

A Constrained Resampling Strategy for Mesh Improvement

Ahmed Abdelkader^{*1}, Ahmed H. Mahmoud ^{*2}, Ahmad A. Rushdi², Scott A. Mitchell³, John D. Owens², and Mohamed S. Ebeida³

¹University of Maryland, College Park; ²University of California, Davis; ³Sandia National Laboratories, Albuquerque

> 15th Symposium on Geometry Processing July 5th, 2017 - London, UK

^{*} joint first authors

Improving an input mesh in terms of a given set of quality objectives

How to translate the quality objectives

How to achieve multiple objectives

1- Non-obtuse Triangulation:

Input: obtuse triangular mesh Target: Eliminate all obtuse triangles

Red = obtuse

1- Non-obtuse Triangulation (2D)

1- Non-obtuse Triangulation (CS)

1- Non-obtuse Triangulation (CS)

Comparison: "Non-obtuse remeshing with centroidal voronoi tessellation " – D.M. Yan et al., IEEE TVCG 2016

1- Non-obtuse Triangulation (CS)

Comparison: "A simple pull-push algorithm for blue-noise sampling" - AG Ahmed et al., IEEE TVCG 2016

2- Delaunay Sifting:

Definition: Reducing the number of Steiner points while preserving the same qualities of the input mesh

Steiner points: Set of vertices inserted in initial Delaunay mesh to improve its quality (minimum angle, triangle area)

2- Delaunay Sifting (2D) Triangle

Reduction ratio = 61%

Reduction ratio = 86%

Reduction ratio = 62%

2- Delaunay Sifting (2D) aCute

"Quality Triangulations with Locally Optimal Steiner Points" - Hale Erten et al. - SIAM J. Sci. Comput 2008

Reduction ratio = 28%

2- Delaunay Sifting

Reduction ratio = 43%

 $\theta_{\min} = 35^\circ, \theta_{\max} = 103^\circ$

Reduction ratio = 50%

 $\theta_{\min} = 30^\circ$, $\theta_{\max} = 116^\circ$

Reduction ratio = 50%

 θ_{\min} =28°, θ_{\max} =120°

P

9

Reduction ratio = 44%

 $\theta_{min} = 28^\circ, \theta_{max} = 121^\circ$

men

1

elaunay

3- Mesh Simplification

3- Mesh Simplification

"Surface Simplification Using Quadratic Error Metric" – *Garland M.,et al.* -SIGGRAPH '97

 "Efficient Construction and Simplification of Delaunay Meshes" – Liu Y.-J., et al. -TOG 2015

Model	Method	ν		Δ		e	θ _{min}		θ_{max}		2 _{min}	$d_{PMS}(\times 10^{-2})$	$d_{H}(\times 10^{-2})$
		Input	Output	Input	Output	Input	Output	Input	Output	Input	Output		
	DM						12		171		0.06	3.5	0.8
Bunny (MPS)	QEM	11.5K	≈153	23k	≈ 302	30	6	116	165	0.5	0.11	1.7	0.5
	Our						(30)		(116)		0.5	4.6	1.8
Fertility (MPS)	DM						4.5		155		0.12	1.5	0.4
	QEM	8.5K	≈390	17k	≈790	30	4	116	168	0.5	0.08	0.7	0.2
	Our										0.5	4.86	0.9
Loop (MPS)	DM	10 717	4 477	201	017	-	10	117	159	0.40	0.2	1	0.2
	QEM	10./K	≈1.4K	22k	≈3K	30	2.2	117	160	0.48	0.12	0.5	
	Our										0.17	2.9	0.4
Bimba (DR)	OEM	25 AV	au190	511-	~250	20	12	100	157	0.44	0.51	4.0	0.6
	QEM	23.4 N	~100	JIK	≈550	20	Å	122	(122)	0.44	0.12	1.9	0.4
Rocker (DR)	DM						13		135		0.31	-4.7	0.4
	OFM	10 8K	≈ 240	21k	≈485	30	4	118	165	0.47	0.01	1.1	$\overline{03}$
	Our	10.01	10210	211	10105	50	30	110	(114)	V-1 /	0.5	4.9	1.3
Bimba (FD)	DM						11		132		0.3	3.3	0.4
	OEM	24.4K	≈ 270	49K	≈535	28	5	121	167	0.46	0.08	0.8	0.3
	Our						(29)		(119)		0.47	4.8	1.2
Rocker (FD)	DM						9		130		0.24	1.9	0.4
	QEM	10.2K	≈260	20.5k	≈520	32	5	114	167	0.52	0.09	0.8	0.3
	Our						(32)		(112)		0.52	4.9	1.1
Chinese Dragon (CVT)	DM						11		138		0.27	1.5	0.2
	QEM	30K	≈1.5K	60k	≈3.1K	34	3	103	174	0.6	0.04	0.7	(0.1)
	Our						(34)		103		0.6	2.7	0.4
David Head (CVT)	DM						8		151		0.2	1.1	0.2
	QEM	15K	≈ 660	30k	≈1.3K	33	7	107	158	0.56	0.15	1.9	0.2
	Our						33		107		0.56	4.9	0.9
Omotondo (CVT)	DM						12		140		0.3	2.9	0.5
	QEM	20K	≈ 260	40k	≈530	28	$\overline{7}$	110	142	0.54	0.18	1.1	0.3
	Our						28		(110)		0.53	1.8	0.2

