Consistent Results independent of the

chapter 1 Choice of reference machine

Normalized Aggregates

1 Geometric Mean

n
/J H Execution Time Ratioi

i=1

1 Has the nice property that:

* ratio of the means = Mean of the ratios

* independent of running times of individual programs
1 Better than arithmetic means but

¢ still do not form accurate prediction models

1 Still have ta remain cantiniis

SPEC USES Geometric Mean

reference machine you choose

Chapter 1

Page <#>

What's wrong with GM?

* Does not predict the execution time, which
violates the fundamental basis of performance
analysis

* You could still manipulate the numbers by
focusing the optimizations on programs that are
easy (small) than the ones that are the slowest

* Why?
If Program 1 is improved from 2 sec to 1 sec
Program 2 is improved from 10000 sec to 5000sec

The improvement in the spec numbers is still the
same though it maybe much easier to optimize
program 1 by just increasing the cache size or

__ block size in cache

Chapter 1

Amadahl's Law

quantification of the diminishing return principle
* defines speedup gained from a particular feature

Execution time without using the enhancement
Execution time using the enhancement

Speedup =

* note XEQ-time = 1/Performance so another variant is possible

* depends on 2 factors

¢ fraction of original computation time that can take advantage of the
enhancement - e.g. the commonality of the feature

* level of improvement gained by the feature

* Amdahl’s law

Speedup =
I POverall Fraction

. . enhanced
(1 — Fraction -

)+
enhanced” * Speedup
enhanced

Chapter 1

Page <#>

A Simple Example of Amadahl's Law

Given Instruction Mix : FP = 50%, FPSQRT = 20% and other 30%

Designers say 40x improvement in FPSQRT, 2X improvement FP or 8X
improvement of other ops for the same cost (say time frame)

What would you choose?

1 1
= Speedu Py

= 1.242

FPSQRT (1 Fraction ;+_Fm“i""l‘nhancc(l FPSQRT (1 ll.Zn+E
ac enhanced’ '\p""d"punhancc(l 40
FP S]wcdupl;l, = p “j +”5 = 1.333
(.Y) T
1 .
Speedup = ————————— = 1.356
Other Other (l..h+¥
Other Wins Il However, remember Amadahl's law does not take the

Cost of implementation into account. Here we assumed everything was same

Chapter 1

The Performance Equation

IC x CPI

PU time = 'x CPI x Cycle Time¢ = ————
CPU time = 1C x CPI x Cycle Time Clock Rate

(on \
CPU time = ‘ Y CPI, % IC; | x Cycle Time

V=1 ‘

+ IC = dynamic instruction count, depends on compiler
and the instruction set of a machine

*+ CPI = depends on organization and ISA

+ cycle time depends on HW technology, logic design,
algorithms used to implement different hardware
structures

SO, they are inter-related. Optimizing one without
considering the impact of the optimization on the
other parameters is a common pitfall.

Chapter 1

Page <#>

90-10 Observations on SPEC92 Programs

Fraction of
Fraction instructions that
of the account for 90%
Program of the instruction
executions
0% = e e g .
Fraction of
S0%f === === m - m instructions that
ol b L ___ account for 80%
40% of the instruction
L1157 P | R S executions
20%fF — - —————BN — W .
10%F14---Lt w4 - -1 - - ——-
0% k==
3
=
£
o
Chapter 1

Page <#>

