EEC390: Teaching Electrical and Computer Engineering
Session II - Helping the Student

Richard Spencer
Vice Chair for Undergraduate Studies

Fall, 2002
Outline

- Objectives
- Methods
- Examples
Objectives

- You want to **assist** the student to find the answer, not give it
- They need to learn how to function independently
 - How to find information on their own
 - How to move on when “stuck”
 - How to double check a solution
- Engineers solve problems, so learning the **process** is more important than the answer
Critical Thinking

- A critical thinker:
 - Is proficient at gathering and assessing data, different approaches and concepts
 - Spots incorrect assumptions and fallacious arguments
 - Does not get stuck (i.e., knows how to move on when temporarily stymied)

- To learn critical thinking:
 - Take time - *struggle* with the problem!
 - Ask *precise* questions
 - Don’t look for a quick answer or set procedure
 - Work on a problem more *after* you have “the answer”
When You Don’t Know What to Do

Don’t just sit there, do *something*!
- Check your algebra and arithmetic
- Check your assumptions (it *can’t* be the …)
- Check your data - are they reliable? reasonable? can you get them another way?
- Check your models - are they good enough?
- Rephrase the question
- Try a different approach
- Explain the problem to someone else
- Try a simpler, but similar, example
Learning Strategy

- Develop intuition, for example;
 - Virtual ground for op amps - why?
 - View op amp circuits as V-to-I, followed by current summing, followed by I-to-V
 - Why does current lead voltage in a capacitor?

- Look for connections and restrictions, for example;
 - Why do we use exponential signals? sine waves?
 - Are Kirchoff’s laws always true?
Teaching Problem Solving

- Be careful with concepts you find obvious!
- Be sure you understand the question
- Listen carefully for what they *don’t* say
- Make them be precise and complete
- Make them have all the information at hand (e.g., schematics, SPICE files)
- Encourage and motivate them
- Ask the right questions
- Ask them to outline a procedure - which steps do they not know how to do?
Teaching Problem Solving II

- Have them make rough estimates
- Have them look for extra sources of information - other books, the web, journals
- Have them check intermediate results for consistency (reality check, units)
- Consider extreme cases (i.e., if some variable assumes an extreme value, the answer may be obvious - then work from there)
Teaching Problem Solving III

- Ask them questions!
 - What do you know about the problem?
 - What should the answer be? Why?
 - Can you break it down into smaller steps?
 - Why did you do that? (get roadmap)
 - How did you do that? (get details)
 - Is there another way to do that?
Common Problems

- Round off errors in intermediate steps
- Mixing units
- Not checking assumptions
- Not doing a reality check
- Not really understanding what they are trying to do
- Not really understanding some basic principle
- Using an insufficient or improper model
Common Problems II

- Jumping to the answer
 - If it was that easy, who would pay you?
- Wanting a universal procedure
 - If one existed, who would pay you?
- Applying a procedure that doesn’t apply
- Not knowing the limitations of a method or model
Examples

- Final voltage on two capacitors
- Argument for virtual ground
- Measured bandwidth way too small
- Measured gain off by a factor of two
- Why can we use superposition for the large- and small-signal solutions to a non-linear problem?
- How can you explain the small-signal approximation?