Min_Angle

Max Angle

Hausdorff Distance

4- Voronoi without Short Edges:

Bad Voronoi Cell := |**e1**|/ |**e2**| <0.1 Good Voronoi Cell := |**e1**|/ |**e2**| >0.1

4- Voronoi without Short Edges:

Rapid change in grading (139 & 541 bad elements)

Constant sizing func (1666 bad elements)

4- Voronoi without Short Edges:

Gray-scale based Voronoi mesh (14272 bad elements)

Intuition:

- Maximal Poisson Sampling (MPS)

2r

Minimum separation ensures minimum edge length Maximality ensures upper bound on edge length

Input:

Triangular mesh & quality objectives

Curved Surface mesh Planar 2D Mesh Minimum and maximum angle bound Delaunay property Sizing function

Definitions:

- Bad element:

e.g., obtuse triangle for non-obtuse remeshing, Voronoi cell associated with a short edge, any triangle for mesh simplification

Definitions:

- Patch:

Two Opposite Triangles

Triangle Fan

Definitions:

- Void:

Steps:

- 1- Pick a patch where quality objectives not satisfied
- 2- Delete all elements on this patch (void)
- 3- Map quality objective into geometric constraints (feasible region)
- 4- Sample from the feasible region and triangulate
- 5- Iterate over all mesh patches until no further improvement is possible

Quality Objectives → Geometric Primitives: a) Exclusion region:

Quality Objectives → Geometric Primitives: a) Inclusion region:

Quality Objectives → Geometric Primitives: Exclusion & Inclusion regions:

hatch= inclusion region
red = exclusion region

Steps:

- 1- Pick a patch where quality objectives not satisfied
- 2- Delete all elements on this patch (void)
- 3- Map quality objective into geometric constraints (feasible region)
- 4- Sample from the feasible region and triangulate
- 5- Iterate over all mesh patches until no further improvement is possible

Resampling Operators: 1) Relocation

Resampling Operators: 2) Ejection

Resampling Operators: 3) Injection

bad element

Resampling Operators:4) Attractor Ejection

bac

element

Resampling Operators: 5) Repeller Injection

Sampling: dart throwing

Guarantees:

- No degradation
- No repeated scenarios guarantees termination
- For curved surface, sampling from the input surface guarantees upper bound on Hausdorff distance

Limitations: - Stuck in local minima

Input

Dead-end

Success

Summary

- Simple strategy with versatile applications
- Derived spatial representation of various qualities
- Developed a toolbox for local resampling
- Demonstrate success over wide range of applications

Thank You!

Funded: Sandia National Labs

Project Github (data + code): https://github.com/Ahdhn/MeshImp

Email: <u>ahmahmoud@ucdavis.edu</u>

