EEC390: Teaching Electrical and Computer Engineering
Sessions III-IV - Laboratory Instruction

Richard Spencer
Vice Chair for Undergraduate Studies

Fall, 2002
Outline

- Discussion of Current Issues
- Laboratory Instruction
 - Preparation
 - Conducting the session
 - Evaluation
 - Safety and security
- Laboratory Notebooks
Preparation for a Laboratory

- Work with instructor to know what is expected of you
 - Will you give an introduction to the lab?
 - Will you do any demonstrations?
- Study the laboratory procedures and be sure you know how to do them all!
 - Do any prelab yourself
 - Do the lab yourself if you are at all unsure
 - Anticipate student questions
 - Be sure you know how to use the equipment thoroughly
The First Laboratory Session

- You are the one in charge
- Write on the board:
 - Name, course name, lab section, office hours
- Take roll (try to learn the names)
- Form lab groups if appropriate
- Assign groups to benches
- Set the tone; prepared, serious, respectful
- Explain your role; not to give answers, not to solve problems for them, to assist them
Subsequent Laboratory Sessions

- At the beginning
 - Start on time!
 - Outline what is to be done this session
 - Answer questions
 - Check prelabs (if appropriate)

- During the session
 - Circulate and observe (don’t stay still)
 - Answer questions
 - Ask questions (more important!) - avoid difficulties
 - Assist, don’t do
Circuit and Computer Laboratories

- For a circuits laboratory
 - Don’t set equipment for them
 - Don’t fix circuit for them
 - Be sure they have the schematic and ask precise questions
 - Give suggestions, then time (return later)

- For a Computer laboratory
 - Don’t take over the keyboard
 - Make them ask precise questions
 - Give suggestions, then time (return later)
At the End of a Laboratory Session

- Remind them of upcoming deadlines
- Make any necessary comments about the next laboratory assignment
- Make sure they clean up their area and return any equipment taken from the issue room
Evaluation

- Discuss with the instructor how labs are to be graded
- Coordinate grading with other TA’s and/or readers as appropriate
- Encourage proper use of laboratory notebooks (more later)
- Make enough marks to be able to remember what you did, but avoid lengthy comments
Laboratory Safety

- You are responsible to notify the department immediately if there is any unsafe condition.
- If a personal injury occurs, the student must be taken to the Student Health Center immediately (by ambulance if necessary). Fill out paperwork within 24 hours (see Karen Gurley).
- No unsupervised students should be in the labs & no casual traffic is allowed.
Laboratory Safety Continued

- No cables or cords should be cut or modified
- Shoes must be worn at all times
- Bicycles are not allowed in the labs
- Food and beverages are not allowed in the labs
- Additional safety procedures must be followed in the microfabrication facility, the optics labs, and the project labs - consult the instructor
Laboratory Security

- Don’t let students move equipment
- Don’t open any equipment
- Verify any problems reported with the equipment and then report them to Barry Vose in 2162 Engineering II
- Don’t leave laboratories unattended or unlocked (except for computer rooms that are supposed to be left open)
Laboratory Notebooks

- You need to help the students learn how to use one properly
- Very different from an engineering report
- Check with your instructor for any specific requirements in your course
Laboratory Notebooks - Purpose

- Notebooks are used to:
 - record design ideas and detailed work
 - summarize simulations and measurements
 - keep a record of project details (e.g., phone calls, purchases, other related information)
 - record notes from reading papers and books
 - be a legal record for patent results (when appropriate, pages are witnessed and signed)

- Notebooks are the property of the company - you don’t usually keep them
Objective is to provide enough information to recall what you did when to help with the project and with patents.

No rigid format, but:
- should be neat and readable (in ink)
- it is a work book, don’t work on scratch paper and rewrite! (wastes time and misses details)
- often only in outline form, not complete sentences
- don’t EVER leave blank pages
- good idea to include a table of contents
Example (assumes a circuit design)
- Objectives
- Specifications
- Design (method, calculations, assumptions, decisions, tradeoffs)
- Schematics
- Testing (details of equipment used, procedures, results, interpretation)
- Revisions and re-design
- Conclusions
Academic Issues with Notebooks

- Notebooks should *be used* in the lab! Make the students bring them and use them.
- Grade appropriately - i.e., don’t discourage proper use as a work book by harsh grading of work in progress - it is NOT an engineering report
- When you help them, make them show you schematics and other information in their notebook - like a colleague in industry
Engineering Reports

- A formal document written to summarize a project or a portion of a project
- Usually written for supervisors, investors, or customers
- Writing should be clear and concise - this is not a workbook!
- Day-to-day details are left out (no one wants to hear how hard it was to get that one part or find that one bug)
- Laboratory notebook provides raw data