
The CMOS SLA Implementation and SLA 
Program Structures 

K.F. Smith, T.M. Carter, and C.E. Hunt 
University of Utah 

Department of Computer Science 
Salt Lake City. Utah 84112 

INTRODUCTION - THE SLA CONCEPT 

The storage/logic array (SLA) is a form of structured logic which 
is well suited to VLSI design. The SLA concept, which was derived from 
the PLA, was originally conceived by Patil [3] and later elaborated upon 
by Patil and Welch [4]. The SLA differs from the PLA in several major 
respects. The SLA has both the AND and the OR planes from the PLA, but 
these planes are superimposed or folded on top of each other. This 
folding of the AND and OR planes generates a structure in which AND 
terms are generated on the rows of the SLA and the OR terms are 
generated on the columns. The single AND/OR plane of the SLA contains 
column wires which can serve as inputs to the SLA rows (AND plane) or as 
outputs from the OR plane. This functional duality of SLA columns means 
not only that the SLA can be arbitrarily segmented, but that inputs to 
and outputs from segments of the SLA can be arbitrarily interleaved. 

Also due to the functional duality of the SLA columns, the SLA can 
contain memory elements imbedded within its structure which merges 
feedback loops into the array itself. This allows for the specification 
and implementation of independent finite state machines and data path 
modules wi thin a single integrated structure. In addition to memory, 
inverters or other standard logic gates can be placed in the SLA to 
provide multiple levels of logic, whereas the conventional PLA can only 
generate one level of AND data and one level of OR data. 

Adding row breaks placed between adjacent columns and column breaks 
placed between adjacent rows allows great flexibility in segmenting the 
array. Segments of the array need not be rectangUlar but may be 
polygonal (where the polygon has orthogonal sides). 

Aside from the physical advantages and flexibility of the SLA, it 
has several logical and design automation advantages. The symbolic 
nature of the SLA program speCification gives the circuit designer an 
immediate perception of the logical function of the circuit being 
designed. Each SLA logic symbol maps directly onto a member of the SLA 
cell set, giving the SLA designer a simultaneous perception of both the 
logical function of the SLA and its physical layout. Given a set of 
established SLA cells and rules for using them, a circuit designer can, 
for the most part, ignore both the electronics of the circuit and the 
layout while concentrating on the logical function. 

The SLA should ideally be technology independent. That is, one 
program should be transferable, without change, between different 

396 

H. T. Kung et al. (eds.), VLSI Systems and Computations
© Carnegie-Mellon University 1981



K.F. Smith, .t al 397 

processes. Initial experience with I2L and NMOS SLA 
implementations [5, 6] has shown that, in practice, this is not the 
case. Different process technologies not only have different SLA 
programming design rules, but have radically different advantages and 
disadvantages. Specifically, it was shown that 12L [2] cannot 
adequately implement large gates on the SLA rows or columns. An NMOS 
implementation proved to be able to handle large row and column gates, 
but at the price of high power consumption. Folding the AND and OR 
planes in the 12L and NMOS SLA implementations has resulted in 
relatively poor space utilization. The new CMOS SLA overcomes the gate 
size, power, and space problems encountered in 12L and NMOS. The CMOS 
SLA uses Schottky diodes as the combinational logic elements in both the 
AND and OR planes and thus significantly increases packing denSity of 
combinational logic over both the 12L and the NMOS SLAs. The CMOS SLA 
will also have the speed and driving capability of a conventional CMOS 
circuit but will consume only about one-fourth of the power consumed in 
NMOS SLAB. The packing density will be comparable to that of an NMOS 
ROM. 

THE CMOS SLA CELL SET 

The CMOS SLA Cell Set contains elements which have been present in 
all previous SLA implementations. These elements may not be implemented 
with exactly the same functionality in CMOS, but can be used to write 
SLA programs which are functionally equivalent to those in NMOS or I2L. 
In addition to the "standard" SLA elements, new ones have been added 
which greatly increase the flexibility and power of the CMOS SLA Cell 
Set. The CMOS SLA Cell Set includes: 

- memory elements (flip-flops [latches] composed of cross
coupled NAND gates), 

- inverters (both a single inverter and two inverters in series, 
generating both the true and not-true of the input signal), 

- elements which act on memory elements and inverters: 

- S (set a flip-flop) 
- R (reset a flip-flop) 
- I (inverter input), 

- elements which detect the state of memory elements and 
inverters which are driving onto a column: 

- 0 (detect the reset state of a flip-flop 
or the false output from an inverter) 

- 1 (detect the set state of a flip-flop 
or the true output from two inverters 
in series) 


