Summary
An autonomous UAV system designed for replacing people from massive workforce tasks in the agriculture fields. One application implemented in our project is collecting data from data loggers in the field. This system will increase the data collecting efficiency, and extent the remote data logger battery life by using low power BLE instead of Xbee or cellular network. Not being designed only for remote data collecting job, the special Task Control System (TCS) software enables the capability of collaborating with various payload devices and executing more jobs including agriculture spectroscopy, animal tracking and etc.

Hardware
Pixhawk flight controller, running on PX4 flight control firmware, is produced by 3DR company.

Intel Edison microcontroller, working as companion computer, runs ROS and all the task scripts.

Customized Intel Edison Shield, provide protected level shifters with advanced power management features.

We have three UAV platforms in our project. Two of them are built from scratch parts, and one of them is Iris+ UAV from 3DR company.

3D printed Quick Release Rack for holding the companion computer and payloads, designed by Solidworks.

System Structure
Flight platform is UAV with companion computer and payload mounted. Ground station is used to start the flight job and monitor the flight status, and remote sensor in our project is data loggers that waiting for UAV to download the data logs.

Methodologies
Two important components in this project are the use of Companion Computer and the software platform Task Control System (TCS). They convert the role of UAV from a simple toy to the critical flight platform as sub-module in the whole system. Intel Edison, or the companion computer runs Robot Operating System (ROS), continually send commands to UAV via Mavlink, planning the waypoints, and Intel Edison is also connecting to the payloads, conducting the tasks. Because Intel Edison runs normal Linux system, so it is able to collaborate with various payload devices including data collector, Li-Dar, Camera, Radar and more. It is also able to run node.js and java as webserver, make it possible for user to check the UAV system status in real-time.

On the other hand, Task Control System is a carefully designed scheduler software that executes the task scripts in order, and maintains the safety checks all the time. For example, Task Control System divides the remote data collecting job into multiple tasks:

Taking off -> Goto first destination -> Collect data -> Goto second destination - > Collect data -> ... -> Goto home position -> Landing

Each task is written in a generalized task script that receive user defined parameters that can be re-used in different situations, and during the whole flight procedure, UAV platform will follow the task list shown below, and users do not need to interact with UAV with RC, QgroundControl or any other methods.

```
TASK_LOCAL_GOTO 10 0 10 20 // Goto (10,0) position at altitude as 10 meters
TASK_LOCAL_GOTO 0 10 0 20 // Collect data from beacon #1
TASK_LOCAL_GOTO 0 10 0 20 // Goto (0,10) position at altitude as 10 meters
TASK_GRAB_DATA 2 // Collect data from beacon #2
TASK_LOCAL_GOTO -10 1 10 20 // Goto (-10,1) position at altitude as 10 meters
TASK_GRAB_DATA 3 // Collect data from beacon #3
TASK_LOCAL_GOTO 0 0 3 20 // Goto home.
```

Results
Our test was conducted on Hutchison Intramural Field in southern UCDavis campus. UAV will take off at the Start point, flying over the remote data loggers on the waypoint 1 to 3 and collect the log files from them.

Acknowledgements
This work was supported by the Professor Xiaoguang Liu from Electrical and Computer Engineering department. This project is also sponsored by Intel-Cornell Cup competition. Special thanks to the Lorenz Meier from ETH Zürich and 3DR company who produced stable and reliable flight controller. Thanks to all of the team members’ hard working.